
stichting

mathematisch

centrum
~
MC

AFDELING INFORMATICA IW 235/83 SEPTEMBER
(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.W. KLOP

THE ALGEBRA OF RECURSIVELY DEFINED PROCESSES
AND THE ALGEBRA OF REGULAR PROCESSES

Preprint

kruislaan 413 1098 SJ amsterdam

BIBLIOTHEEK MATHL.'vi,'.\: ISCI• CUHRUM
-AMSTEflGJ\i\1- lllll llllll llll lli~'lllij'imf lli~~~lllll llll llll lllll

3 0054 00095 2151

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion
of pure and applied mathematics and computer science. It is sponsored by the Netherlands
Government through the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

1980 Mathematics subject classification: 68Bl0, 68C01, 68D25, 68F20

1982 CR. Categories: F.1.1, F.1.2, F.3.2, F.4.3

Copyright© 1983, Mathematisch Centrum, Amsterdam

The algebra of recursively defined processes and the algebra of regular

processes*)

by

J.A. Bergstra & J.W. Klop

ABSTRACT

we introduce recursively defined processes and regular processes, both in

presence and absence of communication. It is shown that both classes are pro­

cess algebras. An interpretation of CSP in the regular processes is presented.

As an example of recursively defined processes, bag and stack are discussed in

detail. It is shown that the bag cannot be recursively defined without merge.

We introduce fixed point algebras which have interesting applications in

several proofs. An example is presented of a fixed point algebra which has an

undecidable word problem.

KEY WORDS & PHRASES: concurrenc!f, nondeterministic process, merge, process

algebra, regular processes, recursively defined processes,

.fixed point algebra

*) This report is not for review as it will be published elsewhere.

CONTENTS

INTRODUCTION

1. PRELIMINARIES
1.1. Models of ACP
1.2. Restricted signatures
1.3. Linear terms and guarded terms
1.4. Process graphs
1.5. Operations on process graphs

2. REGULAR PROCESSES
2.1. The algebra of regular processes
2.2. CSP program algebras

3. RECURSIVELY DEFINED PROCESSES
3.1. The algebra of recursively defined processes
3.2. Recursive definitions and finitely generated process algebras
3.3. Finitely branching processes
3.4. Interesting examples of recursive definitions

4. UNDECIDABILITY OF THE WORD PROBLEM IN FIXED POINT ALGEBRAS

5. TECHNICAL ASPECTS OF DIFFERENT RECURSIVE DEFINITION MECHANISMS

REFERENCES

INTRODUCTION

1

ACP, algebra of communicating processes, was introduced in BERGSTRA & KLOP [4].

It combines a purely algebraic formulation of a part of MILNER's CCS [13] with

an algebraic presentation of the denotational semantics of processes as given

by DE BAK.KER & ZUCKER in [1,2]; moreover it includes two laws on communication

of atomic actions which are also present in HENNESSY [8].

The ingredients of ACP are the following:

- A finite set A of so-called atomic actions, including a constant o for dead­

lock (or .failur-e). With A we denote A - {o}, the proper- actions.

- A mapping . I . : A x A + A, called the communication function. If a I b = c then

c is the action that results from simultaneously executing a and b. Processes

will cooperate by sharing actions rather than sharing data.

- A subset Hof A (usually H contains the actions which must communicate with

other actions in order to be executable). The elements of Hare called sub­

atomic actions.

- A signatur-e of operations • ,+, 11 ., LL, I, o, a8 . (For x• y we will often write xy.)

2

The axioms of ACP are these:

X + y = y + X Al
x+(y+z) = (x+y)+z A2

x + x = x A3
(x + y).z = x.z + y.z A4
(x.y).z = x.(y.z) AS

x + rS = x A6
o.x o A7

alb bla Cl
(alb)lc = al(blc) C2
ola=o C3

xllY = xlL.y + ylL.x + xly CMl
allx = a.x CM2
(ax)IL.y = a(xllYl CM3
(x + y) IL.z"' xlL.z + ylL.z CM4
(ax)lb = (alb).x CMS
al(bx) = (alb).x CM6

(ax)l(by) = (alb).(xllYl CM7
(x+y)!z xlz + ylz CMS
xl(y+z) = xly + xlz CM9

aH(a) = a if a¢H Dl

aH(a) = o if aEH D2

aH(x+y) = clH(x)+clH(y) D3

aH(x.y) = aH(x).aH(y) D4

These axioms reflect in an algebraic way that+ represents choice, • represents

sequential compos1'.tion and 11 the mer>ge operator.

The operations lL (Left mer>ge) and I (communication mer>ge) are auxiliary

ones. Our primary interest remains for +, • , 11 . The process x [Ly is like x 11 y,

but takes its first step from x, and xly is like xllY but requires the first

action to be a communication (between a first step of x and a first step of y).

3

1. PRELIMINARIES

1.1. Models of ACP.

The axioms of ACP allow for an enormous variety of models. In (3,4,5] we in­

vestigated the model Am. In the present paper we take into consideration

graph theoretic models as well. Especially we consider finitely bPanching

graphs.

(i)

(ii)

Four types of models thus emerge:

A, the initial model of ACP seen as an equational specification over
w

the signature with a constant for each atom.

A mod n, (also written as A) for n ~ l: a homomorphic image of A ob-
w n w

tained by identifying two processes in A if their trees coincide up to
w

depth n.

(iii) Am; this is the projective limit of the structures A.
n

(iv) graph theoretic models.

More information on these matters can be found in (3-6].

