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ABSTRACT 

Firstly, stability results are presented for a general class of linear 
multistep methods for Volterra equations, These results are obtaines by de­
riving a recurrence relation of finite length for the discrete Volterra 
equations. Secondly, the various results are illustrated by a numerical 
example. Finally, results of Lubich are mentioned which do not use finite 
recurrence relations. 
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l • INTRODUCTION 

(l. l) 

We consider Volterra integral equations of the form 

t 

S(t)y(t) = g(t) + f k(t,s,y(s))ds, t E I:= [to,T]. 

to 

This equation is called of the first kind if 0 = O, of the second kind if 

8 = I, and of the third kind if 8 has a finite number of zeros in I. The 

initial or forcing function g(t) and the kernel function k(t,s,y) are pre­

scribed, and y(t) is the unknown function. 

It will be assumed that (I.I) possesses a unique solution in C [I] 

which is ens:ured if g and k are sufficiently smooth and unless 8 t O, 

if kt(t,t:,y) is bounded away from zero for t E I and y E :R (for precise 

conditions we refer to Tricomi [26] and Anselone [3]). 

In this paper we concentrate on the stability of numerical methods for 
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solving (I.I) with fixed step size h. We will confine our considerations to 

a general class of linear multistep methods and to stability with respect 

to perturbations of the initial function g(t) on an infinite interval, i.e. 

T +=.The following definition of stability will be used. 

DEFINITION I.I. Let y and y* denote the numerical solutions corresponding 
n n 

to initial functions g and g*, respectively, and let g - g* € P[t0 ,=J 

where P[t0 ,=J denotes a space of perturbations defined on I. Then 

(a) y and the generating method are said to be stable with respect to 
n 

P[t0,=J if for every£> 0 there exists a o = 0(£) such that 

max I g(t ) - g* (t ) I s o ,. max I y - / I s £ • 
n;;;:O n n n;;;:O n n 

(b) yn and the generating method are said to be asymptotically stable with 

respect to P[t0 ,=J if there exists a o such that 

max I g(t ) - g * (t ) I 
n;;;:O n n 

* s o ,. y - y ~ 0 
n n 

as n + =. D 

Depending on the choice of the space of perturbations P[t0 ,=J stronger 

and weaker forms of stability are obtained. 

In deriving stability conditions so far the greater part of the papers 

on stability has used some (linear) test kernel for which one tries to re­

duce the numerical scheme to a recurrence relation of finite length and to 

which one applies the theory of linear differenceequations. One class of 

frequently used test kernels are the potyri0mial convolution kernels 

(1.2) 
m 

K(t,s,y) = l Ai(t-s)iy. 
i=O 

Obviously, by repeated differentiation with respect tot of the corresponding 
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Volterra equation we can obtain a differential equation of order m + I. 

By a similar operation of repeated differencing the numerical scheme can be 

often reduced to the discrete analogue of a differential equation, viz. a 

finite recurrence relation for y. Another class of suitable test kernels . n 

are the finitely decomposable kernels which also lead to finite recurrence 

relations. In Section 3 and 4 we will discuss the kernel (1.2) form= I, 

in Section 5 finitely decomposable kernels will be treated, and in Section 

6 the various results will be compared by means of a numerical example. 

Recently, L.ubich [19], inspired by earlier work of Nevanlinna [22,23], 

has derived stability results without using finite recurrence relations. In 

Section 7 some of his results will be presented. 

2. VLM METHODS 

A simple way of discretizing the equation (I.I) consists of writing 

this equation with t = tn := t 0 +nh for n = O(l)N, h fixed and such that 

tN := T, and approximating the integral term by some suitably chosen qua­

drature rule. The numerical solution can then be obtained by solving the 

resulting algebraic equations successively. This method is called a direct 

quadrature (DQ) method. Such methods do not always produce satisfactory re­

sults. For instance, if Gregory quadrature rules (for a definition see e.g. 

[4, p. 117]) are used, equations of the first kind cannot be solved because 

the numerical method does not converge (see [18, JI]), and equations of the 

second kind in which the kernel has a large Lipschitz constant with respect 

to y, will often require a much smaller integration step h then neces·sary 

for representing the solution of the equation. In order to overcome these 

difficulties several alternative methods have been proposed (see [28, 30, 13]). 

