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On M-functions and nonlinear relaxation methods*) 

by 

E.J. van Asselt 

ABSTRACT 

Globally convergent nonlinear relaxation methods are considered for a 

class of nonlinear BVPs,where the discretizations are continuous M-functions. 

It is s:hown that the equations with one variable occurring in the non­

linear relaxation methods can always be solved by Newton's method combined 

with the Bis:ection method. The nonlinear relaxation methods are used to get 

an initial approximation in the domain of attraction of Newton's method. 

Numerical examples are given. 

KEY WORDS & PHRASES: nonlinear relaxation methods, Newton-Bisection method, 

M-functions 

*) This report will be submitted for publication elsewhere. 



1 • INTRODUCTION 

In section 2 we introduce nonlinear singularly perturbed elliptic BVP 

in 2 dimensions, where the discretizations with the first order Osher-Engquist 

scheme (cf. OSHER [5]) are continuous M-functions. The solutions of the dis­

crete equations are unique, and with the theory of M-functions it follows 

that the nonlinear Jacobi (NLJAC) and the nonlinear SOR (NLSOR) process are 

globally convergent (cf9 ORTEGA [4]). 

In section 3 we show that the equations with one variable occurring in 

NLJAC and NLSOR can always be solved by Newton's method combined with the 

bisection method. We will give a 2-D example with an initial approximation 

for which NLJAC with Newton's method (NLJAC-N) does not converge, whereas 

NLJAC with Newton's method combined with bisection (NLJAC-NB) does. 

In section 4 we use NLSOR-NB to get an initial approximation in the do­

main of attraction of Newton's method for the whole system of equations 

(NEWT). 

2. A CLASS OF NONLINEAR BVPs. 

We consider the following class of nonlinear BVPs in two dimensions: 

(2.1) 

(2.2) 

Nu 
e: 

u + g(u,x,y) 

= O, on n = {(x,y)I O<x<l, O<y<l}, and 

a 1, a2 E c1(1R), g E c2(JRxn), a~ g(u,x,y);:::: µ > 0 for all (x,y) En, 

u E c2(n) and b E C(on). 

For the discretization of this problem we introduce Gh, a uniform rect­

angular grid with mesh-size h = (h1,h2), h 1=1/m, h2=1/n and meshpoints 

x~.=(ih ,jh2), O~i~m, O~j~n, and use the one sided Osher-Engquist difference 
1J 1 

scheme (cf. OSHER [5]): 
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(2.3) 
h 

(N hu ) .. e:, 1.3 = -
e: l h 
-2<u·+1 · h i 3 

h h 
2u .. + u. I.) 

1.3 1.- 3 

e:2 h 
-2(u. '+l 
h 1.3 

h h 2u .. + u .. 1) 
1.3 1.3-

(2.4) h 
(N hu ) .. e:, 1.3 

h 
f + (u .. ) 
m 1.3 

h f (u .. ) 
1.3 m 

h 6 u .. 
X + 1.3 

h 6 u .. 
X - 1.3 

h 6 u .. 
y + 1.3 

h 6 u .. y - 1.3 

I 2 

I h h 
+ h( 6 f (u .• ) + 6 f +(u .. )) 

I X + I - 1.3 X - I 1.3 

I h h h h + h-( 6 f (u .. ) + 6 f (u .. )) + g(u .. ,x .. ) 
2 y + 2- 1.3 y - 2+ 1.3 1.3 1.3 

h = o for all x .. E Gh n n, 
1.3 

h h h = u .. = b(xij) for all xij E Gh non, where form= 1,2: 
1.3 

h u .• 
= f 13max(O,a (s))ds, 

m 

h u .. 
= f 13min(O,a (s))ds, m 

h h = ui+lj - u .• , 
1.3 

h h = u .. - u. I., 
1.3 1.- 3 

h h = uij+I - u .. , 
1.3 

h h = u .. - u .. I• 1.3 1.3-

Denoting the space of gridfunctions on Gh with GFh, and extending the 

results of Lorentz (cf. LORENTZ [3]) to 2 dimensions, we can easily prove 

that Ne:,h is a continuous M-function from GFh onto GFh. 

In the following section we use the property that M-functions ·are strict­

ly diagonally isotone (cf. ORTEGA [4]). 

3. THE NONLINEAR RELAXATION METHODS. 

In this section we consider NLJAC and NLSOR, and give a 2-D example for 

which NLJAC does not converge when the resulting scalar nonlinear equations 

are solved with Newton's method only, while NLJAC converges when we use 
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Newton's method combined with bisection. 

Let F(x) = 0 with F = (f1(x), ••• ,fn(x)), x = (x1, ••• ,xn) be a system 

of n nonlinear equations. Let x(O) be an initial approximation to the solu­

tion, then x(k+l) is obtained by solving for x. the i-th equation: 
l. 