1.2. Restricted signatures.

It is useful to consider a smaller set of operations on processes, for in­

stance: only+ and•. Then one may forget o and consider structures

m
A (+ •) A (+ •)· A (+ •)
-WI '-n I I_ I

where A = A - { o} •

Under the assumption that alb= o for all a,bE:A, we may add 11 and IL
to the signature of these algebras, thus obtaining

A (+ , • , 11 , IL) , A (+ , • , 11 , lL) and Am (+ , • , 11 , lL) •
-w -n -

Of course these structures can be constructed immediately without any referen­

ce to communication. Let PA be the following axiom system:

4

x+y = y+x Al

x+(y+z) (x+y)+z A2

X + X = X A3

(x + y). z = x.z + y.z A4

(x.y).z = x.(y.z) A5

xllY = xll_y + yll_x Ml

all_x = a.x M2

axll_y = a(xlly) M3

(X + y) IL z = X lL z ·+ y ll_ z M4

Then A (+,•,II ,ll_) is just the initial algebra of PA.
-w

1.3. Linear terms and guarded terms.

Let x1 , ... ,Xn be variables ranging over processes. Given a (restricted) signa­

ture of operators from+,•, 11 ,ll_,I ,aH,o two kinds of terms containing variables

x1 , ... ,Xn are of particular importance:

(i) Linear terms. Linear terms are inductively defined as follows:

- atoms a,o and variables X. are linear terms,
1

- if T1 and T2 are linear terms then so are T1 + T2 and aT1 (for a e. A).

An equation T1 = T2 is called linear if T1 ,T2 are linear.

(ii) Guarded terms. The unquarded terms are inductively defined as follows:

- X. is unguarded,
1

- if Tis unguarded then so are T+T', T"T', aH(T), TIIT', Tll_T', TIT'

(for every T').

A term Tis guarded if it is not unguarded.

1.4. Process graphs.

Process graphs (or, as we will sometimes call them: transition diagrams) con­

stitute a very useful tool for the description of processes. In this section

we will consider finite process graphs (possibly containing cycles). Finite
00

process graphs over A will find a semantics in A via a system of recursion

/

5

equations.

A process graph g for an action alphabet A is a rooted directed graph

with edges labelled by elements of A. (Here g may be infinite and may contain

cycles.)

Let g be a finite process graph over A. We show how to find a semantics
00

of gin A. To each nodes of g with a positive outdegree, attach a process

name X. Then the following system of guarded linear equations arises:
s

X =
s 1

(a,t) E. U
a•x +

t 1 a
a €-V

where U = {(a,y) I g: s ~t & t has positive outdegree},

V = {a I :3t g: s ~ t & t has outdegree 0}.

This system EX has a unique solution in A00 and with s 0 the root of g, we de­

fine

where <p > solves E .
s X

1.5. Operations on process graphs.

We assume that - I. is defined as a communication function: Ax A + A. Now let

g1 ,g2 be two process graphs for A. We define new process graphs as follows:

g1 + g2 results by glueing together the roots of g1 and g2 ,

g1 •g2 results by glueing together the root of g 2 and all ennpoints of g1 ,

aH (g1) results by replacing all labels a E. H by c in g1 ,

g1 llg2 is the cartesian product of the node sets of g1 and g2 provided

with labeled edges as follows:

(i) a: (sl,s2) ~ (si,s2) if in gl we have a: sl ~s•
l

(ii) a: (sl ,s2) ~ (sl ,s2) if in g2 we have a: s2 ~s•
2

(iii) a: (sl,s2) ~ (si,s2) if for some b,c EA we have blc=a and

b: s ~s•
l l

in g1 , c: s2 ~s•
2

in g2 .

6

g1 ll g2 is defined like g1 llg2 , but leaving out all transitions of types

(ii) and (iii) if s 1 is the root of g1 .

g1 I g 2 is defined like g1 II g2 but leaving out all transitions of types (i)

and (ii) if s 1 resp. s 2 is the root of g1 ,g2 .

2. REGULAR PROCESSES

2.1. The algebra of regular processes.

00

For pEA we define the collection Sub(p) of subprocesses of pas follows:

pESub(p)

ax E Sub (p) =9 x E Sub (p), provided a -:f o

ax+ y E Sub(p) =} XE Sub(p), provided a-:/ o
00

DEFINITION. p EA is regular if Sub (p) is finite.

00 00

NOTATION. r(A) denotes the collection of regular processes in A.

THEOREM 2.1.1. (i) If pis regular then there is a finite process graph g with

[g] = p, and conversely.

(ii) The class of regular processes is closed under the operations +,•,11 ,[L,I ,aH.
00 00

Hence r(A) is a subalgebra of A.
00

(iii) r(A) contains exactly the solutions of .finite systems of guarded linear

equat1:ons.

PROOF. (i) and (iii) are standard; (ii) is an immediate consequence of the fact

that the operations +,•,II ,[L ,I ,aH acting on graphs preserve finiteness. (Cf.

[6] , Section 2.2) D

2.2. CSP program algebras.

00

In this subsection we illustrate the use of the algebras r(A) by giving an

interpretation of Eimplified CSP programs in such algebras.

Let Ebe an algebraic signature and let X be a set of variables. A CSP

component programs is defined by:

S··= b I b&x:=t I b&C!t I b&C?x I s1 ;s2 I s1• s2 I while b do Sod.

7

Here bis a boolean (quantifier free) expression. The action bis a guard,

which can only be passed when it evaluates to true; b & p can only be perfor­

med if b is true. It is usual to abbreviate true & p to p. All variables x must

occur in X. Further, C is an element of a set of channel names.

A CSP program Pis a construct of the form [s1 11---llsk] with the Si

CSP-component programs.

REMARK. Originally the CSP syntax indicates restrictions: the S. must work
l

with different variables, the channels are used to interconnect specific pairs

of components. (See HOARE [9].)

However, from our point of view these restrictions are just guide-lines

on how to obtain a properly modularised system (semantically their meaning is

not so clear).

Let a CSP program P = [s1 11 ... llsn] be given. We will evaluate an inter­

mediate semantics for it by embedding it in a process algebra.