These alternative methods together with the above mentioned DQ method can 
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be described by the following Volterra linear rrrultistep method (VLM method). 

Let F (t) denote some numerical approximation to the so-called lag term n 

function 

(2. 1) 

s 

F(t,s) := g(t) + f k(t,s,y(s))ds 

to 
at the points= tn and define the VLM formula 

K K K K K 
(2. 2) l a. a . y . + I l IL . F . ( t . ) = h I I y .. k( t . , 

l.. __ 0 1. n-1. n-1. 1.· __ 0 . l.J n-1. n+J . 0 . l.J n+J J=-K 1.= J=-K 

tn-i'yn-i) 

for n = K(l)N, where 0 . := 0(t .) and y 1, ••• y 1 are assumed to be pre-n-1. n-1. K-

computed by some starting method. Then the VLM method consists of two com-

ponents: the VLM formula (2.2) and a quadrature rule for approximating 

F(t,s). Usually; the quadrature rule is of the form 

n 
(2. 3) F <t> := g(t) + h l wnlk(t,tl,yl) n i=O ~ 

{ K 
for n < K 

= F(t,t) - E (h;t), n = n n for ~ K n n 

where the wnl denote given quadrature weights and K is sufficiently large in 

order to obtain a sufficiently small approximation error E (h,t). The lag n 

term formula (2.3) requires the starting values yO, y 1, ••• , YK• 

The par_ameters a., f3 •• and y •• determine the accuracy and stability of 
l. l.J l.J 

vhe VLM method. For convergence results in the case of a= 0 or a= 1, we 

refer to [14]. Here we concentrate on the stability of VLM methods to be dis­

cussed in the remaining sections. This section is concluded with a few exam­

ples of VLM methods. 

EXAMPLE 2.1. The DQ method can be presented as the simple VLM method 

(2.4) a y - F (t > = o. n n n n 



If E(h,t) = O(hr) ash+ 0 uniformly for all tn = t 0 + nh EI and the 

starting errors are O(hq) then the DQ method is of order p = min {q-1,r} 

if 0 = 1 and g,k are sufficiently smooth. For 0 = 0 c,onvergence is not 

guaranteed (see [28]). D 

EXAMPLE 2.2. Consider the VLM formula 

5 

(2.5) 30 y - 40 y + 0 y + 3F <t > - 4F (t +l> + F <t 2> = n n n-1 n-1 n-2 n-2 n n n n n n+ 

= 2hk ( t , t , y ) n n n 

which was called in [13] an indirect backLJard differentiation formuZa (IBD 

formula). It generates a method of order p = min {q,r,2} for second kind 

equations and first kind equations as well. D 

3. THE BASIC TEST EQUATION 

We start with the derivation of a recurrence relation of fixed length 

for the VLM solution of the Volterra equation 

t 

(3.1) 0 (t)y(t) = g(t) + J f(s,y(s))ds. 

to 
The linear case where f(s,y) = ~Y for~ constant, is called the basic test 

equation for stability. It was proposed by Mayers [21] and extensively used 

by Baker and Keech [6] in deriving stability results for the DQ method. 

In deriving stability results for the VLM method it is convenient to 

introduce the forward shift operator E and the polynomials 

(3. 2) a. (z) 
K . K( ) . K (K ) . \ K-1. \ t K.-]. \ \ K-1. = l a.. z , 13(z) = l l 13 •• z , y (t) = l l y •• z • 

i=o 1. i=O j=-K l.J i=O j=-K. l.J 

THEOREM 3. 1. For equation (3. 1) the VLM method is aZgebraicaUy equivaZent 

with the recurrence reZation 

K K 
(3.3) a.(E)0 y - hy(E)f(t ,Y ) = - EK }: }: s .. g(t +·>, n ~ O, 

n n n n i=O j=-K l.J n J 
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provided that S(z) = 0 (i.e. the VLM is (a.,y)-reducible). • 

From this recurrence relation and Lemma 3.1 stated below, conclusions 

can be drawn on the behaviour of y as n-+ 00 (with h fixed) in the case of 
n 

the basic t,est equation. We first state this lemma which is proved e.g. 1.n 

[25, p. 205] and then give a stability result in the form of Corollary 3.1. 