(3. 1) 

(3.2) 

(3.3) 

(k) (k) (k) (k) _ 
f. (x 1 , ••• ,x. 1 ,x. ,x,+l, ••• ,x ) - 0 for NLJAC, or 

l. i.- l. l. n 

(k+ I) (k+ 1 ) ' (k) (k) 
f. (x1 , ••• ,x. 1 ,x. ,x.+l ' ••• ,x ) = 0 for NLSOR, and setting 

l. 1.- l. l. n 

(k+l) x. 
l. 

x~k)), (O 1] i = l. WE , , 1,2, ••• ,n. 

For our class of equations Fis a continuous M-function, and both NLJAC 

and NLSOR converge globally to the unique solution of (2.3), (2.4), providing 

that the (generally nonlinear) equations (3.1), (3.2) for which a unique 

solution exists can be solved (cf. ORTEGA [4], Theorem 13.5.9). 

df. 
For M-functions d 1 > O. This implies that for a positive (negative) 

x. 
l. 

function value of an iterant xi(r) the nex't Newton iterant xi(r+I) is always 

smaller (greater) than xi(r)' and we can start with only a single initial 

approximation. When the function values of the subsequent iterants never 

change sign only Newton iteration is applied, and we have monotone convergen­

ce. However if the function value of an iterant xi(r) changes sign we have an 

interval round the solution: Ii(r) = (min(xi(r-l)'xi(r)),max(xi(r-l)'xi(r)). 

This interval is adapted in each iteration step. If Ii(r+l) c: Ii(r) Newton's 

method is applied, if this is not the case one step of the bisection method 

is applied. 

As the bisection method always converges the above mentioned combination 

always converges. 

This process is described in the following Algol-like procedure NEWTON 

BISECTION. The procedure takes the current value of x as an initial value and 

delivers in x an approximate solution to f(x) = O, so that I f(x) I < tol. 

(3.4) F THE FUNCTION FOR WHICH THE ZERO HAS TO BE DETERMINED 

DF THE DERIVATIVE OF F WITH THE PROPERTY DF > 0 

TOL A GIVEN TOLERANCE 



'PROCEDURE' NEWTON BISECTION: 

'BEGIN' 

'INT' 

'REAL' 

SGN = 'SIGN' (F(X)) ; 

XOLD, XNEW, XNEG, XPOS; 

XNEW := X 

'WHILE' 'ABS' (F (XNEW)) > TOL 'AND' 'SIGN' (F (XNEW)) = SGN 

1 DO' XOLD : = XNEW; 

XNEW := XOLD - F(XOLD)/DF(XOLD) 

'OD'; 

'IF' ' SIGN' (F (XNEW) ) > 0 

'THEN' XPOS := XNEW; XNEG 

'ELSE' XNEG := XNEW; XPOS 

'FI I; 

XOLD := XNEW; 

'WHILE' 1 ABS 1 (F (XNEW)) > TOL 

:= XOLD 

:= XOLD 

'DO' 'WHILE' 1ABS'(XNEW-XOLD) < XPOS-XNEG 

'ABS 1 (F (XNEW)) > TOL 

'DO' 'IF' 1 SIGN' (F (XNEW)) > 0 

'THEN' XPOS := XNEW 

'ELSE' XNEG := XNEW 

'FI'; 

XOLD := XNEW; 

'AND' 

XNEW := XOLD - F(XOLD)/DF(XOLD) 

'OD'; 

'IF 1 1 ABS 1 (F (XNEW)) > TOL 

'THEN' XNEW := (XNEG + XPOS) * 0.5 

'FI I 

I OD I ; X : = XNEW 

'END' 
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Both NLJAC-NB and NLSOR-NB converge to the solution and in the course 

of these processes in each point we will have a better initial approximation 

for the Newton-Bisection process. This means that for a given tolerance TOL 

in the course of the NLJAC-NB and NLSOR-NB process the required number of 

Newton-Bisection iteration steps decreases (cf. TABLE 1, 2, 3). This pheno­

menon is used in section 4, where NLJAC-NB and NLSOR-NB are used to get an 



initial approximation for Newton's method. 

In example (3.5) NLJAC-N does not converge, whereas NLJAC-NB does. 