First we fix a set of atomic actions; these are:

(i) b 1 , ,b1 , b1 Ab2 if b1 ,b2 occur in P

(ii) b & x :=t if x and t occur in P, for all b from (i)

(iii) b &Clt:

(iv) b&C?x

if Clt occurs in P, for all b from (i)

if C?x occurs in P, for all b from (i)

Let us call this alphabet of actions AC . If we delete all actions of the
SP-P

form b & Cl t or b & C?x we obtain A . So A contains the proper actions that eva-p p
luation of P can involve, while ACSP-P contains the subatomic actions as well.

H contains the actions of the form b & Cl t and b & C?x.

Next we fix a communication function. All communications lead to cS, except

the following ones:

b1 & Cl t I b 2 & C?x

We will first find an image [PD of Pin A00C . This is done using the notation
SP-P

of µ-calculus. We use an inductive definition for subprograms of the component

programs first:

8

[b] = b

[b &x:=t] = b &x:=t

[b &C!t] = b &C!t

[b & C?x] = b & C?x

[Sl;S2] = [Sl]•[S2]

[S1• s 2] = [S1]+[s2]

[while b dos od] = µx(b•[s]•x + ,b).

Here µx(b•[S]•x + ,b) is the unique solution oftheequation X = b•[S]•X + ;b.

It is easily seen that the solution~ is regular whenever [S] is regular.

Inductively one finds that [S] is regular for each component program S.

Finally for the program P we obtain:

[P] = [[s1 11---lls l D = a ([s1]11---ll[s]). n H n

We can now draw two interesting conclusions:

(i) [PD is regular;
00

(ii) [PD can just as well be (recursively) defined in ~P(+,•) (so without

any mention of communication).

Proof. (i) [S.] is regular because it
--- 1

tions only. Consequently the [S.] are
1

00 • 00

r(ACSP-P) is a subalgebra of Acsp-p·

is defined using linear recursion equa-
00

in r(ACSP-P) and so is [P] because

(ii) follows from (i) and Theorem 2.1.1. (iii).

REMARK. In general one must expect that a recursive definition of [PI not in­

volving merge will be substantially more complex than the given one with mer­

ge.

3. RECURSIVELY DEFINED PROCESSES

3.1. The algebra of recursively defined processes.

Let X = {x1 , ... ,Xn} be a set of process names (variables). We will consider

terms over X composed from atoms a e: A and the operators +, •, 11 , lL. , I , aH.

A system EX of guarded fixed point equations for Xis a set of n equa­

tions

X. = T. (Xl, •.. , X) , i = 1, ..• , n,
1 1 n

with T. (X1 , •.. ,X) a guarded term.
1 n

THEOREM 3.1.1. Each system Ex of guarded fixed point equations has a unique
• 00 n

solution ~n (A) .

PROOF. See DE BAKKER & ZUCKER [1,2J; essentially EX is seen as an operator

9

00 n 00 n
(A) ~(A) which under suitable metrics is a contraction and has exactly

one fixed point, by Banach's fixed point theorem. O

00

DEFINITION. p~A is called recursively definable if there exists a system

E of guarded fixed point equations over X with solution (p,q1 , ... ,q 1).
X ~

PROPOSITION 3.1.2. The recursively defined processes constitute a subalgebra
00

of A •

PROOF. Let Ex= {X. =T.(X)li=l, ... ,n} and E = {Y.=S.(Y)lj=l, ... ,m}.
1 1 Y J J

Let Ez = EX u EY u {Z = T1 (X) 11 s1 (Y)}. Now if EX defines p and EY defines q, then

Ez defines Pllq. Likewise for the other operations. D

00

NOTATION. With R(A) we denote the subalgebra of recursively defined processes.

REMARK. For algebras with restricted signatures the above construction of a

subalgebra of recursively defined processes is equally valid. Of course, the

equations will then use the restricted signatures only. This leads to algebras

like

R (~ 00 (+, •)) and R (~ 00 (+, •, 11 , lL)) •

3.2. Recursive definitions and finitely generated process algebras.

00

Let p1 , ... ,pn be processes in A. Then Aw(p1 , .•. ,pn) will denote the subalge-
00

bra of A generated by p1 , ... ,pn.

10

THEOREM 3.2.1. Let ~1 , ... ,~n be solutions ~f the system of guarded fixed

point equations E. Then A cx1 , ... ,x) is closed under taking subprocesses.
X w - -n

PROOF. Let p E Aw (~1 , ... '~n) . Then for some term T we have p = T (~1 , ... '~n) ;

after substitutions corresponding to X. = T. (X1 , ... ,X) we may assume that t
i l. n

is guarded.

On the basis of ACP one can rewrite T(x1 , ... ,Xn) into the form

~ . ~
l a .• R . (xl , •.. , X) + l b .•

J.l. n i

Consequently all immediate subprocesses of p, i.e. the R. cx1 , ... ,x), are
i - -n

in A (X1 , ... ,X) as well. 0
w - -n

This theorem gives a useful criterion for recursive definability (to be

used in Section 5):

COROLLARY 3. 2. 2. (i) Let p ER(~®(+,•, II, lL)). Then Sub (p) is finitely gene­

rated using +,•,11,lL,aEA.

(ii) Likewise for the restricted signature of+,• ,a EA. D

3.3. Finitely branching processes.

CJ)

DEFINITION. Let p EA . (i) Then ~ is the canonical process graph of p, defi­
P

ned as follows.

The set of nodes of ~ is Sub (p) u {o}. Here o is a termination node. p
The root of ~ is p. The (labeled and directed) edges of~ are given by:

p p

(1) if a E Sub(p) then a ~o is an edge,

(2) if ax E Sub (p) then ax ~x is an edge,

(3) if ax+ y E Sub(p) then ax+ Y ~x is an edge.

(ii) Let p ~ p1 ~ ... be a maximal path in ~P (i.e. infinite or termina­

ting in o). Then a0a1 ... is a trace of p.

(iii) pis perpetual if all its traces are infinite.

(iv) IIPII, the breadth of p, is the outdegree of the root of ~p. Here IIPII E lN,

or IIPII is infinite.