LEMMA 3.1. Let G(z) be a polynomial satisfying the root condition (that is 

with all its zeros on the unit disk those on the unit circle being simple 

zeros). Then there exists a constant C such that the solution of the linear, 

inhomogeneous difference equation G(E)y = g , n ~ 0 Batisfies the inequa-
n n+m 

Zity 

If G(z) i-s a Schur polynorria7, (that i-s aU. zeros are 1,Jt'.'~hin. the unit circle) 

then 

COROLLARY 3.1. Let e = 0 or 0 = I, let S(z) = 0 and let k(t,s,y) = E.,y. Then 

the VLM method is stable with respect to the space of perturbations 

(a) P[tO, 00 ] = L1[tO, 00 J if 0a(z) - hf;y(z) satisfies the root condition 

(b) P[tO, 00 J = C [tO, 00 J if 0a(z) - hf;y(z) is a Schur polynomial. • 

EXAMPLE 3.1. The VLM formula (2.5) can be characterized by the polynomials 

2 2 
a (z) = 3z - 4z + I , S (z) = 0, y (z) "" 2z • 

Thus, the corresponding VLM method is stable with respect to C[tO, 00J: (i) 

for all E., if e = O; (ii) for those f; such that 3z2 - 4z +I - 2ht;z2 is a Schur 



polynomial if a= 1 (this polynomial is easily recognized as the character­

istic polynomial of the two-step backward differentiation method which is 

known to be a Schur polynomial if Re t < 0). D 

EXAMPLE 3.2. Consider the VLM formula (9=0,1) 

7 

~ ~ 1 S[y -y 1J +F 1(t 1) -F 1(t) =-2h[k(t ,t ,y) + k(t 1,t ,y )] n n- n- n- n- n n n n n- n n 

which belongs to the class of modified muZtifog (MML) formulas proposed by 

Wolkenfelt [28,30]. The polynomials a,e and y are given by 

a(z) = z - 1, S(z) = 0, y(z) 1 = 2(z+I) 

For 9 = 0 we have stability w.r.t. L1[t0 ,00J and for 9 = I w.r.t. C[t0 ,00J 

provided that Re,< 0. D 

The above stability results do not apply to third kind Volterra equa­

tions because the recurrence relation (3.3) when applied to the basic test 

kernel, does not reduce to a constant coefficient recursion. We also observe 

that the stability conditions expressed in Corollary 3.1 do not involve any 

knowledge of the lag term quadrature rule. Thus an efficient lag term formu­

la can be conbined with a stable pair {a,y} to obtain an VLM method that can 

be easily implemented on a computer. 

In analogy with ODEs one may define the stability Pegion Ras the set 

of points h' €:C where the VLM method is stable. If R contains the whole ne­

gative axis then the method is called A0-stable (when applied to the basic 

test equation). If the whole left half-plane is contained in· .R. then the VLM 

method is called A-stable. 

In order to see whether there exist A-stable, (a,y)-reducible VLM meth­

ods which are convergent, we should know what conditions convergence imposes 



8 

on the polynomials {a,y} (see [14]). 

THEOREM 3.2. Let a(z) = O. T'he aonditions to be imposed on t'he polynomials 

{a,y} in or-der to obtain a aonvergent VLM method are: (i) if e - 1 t'hen 

{a,y} should generate a aonvergent LM method for ODEs;(ii) if e - O t'hen y 

should be a Sahur polynomial. • 

Since there exist A-stable, convergent LM methods for ODEs, we conclude 

from Corollary 3.1 and Theorem 3.2 that there exist convergent, (a,y)-reduc­

ible VLM methods for second kind equations which are A-stable w.r.t. C[t0 , 00J. 

For first kind equations we see that convergence implies stability w.r.t. 

L'[t0 , 00J. 

The above considerations do not apply to e.g. the DQ methods because of 

the condition a(z) = 0. It is possible to include such non-(a,y)-reducible 

VLM formulas by imposing additional conditions on the lag term formula. We 

will not work this out for the basic test kernel but instead we give in the 

next section an analysis of the aonvolution test kernel of which the basic 

test kernel is a special case. 