(3. 5) EXAMPLE ,, 

We consider (2.1)-(2.4) with i:: 1 = i:: 2 = I0-6 , h 1 = h2 = 1/32, 

- arctan(4u), g(u,x,y) -a 1 ( u) = a 2 ( u) 

b(O,y) = 0 

b(l,y) = 
b(l,y) 

b(x,O) = -I 
3 b(x,O) = -10 x 

b (x, I) = 0 

O::;y::;] , 
-3 O::;y::;]-10 , 

-3 1-10 ::;y::;] 

I 0-3 ::;x::;J 

O::;x::;J0-3 

O:c;x::;.J 

u and b defined by 

5 

For the gridfunction uh in (2.3), (2.4) we take the lexicographical or-
h h h h h 

dering (i.e. u = ( ••• ,u .. ,u .. + 1, ••• ,u. 1.,u. 1 . 1)). As initial approxima-
1] 1] 1+] 1+ ]+ 

tion for NLJAC-N (w=I) and NLJAC-NB (w=I) we take the gridfunction u (O) de-
. (0) _ (0) _ 

fined by u .. =-Ion Ghnn and u .. = b on Ghnon. 
1] 1] 

NLJAC-N does not converge, while we need k = 4 NLJAC-NB steps to obtain 

IIN hu(k)II::; J0- 12 with II .II the maximum ~arm. 
E, 

For NLJAC-NB in Table I we give the maximum number of Newton-Bisection 

iterations fo:r TOL = 10-S (cf. (3.4)). 

1 

N 42 

2 

2 

3 4 

Table I. The maximum number of Newton-Bisection iterations 

per NLJAC-NB iteration step i. (TOL = I0-8). 

4. NLJAC-NB NND NLSOR-NB COMBINED WITH NEWT. 

In this section we use NLJAC-NB and NLSOR-NB to get an initial approxi­

mation within the domain of attraction of NEWT. 

There are other methods which use time-steps combined with NEWT 

(cf. ABRAHAMSSON, OSHER [I]). We consider here NLJAC-NB and NLSOR-NB because 

these can be used as relaxation processes in Multigrid methods (cf. STtlBEN, 

TROTTENBERG [6]). Moreover the number of Newton-Bisection steps can be used 
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as a criterion to switch from NLJAC-NB or NLSOR-NB to NEWT, as the number of 

Newton-Bisection iterations decreases in the course of these processes. 

So instead of trying NEWT after each NLJAC-NB or NLSOR-NB iteration step 

we try it when the maximum number of Newton-Bisection iterations is suffi­

ciently small. 

In the following 1-D example we have an initial approximation for which 

NEWT does not converge while NLJAC-NB and NLSOR-NB do. 

We also show that the combination NLSOR-NB with NEWT is cheaper than 

NLSOR-NB alone. 

(4.1) EXAMPLE. 

(4. 2) 

Consider the 1-D problem 

Nu= -eu" 
£ 

2 + (u - l/4)u' + u = 0 on [O,I] with£ = 10-6 , 

u(O) = I, u(I) = -1, discretized by the Osher -Engquist scheme (cf. (2.3), 

(2.4)) on a uniform grid with mesh size 1/20,(cf. ABRAHAMSSON, OSHER [I], 

VANASSELT [2]) • 
. h . . . 1 . . (O) d f. d b (O) I 2 . 0 20 NEWT wit initia approximation u e ine y u. = - x., J= ,., 

J J 
does not converge while NLJAC-NB and NLSOR-NB (w=I) do. We need k=58 NLJAC-NB 

or k=39 NLSOR-NB steps for II N hu (k) II ~ I o-6 , with II • II the maximum norm. 
£, 

For NLJAC-NB and NLSOR-NB respectively in Table 2 and Table 3 we give 

the maximum number of Newton-Bisection iterations with TOL = I0-8 (cf. (3.4)). 

i 

N 7 

2 

6 

3-5 

4 

6 

5 

7-8 

4 

9-17 

3 

18-38 

2 

39-58 

Table 2. The maximum number of Newton-Bisection iterations N per 

per NLJAC-NB iteration step i. (TOL = I0-8). 

i 

N 7 

2-3 

5 

4-5 

4 

6 

5 

7 

4 

8 

3 

9-12 

4 

13-20 

3 

21-29 

2 

30-39 

Table 3. The maximum number of Newton-Bisection iterations N 

per NLSOR-NB iteration step i. (TOL = 10-8). 
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When we try NEWT after that the maximum number of Newton-Bisection ite­

rations in NI.SOR-NB becomes 2, we need 21 NLSOR-NB steps and 2 NEWT steps for 

II N hull ::;; 10-6 , with II • II the maximum norm. 
e:' 

An operations and function evaluations count shows that for 1 NEWT step 

the number of operations and function evaluations per gridpoint is less than 

for 2 NLSOR-NB steps, with one or more Newton-Bisection iterations per grid­

point. Hence for this example the combination NLSOR-NB and NEWT is more than 

35% cheaper than NLSOR-NB solely. 

5. CONCLUSIONS 

For continuous M-functions the equations with one variable occurring in 

the globally convergent nonlinear relaxation methods NLJAC and NLSOR can al­

ways be solved by Newton's method combined with the Bisection method, and 

we need only a single initial approximation. Newton's metod alone is not al­

ways sufficient. 

The nonlinear relaxation methods can be used to get an initial approxi­

mation for Newton's method for the whole system of equations, where the de­

creasing number of Newton-Bisection iterations can be used as switching cri­

terion. 
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