(v) p is finitely branching if for all q E Sub(p), llqll is finite.

(vi) p is uniformly finitely branching if 3n E lN Vq E Sub(p) llqll< n.

11

The proof of the following proposition is routine and omitted.

PROPOSITION. The uniformly finitely branching processes constitute a subal-
oo

gebra of A • D

The next theorem gives further criteria for recursive definability of

processes.

THEOREM 3.3.1. (i) Recursively defined processes are finitely branching.

(ii) Moreover, processes recursively defined using only +,• are uniformly

finitely branching.

(iii) There exists a process pER(~00 (+,•,ll,IL» which is not uniformly fini­

tely branching.

PROOF. (i), (ii): straightforward.

(iii): Consider the solution X of

X = a + b (Xe II Xd) •

Define with induction on n the following processes:

P = a

{ P :+ 1 = P n • c 11 P n. d.

Claims: (1)

(2) 11Pn11 = 2n

(3) 11 a H (x l I I ~ I Ix 11

p .
n

Here (1) states that the p are 'almost' subprocesses of X. Claim (3) is the
n

general and obvious fact that the projection operator aH certainly cannot in-

crease the breadth of its argument. Combined with the observation of Claim (2)

that the breadths of the p are unbounded, the claim yields the result.
n

We will now prove Claim (1) and (2). (The proof of Claim (3) is straight-

forward.)

Proof of Claim (1) •

Let

{ ::+:
X

= q •c II q •a.
n n

12

We will prove that a {b} (qn) = pn, for all n ~ 0.

n = O : a { b} (q 0) = a + o (• . •) = a =

Induction hypothesis: a{b} (qn) p and q E Sub(X).
n n -

To prove: a{b} (qn+l) = pn+l and qn+l E Sub(~).

Since q E Sub (X), we have q c E Sub (Xe) and q d E Sub (Xd).
n - n - n -

So qn+l = qnc II qnd E Sub(~c II ~d),;;; Sub(a + b(~c II ~d)) = Sub(~).

Furthermore, a{b} (qn+l) = a{b} (qnc II qnd) = (since there is no nontrivial

communication) a{b} (qnc) 11 a{b} (qnd) = (cl{b}qn)c II (cl{b}qn)d = pnc II pnd = Pn+l ·

Proof of Claim (2). We will give a sketch of the proof.

Define the set D of "inside-out traces" as follows:

{
a ED

o,i: ED~ oci:d, odi:cED.

Now consider e.g. p 2 = [(ac II ad)c] II [(ac II ad)d].

D contains some traces of p 2 , such as acaddadacc. Traces in D arise from an

"inside-out evaluation" of the merges in the unevaluated expression for p 2 ,

as suggested by the following figure:

[(ac II ad) c] II [(ac II ad) d]

a t
C t
a t
d t
d t
a t
d t
a t
C t
C t

Moreover, traces in D can be evaluated in precisely one way. (This does not

hold for traces not in D; e.g. aacdaadcdc may be obtained starting from each

of the four occurrences of 'a' in the expression for p 2 .) Hence the four sum­

mands of p 2 , corresponding to the four occurrences of 'a' in the expression

13

for p 2 , are different since they contain a trace which is characteristic for

them. So IIP2 II = 4. Likewise one proves the general statement in Claim (2). •

THEOREM 3.3.2. Let Ex be a system of guay,ded .fixed point equations over

+, • ,A,X. Suppose the solutions x aY'e peY'petuaL Then they aY'e y,eguLaY'.

PROOF. Since the ~i in X = {~1 , ... ,~m} are perpetual, we have ~i•p = ~i for
a,

every p E A . Therefore every product X. • t in E may be replaced by X. without
l X l

altering the solution vector X. This leads to a system E' where only prefix
X

multiplication is used, or in other words, containing only linear equations

(see 1. 3) • Hence the solutions ~ of E~ are regular, by Theorem 2 .1.1. (i) . D

COROLLARY 3.3.3. Let p be a f1:nitely bY'anch1:ng and peY'petuaL pY'ocess.

Let Sub (p) be generated using +, • by a .f1:nite subset X ~ Sub (p) .

Then p is y,eguLar.

PROOF. Say X = {q1 , ... ,~}. Since pis finitely branching, and hence also

the q. are finitely branching, we can find guarded expressions (using+,•
l

only) T(X1 , ... ,X) and T. (X1 , ... ,X) such that
n 1 m.

l

q. = T. (q.1,··•,q.),
l l l lm.

i=l, ... ,m.
l

Here the pk (k=l, ... ,n) and q .. (i=l, ... ,m; j=l, ... ,m.) are by definition
lJ l

in Sub(p); therefore the pk and qij can be expressed in q1 , ... ,~. So there

are guaY'ded +,•-terms T' and T'. such that
l

{
p ,: TI (ql, ... , ~)

qi= T1(q1 , ... ,~), i=l, ... ,m.

Since pis perpetual, every subprocess of pis perpetual; in particular the

q. (i = 1, ... , m) . By the preceding theorem p and the q. are now regular. D
l l

REMARK. The condition 'finitely branching' is necessary in this Corollary, as

the following example shows. Consider

p

a,

~
l

i=l

ibw a .
'

14

more precisely, pis the projective sequence (p1 ,p2 , ... ,pn,···> with

p =
n

n

I
i=l

i n-i
a b .

Then the canonical transition diagram of pis

Now pis perpetual and Sub(p) {p} u {anb00 ln~0}, so Sub(p) is generated by

its finite subset {p,b00 }; yet pis not regular.

3.4. Interesting examples of recursive definitions.

We will consider BAG, COUNTER and STACK. Let D be a finite set of data values.

Let A= Du!?_, where D = {~ I dE D}. Let us first consider a bag B over D; its

actions are:

d: add d to the bag

d: take d from the bag.