Finally, we remark that the stability criteria derived for the basic 

test equation may be indicative for the stabilit;y of methods applied to more 

general kernels of the form K(t,s)y. In practice, one replaces t by K(t,s) 

with t 0 ~ s ~ t ~ T. 

4. THE CONVOLUTION TEST EQUATION 

It has been observed by Kershaw [17] that the use of the basic test 

equation "is obviously convenient, however, its true relevance to the inte­

gral equation situation does not app~ar to have been thoroughly examined". 

In order to get some insight to what extent the stability criteria derived 

on the basis of equation (3.1) change if we are dealing with a more general 
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equation, several authors have considered the convolution equation [29, 8]. 

t 

(4.1) 0y(t) = g(t) + J [~+n(t-s)]f(s,y(s))ds. 

to 
with~ and n constant. The linear case is called the aonvolution test equa­

tion. 

We will not restrict our considerations to (a,y)-reducible methods; in 

order to facilitate an elegant analysis we require the quadrature rule used 

for computing the lag term to be (p,o)-Peduaible (cf. [20, 31]). Let the po­

lynomials" 
~ K 

(4.2) p(z) }: ~ := a. 
i=O 1 

'i<-i z cr(z) := 
i< 
2 

i=O 

~ i b.z 
1 

define a convergent LM method for ODEs, then the quadrature rule (2.3) is 

called (p,~)-reducible if 

i< 0 for l=O (I ) n-'i<- I 

(4. 3) }: ~ {~ ~ ~ I , a.w . l = ' 
n = K, K + ... . 

i=O 1 n-1, b for n-K ( I )n n-l 

(We have added the tilde in order to indicate the relation with the lag term 

F ( t).) For the analysis of more general lag term formulas we refer to [ 6, 28, J. n 

(4.4) 

In addition to the polynomials a,y,p and a we define the polynomials 

i(z) := 
K • 
~ - K-1 -
l f3.z· ,B. := 

i=O i . i 

K 

l j a .. ; a#(z) := Kf3(z) - za'(z) 
j=-K 1J 

and similarly the polynomials y(z), y#(z), p#(z) and cr#(z). 

The analogue of Theorem 3.1 now reads (cf. [15, 9]): 

THEOREM 4. I • FoP equations ( 4 • I) the VLM method with (p ,cr )-Peduaib le lag te:rrrz 

is algebroialy equivalent uJith the Peau?Tenae Pelation 
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(4.5) pr(E)a(E)8 y + ~h pr-l(E)[$(E)cr(E) - y(E)p(E)]f(t ,y) 
n n n n 

+ nh2{;;-r-l (E) [S(E)cr (E) - y(E)p (E) - l (E)p(E)] 

+ p(E)[ $(E)cr # (E) - e/ (E)d (E)J - p# (E)d (E) $ (E)}f( t;n ,y nl1 

= - ~pr(E)EK( ~ ~ o •• ( )) > 0 
l l µ g tn+J· /' n - ' . 0. 1] 1= J=K 

where r = 1 if $(z) = 0 and r = 2 otherwise. 0 

COROLLARY 4.1. Let e = 0 or e = I and "let k(t,s ,y) = [~ + n(t-s) Jy. Then the 

VLM method with (~,a)-reducib"le Zag term is stabZe with respect to 

(a) P[t0 ,00 J = L1[t0 ,00J if 

(4.6) 8pr(z)a(z) + ~h pr-I(z)[$(z)cr(z) - y(z)p(z)J 

+ nh2{pr-I(z)[S(z)cr(z)-y(z)p(z) -l(z)p(z)j 

+ p(z)[$(z);#(z) -$#(z)ct(z)J -p#(z);(z)$(z)} 

satisfies the root co11.dit;ion. 

(b) P[t0, 00 J = C[t0 ,00J if (4.6) is a Schur po"lynomia"l. • 

EXAMPLE 4.1. Consider the DQ method applied to the basic test equation (i.e. 

11=0). Then a(z) = I, $(z) = -I and y(z) = 0 so that (4.6) reduces to 

(4.6') · e p(z) - ~h o(z). 