The initial state of Bis empty. Thus the behaviour of Bis some process in
00

A •
00

Similarly the stack Sis represented by a process in A.
00

A counter C is a process in {0,p,s} where the actions 0,p,s have the

following meaning:

0: assert that Chas value 0

p: add one to the counter

s: subtr~ct one from the counter (if possible).

Of course these descriptions are rather informal; a much more precise defi-

nition could be given along the lines of BERGSTRA & KLOP [7].

Here we are interested in recursive definitions for B,S and C:

B = ~ d• (g II B) l
dED

s = r d•T •s
dED

d

Td = d + r b•T •T for all d ED - b d
bED

C = (0 + s•H) •c

H = p + s•H•H

REMARKS. The equation for B has been discussed in detail in [7].

The recursive definition of Sis equivalent to one of HOARE [10].

The equations for Care similar to those for S when D = {s} and p

stands for s. It only has the extra option for testing on value zero.

4. UNDECIDABILITY OF THE WORD PROBLEM IN FIXED POINT ALGEBRAS

00

As in 3 • 2, for p1 , .• , p n E A we denote with A (p1 , ••• ,p) the subalgebra of
w n

00

A generated by p1 , ... ,pn.

Let x1 , ..• ,X be a set of new names for processes, and let x1 , ... ,X
n - -n
00

be processes in A. Then with A (X1 , ... ,X) we denote an algebra as above
w - -n

but with x1 , •.. ,xn added to the signature.

15

REMARK. Let us denote with A [x1 , ... ,X] the free ACF algebra generated over
w n

new names x1 , ... ,Xn. For each set of interpretations !i•···•!n there is a

homomorphism

<I>: A [x1 , .•• , X] + A (Xl, .•• , X) .
w n w - -n

Now suppose that EX is a system of guarded fixed point equations for X =

{X1,···,Xn}. Then

A [x1 , .•. , X] /E
w n X

is the algebra obtained by dividing out the congruence generated by EX. On

16

co
the other hand, let ~ 1 , ... ,~n be the unique solutions of EX in A. There is

again a homomorphism

(j>: A [X1,···,x]/E + A (X1,···,x).
w n X w- -n

Both algebras Aw[X1 , ... ,Xn]/EX and Aw (~1 , ... '~n) may be vastly different how­

ever. Being an initial algebra of a finite specification, A [X1 , ... ,X]/E is
w n X

semicomoutable. As we shall see, A (X1 , ... ,X) is in general cosemicomputable
~ w - -n

and we will present an example where it is not computable indeed.

DEFINITION. A fixed po1'.nt algebra.is an algebra

A (Xl, ... , X)
w - -n

co
where the X. are solutions in A of some system of guarded fixed point equa­

-1

tions Ex.

DEFINITION. Consider an algebra A (X1 , ... ,X). The word problem for this al-
w - -n

gebra consists in deciding for given terms T and R over +, • , 11 , lL , I , a H, A,

x 1 , ... ,Xn whether or not

A (x1 , .•. , x) I= T = R.
w - -n

THEOREM 4 .1. For each .fixed point algebra Aw (~1 , ... '~n) the word problem is

co-r.e.

PROOF. Consider A (X1 , ... ,X) and let X. solve EX. Let T,R be two terms. Then
w - -n -1

A (Xl, ... , X) I= T ;i! R {=9
w - -n

3k A (Xl, ... ,x)/=k I= T;i! R. w - -n
co

Here =k is the congruence on A defined as follows: if p = (p1 , p 2 , ...) and q =

(q1 , q 2 , ...) then p = k q 4=9 pi = qi for i = 1 , ... , k.

from

Now A (X1 , ... ,X)/=k is a
w ·- -n

E and k~ in this algebra
X

finite algebra which can be uniformly computed

T ;i! R can be effectively decided.

Consequently inequality of T and R is semicomputable and equality is co­

semicomputable (co-r.e.). D

THEOREM 4.2. There is a .fixed point algebra Aw(~1 , ... ,~n) with undecidable

word problem ..

17

PROOF. Let K be a recursively enumerable but not recursive subset of JN. The

elements of K can be recognized by a register machine on three counters in

which the argument n is initially stored in the first counter (see HOPCROFT

& ULLMAN [11)).

The counters will be denoted by x,y,z; we use a as a metavariable ran­

ging over x,y,z. The register machine has the following instructions:

a:= a + 1; goto j

a : = a .:. 1 ; goto j

if a= O then goto j 1 else goto j 2

stop.

A program for the register machine is a numbered sequence 11 , ... ,Ik of such

instructions, where obviously j,j1 ,j 2 E {1, ... ,k}for all instructions.

Let P be a program which recognizes Kin the sense that P(n,0,0) ~ stop

iff n EK. Let e be the number of instructions of P. We will define a fixed

point algebra in which P can be represented. The alphabet A, the set of sub­

atomic actions Hand the set X of variables for the system of recursion equa­

tions for this fixed point algebra are as follows:

A= {s ,p ,o ,b,stop,o}
a a a --

H = A - {b,stop,o}

X = {C ,H ,B,X. I a= x,y,z; i=l, ... ,e}.
a a i

The communication function .I. is given by

s Is = p IP = 0 lo = b (a= x,y,z) a a a a a a

All other communications equal o.

Before giving the system of equations EX we define a map f ::t from regis­

ter machine instructions to process algebra expressions over A,X:

fa:=a+l; goto j

fa:=a.:.l; goto j

f ifa = 0 then goto

f stop ::t = stop

::t

::t

= s ·x.
a J

= (0 + p)• X.
a a J

j else goto j'::t = o•x.+p•s•x.
a J a a J'

18

Let EX be the system of guarded recursion equations:

C = (0 + s "H) ·c
a a a

(a = x,y,z)

H = (p + s •H) •H
a a a

(a = x,y,z)

B = b•B

X. = fI.l
J J

(j = l, ... ,e)

(Note that the fI.l contain variables from x1 , ... ,x .)
J e

Further, note that the expression Hn•c denotes the state of counter a
a a

containing n, and consider the following term representing P:

a cx1 11 Hn • c II c 11 c) .
H X X y Z

We claim that

A cc ,H ,c ,H ,c ,H ,x1 , ... ,x ,B) I= a cx1 11Hnc lie lie)=B
W -x -x -y -y -z Z - -e - H X X y Z

if and only if the computation P(n,0,0) diverges.