Fore= 1 this leads to the same stability regions which apply to the LM 

method {p,cr}. In particular, if {p,cr} is A0- or A-stable then the DQ method 

is also A0- or A-stable (w.r.t. C[t0 , 00J). Fore= 0 we find that at least 

o(z) should satisfy the root condition. Thus, the higher order Gregory rules 

which are based on the Adams-Moulton methods do not generate a stable DQ 

method for first kind equations because cr(z) do not have all its roots on 
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the unit disc. 0 

In actual application, the Gregory rules are popular because of their 

easy implemientation on a computer. The preceding example, however, shows 

that for second kind equations (0=1) the DQ methods have the rather modest 

stability regions possessed by the Adams-Moulton methods and for first kind 

equations the higher order methods are even unstable. This observation was 

precisely the reason for introducing alternative methods such as the IBD 

methods (cf. Example 2.2) and the M?-fL methods (cf. Example 3.2 ). 

As for the basic test equation one may define for the convolution test 

equation the stability region R which contains all points (sh,nh2) for which 

the VLM method is stable. The method is called v0-stable if R contains the 

points {(E;,,n) It;< 0, n:::; 0} (cf. [8, 29]). Evidently, v0-stability is the, 

analogue of A0-stability defined in the preceding section. It has already 

been observed that A0-stable DQ methods do exist. This raises the question 

whether v0-stable DQ methods exist. Wolkenfelt [29J proved the following ne­

gative result. 

THEOREM 4.2. Fore_ I DQ methods with (p,o)-reducibZe Zag teY'171 cannot be 

v0-stable. 

Amini LI] considered the v0-stability for the class of MML-formuZas 

defined by 

( 4. 7) a.[ey . + F .(t) 
i n-i n-i n F .(t .)J 

n-i n-i 
K 

= h I 
i=O 

y.k(t ,t . ,y .) . 
i n . n-i n-i 

THEOREM. 4.3. Fore - I MML methods with (p,a)-reducibZe Zag term cannot be 
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Nevertheless, the M1:L methods behave much more stable than DQ methods (cf. 

[30]). 

Next, we consider the class of indireat linear Tm1,ltistep (IIM) methods, 

an example of which has already been given in Example 2.2. These methods 

are defined by the ILM formula [15] 

K K-i K 

(4.8) L [8a.y . + L y.o .. F .(t .)J=h L y.k(t .,t .,y .), . 0 1. n-1. • • 1. 1. +J n-1. n+ J . 0 1. n-1. n-1. n'"'.l. 
p J~l. p 

where {ol} define a numerical differentiation formula. The corresponding po­

lynomial (4.3) is given by 

(4.9) p(z)[Sa(z) - 'h y(z) J - nh2 cr(z) y(z). 

For 8 = I this polynomial is identical to the characteristic polynomial 

Brunner and Lambert [7] derived for their stability test equation for inte­

gro-differential equations. Since in that paper stability regions are given 

which do contain the points {(h,,h2n) I , < O, n ~ O}, we may conclude that 

there exists v0-stable ILM methods for the seaond kind test equation. 

EXAMPLE 4.2. Let {p,cr} and {a,y} correspond to the trapezoidal rule and the 

backward Euler rule. Then the four different methods which can be formed are 

all v0-stable for the convolution test equation of the second kind. 0 

So far we have considered the case 8 = I. Next, consider the case 8 = 0. 

For the DQ method the polynomial (4.6) is given by 

(4.10) p(z)[Sp(z) - 'h cr(z) J - nh2z[cr(z)p-'(~) - p(z)cr~ (z) J, 

which for 8 = 0 can be written in the form 

(4.11) p(z)cr(z) - (- i h )z[cr(z)p'(z) - p(z)cr'(z)J. 
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This polynomial can be interpreted as the characteristic polynomial of an 

LM method {p 1,a 1} for the ODE y'(t) = (-n/~)y(t). If the DQ method is vO-

stable, then -n/~ assumes values in the range (-co,O)., Hence, we only have 

vO-stability if the LM method {p 1,o 1} is AO-stable. Since p 1(z) is of degree 

2K and o 1(z) of degree 2K - I the L.Mmethod {p 1,cr 1} cannot be v0-stable. Thus, 

THEOREM 4.4. Fore= O DQ methods with (p,a)-reduaible lag term aannot be 

v0-stable. 

For the MML formula (4.7) the polynomial (4.6) reduces to 

( 4. 12) 
I 

+ p(z)[Ky(z) - z y (z)]}, 

which again can be associated to an LM method {p 1 ,o 1} for the ODE 

y'(t) = (-n/~)y(t) if 8 = O. It has not yet been investigated whether this 

LM method can be made A0-stable (implying v0-stabili~; for the MML method) 

by appropriate choice of the polynomials a., y, p and cr, and taking into ac­

count the convergence conditions. 

Finally, we consider the ILM formula (4.8) with characteristic polyno­

mial (4.9) which fore= 0 assumes the form 

(4. 13) y(z)[p(z) - (-{h)cr(z)J. 

THEOREM 4.5. Let the LM method {p,cr} be A0-stable. Then fore= O, ILM 

methods with {p,cr}-reduaible Zag term are v0-stable with respeat to 

(a) P[tO, co] =L 1[tO,coJ if y(z) satisfies the root condition. 

(b) P[ t O,co J = C[tO,coJ if y(z) is a Sahur polynomial. • 
As for the basic test equation, the stability conditions based on the 

convolution test equation are applied to more general convolution kernels 
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K(t-s)y by putting~= K(O) and n = K'(t) with t EI. 

5. FINITELY DECOMPOSABLE KERi."IBLS 

Instead of proceeding along the lines outlined in the preceding sec­

tions and deriving recurrence relations for the case of the polynomial con­

volution kernel (1. 2) (cf. [2]), we approximate ·the kernel k(t,s ,y) by a 

finitely decomposable function, i.e. 

(5. 1) 
m 

k(t,s,y):::: I 
µ=) 

g (t)f (s,y) µ µ 
• • 

=: < G(t), F(s,y) > 

• • • 
where<,> denotes the inner product and G, F denote vectors with components 

g, f (µ=1,2, ••• ,m). If we use the approximation (5.1) then the solution 
µ µ 

y(t) of (I.I) satisfies the equations 

(5. 2) 

• • • ~ 

{
U'(t) = F(t,y(t)), U(t0) = u 

e<t>y<t> = g(t> + < G(t), 
• 
U(t) > 

The VLM method when applied to ·a Volterra equation with kernel of fini­

tely decomposable form turns out to be a discretization of the system (5.2). 

In the following theorem which provides this relation we use the notation 

• • • • 
Fn := F(t ,y ), G := G(t ). n n n n 

THEOREM 5 .1. For kernels of finitely decomposable form the VLM method is al­

gebraically equivalent with the recurrence relation 

(5. 3) 

,_ • ,_ ~ 

{
p(E)U = hcr(E) F, n ~ 0 

n n 

K K K [ 
a. 6 . • = .. h .l i n-i Yn-i .l . l · Y iJ i=O i=O J=-K 

• • 
<G .,F .> n+J n-i 

13 .. (g(t+.)+<G .,U .>)],n~O iJ n J n+J n-i 

where {p ,3'} defines the Zag term quadrature rule. • 

Unlike the recurrence relations·presented in the preceding sections, 
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the recurrence relation provided by this theorem generally does not have 

aonstant CXJeffiaients when applied to kernel functions with f (s,y) = I; y • 
µ µ 

Nevertheless, it provides some insight into the stability of the VLM method 

as we will see in the following subsections. 

It should also be observed that stability results obtained for decom­

posable kernels E C hold for arbitrary kernels. E C because (by the Stone­

Weierstrass theorem) the class of continuous decomposable kernels is dense 

in the class of all continuous kernels and because the VLM solution depends 

continuously on the kernel provided that k is sufficiently smooth [9]. 

5.1. Relation with ODE methods if 0 -

Suppose that all coefficients in the VLM formula vanish except for 

a = 
0 

1, and eOO = - 1, to obtain the DQ method (see Example 2.1). If 0 = 1, 

then (5.3) is recognized as an LM discretization of the system (5.2). Con­

sequently, if the LM method {p,cr} is suitable for the integration of (5.2), 

then the DQ method based on {p ,cr} is suitable for the integration of t:r_.e Vol­

terra equation with kernel (5.1). An advantage of this approach is that the 

well-developed theory for ODEs can be exploited. On the other hand, or;e 

should know something about the decomposition approximating the given ~ernel. 