The straightforward proof of the claim is omitted.

Thus we find that the predicate n I K is one-one reducible to the word

problem of the fixed point algebra A (C , ... ,B), which shows that this word
w -x -

problem is undecidable. •

5. TECHNICAL ASPECTS OF DIFFERENT RECURSIVE DEFINITION MECHANISMS

In this section we will provide information about particular recursive defi­

nition mechanisms. We summarize the results in a sequence of theorems:

THEOREM 5.1. c (counter) ands (stack) cannot be defined by means of a
00

single equation over A (+, •).

00

THEOREM 5.2. B (bag) cannot be recursively defined over A (+,•) (provided

its domain of values contains at least two elements).

THEOREM 5. 3. If ! is recursively defined over A 00 (+, ·, 11, IL) and ! ¢. Aw then

! has an infinite regular (i.e. eventually periodic) trace.

THEOREM 5.4. There is a process p E{a,b} 00 which cannot be recursively

defined in {a,b} 00 (+,•,ll,ll__) but which can be recursively defined in

{a,b,c,d,0} 00 (+,•, II ,ll, I ,aH) where Hand the communication function are

appropriately chosen.

We will give the proofs of these theorems in the order of increasing

length of the proof.

19

PROOF of Theorem 5.1. Immediately, by Theorem 3.3.2 and the fact that C and

S are clearly not regular. •

PROOF of Theorem 5.4. Consider the alphabet A= {a,b,c,d,o}, with H = {c,d}

as set of subatomic actions and with communication function given by:

clc = a; did= b; other communications equal o.

Let

p = ba (ba 2) 2 (ba 3) 2 (ba 4) 2 • • •

and consider the system of equations

{
:::::+d

Z = dXcZ.

It turns out that p = aH(dcYIIZ). To prove this, consider the processes

pn = aH (dcnYIIZ)

for n ;?l l. Now we claim that for all n ;?l 1:

n n+l
p = ba ba p 1 n -n+

which immediately yields the result. Proof of the claim:

pn = aH(dcnYIIZ) = aH(dcnYlldXcZ) = banaH(YllxcncZ) =

banaH (dXY 11 (cXc + d) cn+lZ) = banb aH (XY ll cn+lZ) =

n n+l n+l n n+l n+l
ba ba aH(Xc Yllz) = ba ba aH(dc Yllz)

n n+l
ba ba p 1 .

n+

The fact that p cannot be recursively defined without communication

20

follows immediately from Theorem 5.3. whose proof will follow now. D

PROOF of Theorem 5.3.

To obtain information about traces of recursively defined processes, we need

the concept of a trace generator of a term T(X1 , ... ,Xn). If Tis closed, i.e.

contains no variables X., the trace generators of T as defined below are just
l.

the usual traces; if Tis open then its trace generators may also contain va-

riables. First we need a 'normal form' of terms:

DEFINITION. (i) On the set of terms built from +,•,II, IL ,a EA we define the

following reduction rules (which may be applied in a context):

x+x-+x

(x + y) z -+ xz + yz

z (x + y) -+ zx + zy (*)

xlly -+ xll_y + yll_x

all_ x -+ ax

(ax) ll_ y-+ a(xl!y)

(x + y) ll_ z -+ x IL z + y ll_ z.

A term in which none of these reduction rules can be applied, is in trace

normal, form.

(ii) Let T-+ -+T' be a reduction according to the rules above such that

no further step is possible, i.e. T' is in trace normal form. Let

k
T' = i;'

'[. l
i=l

l.

where the ,.are indecomposable w.r.t. +.
l.

Then the -r. (i = 1, ... ,k) are the trace generators of T. (So a trace
l.

normal form is a sum of trace generators.)

The reduction rules above correspond to the axioms A3,4 and Ml-4, except

for the rule (*). Note that we work modulo Al,2,5 (associativity of+,• and

commutativity of+).

To show that the trace generators are well-defined by (ii) of the defi­

nition, one needs the following fact whose proof is standard and will be

21

omitted (cf. [4] for a similar proof):

PROPOSITION. (i) Ever>y r>eduction us1:ng the r>ules in the preceding defim:tion

must ter>minate.

(ii) AU r>eductions with the same star>t ter>minate eventually in the same r>esuU. •

EXAMPLE. (i) a (b + b + ca) a reduces to the trace normal form aba + acaa, hence

has trace generators (here also traces) aba, acaa.

(ii) X(a+b) II c reduces to

Xa IL c + Xb lL c + cXa + cXb,

hence has trace genera tors Xa li_ c, Xb l1_ c, cXa and cXb.

In fact we are only interested in the prefix of a trace generator up to

the first variable:

DEFINITION. Let -r be a trace generator of the form w (.•. (X--- where w EA*

(i.e. w is a term built from a EA by • only) and where w is followed by some

brackets (possibly none) followed by the variable X.

Then the trace generator wX is called a pr>efix of -r.

EXAMPLE. aaabbX is a prefix of the trace generator aaabb((XX) LL b).

PROPOSITION. Let T, s be ter>ms such that T conta1:ns a tr>ace gener>ator> with

pr>e.fix wx, and s contains a tr>ace gener>ator> vY.

Then T[X:=S], the ter>m r>esulting fr>om substitutinq s for> the occur>r>ences

of X in T, contains a tr>ace gener>ator> with pr>efix wvY.