For a further discussion we refer to [9]. 

Next differentiate the second equation in (5.2) to obtain (for 0: I) 

(5. 2) 

+ • 

{ 
U'(t) = F(t,y(t)) 

y'(t) = g'<t> + < G'<t>, 
+ + + 
U(t) > + < G(t), F(t,y(t)) > 

Let these differential equations be integrated by the LM methods {p,o; and 

{a,y}, respectively and replace the derivatives g' and G' by numerical appro­

ximations of the form: 
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(5.4) -1 
g'(t) = h T(E)g(t ), 

n n 

where T(z) is a polynomial generating the numerical differentiation formula. 

The numerical scheme takes the form 

+ ~ + 

{ 
p(E)U = ha (E) F ( t , y ) , 

n n n 
(5.5) 

a.(E)y 
-1 -I + + 

= hy(E)[h T(E)g(t) + < h ,(E)G(t ), U(t) > 
n n n n 

+ + 
+ < G(t ), F(t ,Y )>]. 

n n n 

A comparison with (5.3) reveals that (5.5) is a special case of a VLM for­

mula. In [15] this type of formula was called an indirect linear multistep 

formula (see also Section 4). The stability properties of ILM formulas are 

largely det1ermined by the polynomials {p ,a} and fo, y}, and can be chosen ap­

propriately by using ODE stability theory. 

5.2. Convolution kernels 

In this section we derive a general stability result for convolution 

kernels of the linear form: 

(5.6) k(t,s,y) = K(t-s)y. 

Let us first assume that k is decomposable, i.e. 

(5. 7) K(t-s) 
+ + 

= < G(t), F(s) >. 

Introducing the vectors 

(5. 8) 
+ 
V 

n 
+T-T + 

:= LYn' U J , W n n 

K K 

= c- I I s .. g(t .), 
. 0 . l.J n+J 1= J=-K 

the recursion (5.3) can be written in the form 

-T 0, · ••• , OJ 
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K 
I -+ -+ * max{K ,;} (5.9) B. (n)v . =w K = 

i=O l. n-1. n' 

where the matrices B. (n) are given by l. 
I M(l) M~m) L. l. l. 

N~l) a.I l. l. 
B. (n) = 0 l. 

0 
im) a.I l. l. 

with 

K 
L. := ea. - h I y .. K((j-i)h) l. l. j=-K l.J 

K 

Miµ) := . l aiJ" gµ<tn+J.)' 
J=-K 

N~µ) = - b.hf (t .) l. l. µ n-1. 

and with the convention that L. = M~µ) 0 for i and ~ b. 0 = > K a. = = for l. l. 1 l. 

i > K. 

In analogy to the linear stability analysis used in ODEs one may intro­

duce the concept of loaal stability at a point t 0 , that is we requirE the 

relation 

(5.9') B. (ii) t . = °t , 1. n-1. n n fixed 

to be stable, rather than (5.9). It is to be expected that local stabLlity 

in a sequence of points tn' tn+l' ... , t + implies "global stability'' in n r 

the range [t ,t + J provided that the matrices B. (n) are slowly varyh.g. Fol-
n n r 1. 

lowing [12] Theorem 5.2 can be proved. 

THEOREM 5.2. Let 0 ~O 01' 0 = l and let k(t,s,y) = K(t-s)y with KE C[t0 , 00J. The 

VLM method with (p ,o)-reduaible lag term is loaaUy stable at aU points 
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tn, n ~ k* 'With respect to the spaae of perturbations 11[t0 , 00J if the poZy­

norrriaZ 

(5. 1 O) 
* * K K 

I I 
i=O j=O 

ea.a.+ h I [8.ob. - y.ga.]K((l+j)h)Jz2K*-i-j 
l. J l=-K U- J J-<- l. 

is a Sahur poZynorrriaZ. Here aj = bj = 0 for j > Kand ai = Bu= Yu= 0 for 

i > K. 0 

We observe that the characteristic polynomial (5.10) does not depend 

on n so that the local stability conditions to be derived from this theorem 

hold in the whole integration interval. Notice also that (5.10) only contains 

the function K(t) and does not refer to a particular decomposition of the 

form (5.7). Thus, the theorem applies to arbitrary continuous, linear convo­

lution kernels. 