PROOF. Elementary. Note that the left-linearity of li_ is used as well as the

auxiliary rule (*) needed for computing trace generators. •

EXAMPLE. S(X) = b 2 (X2 ll_ b) + c when substituted in T(X) _ a 3 [(X(X[L_a)) ll_a]

yields as one of its trace generators

a 3 J::>2 [((X2 LL b) b 2 ((X2 [lb) ll_ a)) lL a]

which has indeed a 3 b 2 X c1s a prefix.

We can nm., finish the proof of Theorem 5. 3. Let EX = {X. = T. (X) Ii= 1, •• ,n}
l l

22

be a system of guarded equations defining!= {!1 , .•• ,!n} where !i has an

infinite trace. Define a directed graph~ on X = {X1 , ... ,Xn}' with edges la­

beled by w EA* as follows:

X.
l.

w ..
l.J > X. is a labeled edge of ~ if:

J

w .. X. is a prefix of a trace generator of T. (X) •
l.J J l.

We may suppose that every T. (X)
l.

(i=l, ... ,n) contains some variable (other-

wise the trivial equation X. = T. could be eliminated first). Hence~ con-
J. l.

tains no endnodes. Therefore f, being finite, must contain a path starting

with x1 and eventually cyclic, e.g.:

w35 w52

t_3
_____ :_::;:;..3~------f

But then, by the previous Proposition, repeated substitution leads to a pro­

cess !i with an eventually periodic trace; in our example: w13 (w35w52w23)w. •

EXAMPLE. If Ex is {xl = a(X2tLx3) + a

x 2 = bc(x 3 11x3)

x 3 = aax1x 3

then
a be aa > X

1
w

hence X contains a trace (abcaa) .
·-1

PROOF of Theorem 5.2.

The behaviour of a bag B was defined above (Section 3.4):

B= l d(~IIB).
dED

In this subsection we will consider the case that D = {a}, and the case

D = {a,b}. (The results for the last case generalize at once to the case

D = { a1 , ... , an} .)

23

In the first case

B -· a(!IIB) (*)

is equivalent to the following definition without II:

aCB (**)

a+ ace

as can be seen by realizing that the behaviour of a bag with singleton value

domain is identical to that of a stack over the same domain. Indeed, both

recursive definitions yield the transition diagram (or process graph):

a a a
•< - •< - re- ... -.;I!

B=B
0

a
Bl

a
B2

a
B2

According to Theorem 3. 2 .1, the subprocesses B (n ~ 0) of B are finite­
n

ly generated (using (*)) by+,•, II ,[l,B,a,!. Indeed one easily verifies that

Using (**) , the same theorem says for the restricted signature without 11 , [L ,

that the B are finitely generated by +,•,B,C,a,!· Indeed:
n

n
B = C "B.

n

Before considering the case that Dis not a singleton, say D = {a,b}

(the general case follows by a simple argument) and showing that the bag

then needs II, lL for its recursive definition, note that (*) can be rewritten

as

B == (aa) lL B •

The intuition here is that B is the 'w-merge' of a!, i.e.

B == a! 11 aa II a! 11 a~ II

(For trace theory, thew-merge occurs e.g. in [12] .) To be precise:

Let p be a process. Then thew-merge of p, written as~, is the limit of

the iteration sequence

24

p, PIIP, PIIPIIP, .•.

as defined in [3], where the existence of this limit is shown. It is easy

to prove that this limit is also obtained by the guarded fixed point equa­

tion

X=pLi_X.

(Note that X = PIIX would not do as it is not guarded and has no unique so­

lution.)

Next consider the bag B over {a,b}, that is:

B = a(~IIB) + b(.£II B).

Some alternative definitions are

or

or

or

or

B = a(~!IB) II b(.£11B),

B = (a~+ b_£) LLB,

B = (a~ II b_£) IL B ,

= X IIY

{::
Xl =

x2 =

yl =

y2 =

a(~IIX)

b(.£11Y)

ax2x1

a + ax 2x2 -
bY 2Y1
b + bY 2Y2 . -

(The last two systems are guarded after an appropriate substitution.)
00

The last system of equations is of interest since it shows that R(A (+,•))

is not closed under II (after the result below is proved).

We will show that B cannot recursively be defined over+,•, i.e.
00

B ¢ R(A (+,•)). We start with some observations about B. Its canonical pro-

cess graph is:

'
b

'
b

.

" " "

b -

b -
I/

25

II ,,
" a a

a , a
b b b b

a - a -

a
b b

a
b b

a - a -,_
,

a a

and its subprocesses are the Bm,n (rn,n ~ 0) where B = B010 ; the Brn,n satisfy

for all m,n ~ 0:

B = aB + aB + bB + bB
m,n rn+l,n - rn-1,n m,n+l - rn,n-1

with the understanding that summands in which a negative subscript appears,

must vanish.

The subprocesses B are by Theorem 3.2.1 generated by B,a,b,~,E via
rn,n

+, •, 11 , IL ; indeed it is easy to compute that

Graphically we display the B in the "a,b-plane":
m,n

+
(O·,O)·

(-m,-n border of B
m,n

in which the starting node of B is at (0,0) and all traces of B stay
rn,n m,n

confined in the indicated quadrant.

26

00

Suppose for a proof by contradiction that B ER (A (+, •)) . Then, by Corol-

lary 3. 2. 2, the collection of subprocesses B (m, n ~ 0) is finitely generated
m, n

using +, • only by say x1 , ... , Xk. Let the B therefore be given by
- - m,n

B = T (X)
m,,n m,n -

where T (X) are terms involving only+,• ,a,~,b,_e,X. (Here X = (X1 , ... ,Xk)
m, n

contains the variables of the system of recursive definitions yielding solu-

tions X and used to define B.)

We may assume that every occurrence of X. in T is immediately preceded
1 m, n

by some u EA = {a,~,b,~}. If not, we expand the corresponding X. as
-1

X . = aX . l + a X , 2 + bX . 3 + ~ ~ 1- 4 -1 -1 - -1 -1

(some summands possibly vanishing) and replace X. by its subprocesses x. 1 , ... ,
-1 -1

~i4 in the set of generators~-

Further" we may take T to be in normal form w.r.t. rewritings
m, n

(x + y) z + xz + yz.

Now consider an occurrence of X. in T . Then X. is contained in a subterm of
1 m,n 1

the form uX. P, u E A, P maybe vanishing. Take P maximal so, i.e. uX . P is not a
l l

proper subterm of some uX.PQ.
l

Then it is easy to see that X.P (where Pis P after substituting X. for
-1- - -J

X ., j = 1, ... "k) is a subprocess of B , i.e.
J m,n

X.P = B
-1-- k, e

for some k,e ..

Thus we find that all generators are left-factors of some subprocess of

B. If such a left-factor X. is perpetual then clearly in the factorization
-1

X.P = Bk we have already X. = Bk . For proper factorizations (i.e. where
-1- , e -1 , e
X. is not perpetual) we have the following remarkable properties:
-l

PROPOSITION. Let PQ = B be a factoI'ization of a subpI'ocess of B. Suppose
m, n

P is not peI'petual. Then:

(i) aU .finite tI'aces of P end in the same point of the a,b-plane;

(ii) P deteI'mines n,m and Q uniquel.1.1 (i.e. if moI'eoveI' PQ' = B then
"' m' ,n''

Q = Q ' and n " m = n ' , m ') •

27

PROOF. (i) Consider the following figure:

B
m,n

Suppose P has traces o,o' ending in different points (k,e) and (k' ,e'). Then

Q has a trace p such that op leads to the border of B . However, then o'p
m,n

exceeds this border, contradicting the assumption PQ = B •
m,n

(ii) To see that B is uniquely determined, let PQ' = B, ,· Say P's finite
m,n m ,n

traces terminate in (k,e). Now consider a trace pin P which avoids this 'exit

point'. (Here the argument breaks down for the case of a singleton value domain

D = {a}.)

(k,€)

B
m ', n 1 --.. -------------------

8
m,n

Since (k,e) is P's only exit point, pis confined to stay in Pas long as it

avoids (k,e). But then a trace pas in the figure which enters the symmetrical

difference of the areas occupied in the a,b-plane by B and B leads to
m,n m' ,n'

an immediate contradiction.

The unicity of Q is proved by similar arguments. (Note that Q is itself

a subprocess of B.)

28

A corollary of the preceding Proposition is that in the equations

B = T (X) every ~1.~ (as defined above) can be replaced by Bk.,e.
m,n m,n - 1 1

depending on i alone. Therefore the set of generators can be taken to consist

of a finite subset of the collection of B , say { Bk e Ii = 1, ... , p} .
m,n i' i

However, by Corollary 3.3.3 B must then be regular, an evident contra-

diction. Hence B cannot be recursively defined with+ and• alone. •

REMARK. For the case of the 'general' bag defined by

B= I d(5!11B)
dED

where D contains at least two elements, the non-eliminability of 11,IL follows

from the above by the following argument. Let$: D + {a,b} be a surjection.
00 00

Then $ extends in the obvious way to a map from (Du~) to {a,~ 1 b,~} , by

replacing each atom u E; D u Q by $ (u) . This extended mapping is easily shown to

be a homomorphism w.r.t. all operations. Hence a recursive definition without

11 , IL for the general bag would by this 'collapsing' mapping yield a similar

recursive definition for the bag over {a,~ 1 b,£}-

REFERENCES

[l] DE BAKKER, J.W. & J.I. ZUCKER,
Denotational semantics of concurrency,
Proc. 14th ACM Symp. on Theory of Computing, p.153-158 (1982).

[2] DE BAKKER, J .W. & J. I. ZUCKER,
Processes and the denotational semantics of concu:r>rency,
Information and Control, Vol.54, No.1/2, p.70-120, 1982.

[3] BERGSTRA, J.A. & J.W. KLOP,
Fixed point semantics in process algebras,
Department of Computer Science Technical Report IW 206/82,
Mathematisch Centrum, Amsterdam 1982.

[4] BERGSTRA, J.A. & J.W. KLOP,
Process algebra .for communication and mutual exclusion,
Department of Computer Science Technical Report IW 218/83,
Mathematisch Centrum, Amsterdam 1983.

[5] BERGSTRA, J.A. & J.W. KLOP, ,
A process algebra .for the operational semantics of static data .flow
networks,
Department of Computer Science Technical Report IW 222/83,
Mathematisch Centrum, Amsterdam 1983.

[6] BERGSTRA, J.A. & J.W. KLOP,
An abstraction mechanism .fo1~ process algebras,
Department of Computer Science Technical Report IW 231/83,
Mathematisch Centrurn, Amsterdam 1983.

[7] BERGSTRA, J.A. & J.W. KLOP,

29

An algebraic specification method for processes over a finite action set,
Department of Computer Science Technical Report IW 232/83,
Mathematisch Centrurn, Amsterdam 1983.

[8] HENNESSY , M. ,
A term model for synchronous processes,
Information and Control, Vol.51, No.l (1981), p.58-75.

[9] HOARE, C.A.R.,
Communicating Sequential, Processes,
C.ACM 21 (1978), 666-677.

[10] HOARE, C.A.R.,
A Model, for Communicating Sequential, Processes,
in: "On the Construction of Programs" (ed. R.M. McKeag and A.M.
McNaghton), Cambridge University press, 1980 (p.229-243).

[11] HOPCROFT, J.E. & J.D. ULLMAN,
Introduction to automata theory, Languages and computation,
Addison-Wesley 1979.

[12] ITO, T. & Y. NISHITANI,
On universality of concurrent expressions with synchronization
primitives,
TCS 19 (1982), 105-115.

[13] MILNER, R.,
A Cal,cul,us for Communicating Systems,
Springer LNCS 92, 1980.

OHTVANGeN 3 O SEP. 11383