In practical applications .Theorem 5.2 yields complicated (local) sta­

bility conditions unless K + K* is small (for a worked-out example see Sec­

tion 5.3). However, some insight into the local stability behaviour can be 

obtained if K((l+j)h) is sufficiently close approximated by a truncated 

Taylor expansion. 

(5. 1 1) K((l+j)h) = ~ + (l+j)h n + ••• 

where~:= K(O), n = K'(O), •••• If only one term is used we obtain on sub­

stitution into (5.10) the polynomial (4.6') derived for the basic test equa­

tion, and if two Taylor terms are used we obtain the polynomial 

(5. 12) 0p(z)a(z) + ~h[8(z)o(z) - y(z)p(z)J 

2- ~ ~ + nh [8(z)o(z) - y(z)p(z) - y (z)p(z) + 8(z)cr (z)J. 

A comparison with (4.6) reveals that (5.12) and (4.6) are identical if the 
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VLM formula is (a,y)-reducible (S(z)=O). For S(z) t O the characteristic.po­

lynomials differ which may be explained by observing that (5.12) character­

izes the ZocaZ stability behaviour whereas (4.6) characterizes the gZobaZ 

stability of the method. A further consequence of the local stability ap­

proach is the approximation (5.11) to be valid only in a small neighbourhood 

oft= O, whereas global stability requires the approximation to be valid in 

all points of the domain of definition. Thus, adopting the vaZidity of ZocaZ 

stabiZity anaZysis, and assuming that K(t) and K'(t) are sZowZy varying in 

the intervaZ [0,(K+K*)h], we expect stabiZity w.r.t. 11[t0 ,00J if (5.12) 

(with s=K(O), n=K' (O)) is a Schur poZynomiaZ. 

EXAMPLE 5.1. In the case of the conventional DQ method the polynomial (5.10) 

reduces to 

(5.10') 
~ 
K ~ • 

0p(z) - h L b.K(jh)zK-J 
j=O J 

~ a result already obtained in [12]. In particular, if all coefficients b. but 
J 

one vanish (so-called ZocaZ differentiation methods [16]), we obtain a poly-

nomial in which only one K(jp) value is involved. For instance, if {p,cr} cor-

~ 'ic responds to a backward differentiation formula we obtain 0p(z) - b0 shz 

wheres= K(O). For the convolution test equation (4.1) this results in a 

ZoeaUy v0-stabZe DQ method with respect to perturbations .in 1 1 [t0 ,mJ both for 

a= o and a= I. D 

6. NUMERICAL ILLUSTRATION 

We derive the various stability conditions for the DQ method generated 

by the trapezoidaZ ruZe when applied to the second kind equation (cf. Garey 

[10]) 
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t 

(6. 1) 1 2 3 2.1 J y(t) = 2 >.(1-t )ln(l+t) + 4" t - (z"+l)t + 1 - >. ln(l+t-s)y(s)ds 

0 

with exact solution y(t) = 1 + t. 

When the stability conditions based on the basia'test equation are ap-

plied, we find from (4.6'), with 8 = 1, p 

the stability condition (w.r.t. L1[0,00]): 

1 
= z - I, 0 = z(z+l) and t = K(t,s), 

(6. 2) 1 z - 1 - 2hK(t,s)(z+l), 0 ~ s ~ t ~"" should satisfy the root 

aondition. 

Evidently, this condition is satisfied in the case of equation (6.1) for all 

h>.;:: O. 

Using the convolution test equation, we find from (4.10) the stability 

condition (w.r.t. L1[0,00]): 

(6. 3) 
2 1 2 2 , 

(z-1) - 2hK(O)(z -1) - h zK (t), t E [t0 ,00J should satisfy the 

root aondition. 

Applying Hurwitz criterion this condition reduces to 

(6.3 1 ) K(O) 2 
~ O; K1 (t) < O, t € [O,oo]; h<-;::===:-, t E [0,00], 

✓jK' (t) I 
For equation (6.1) this leads us to the condition h < 2✓(l+t)/>., A> O. 

Next we consider the polynomial (5.12) yielding the local stability con­

dition (w.r.t. L1[0,oo]) 

(6.4) z - 1 - ½hK(O)(z+l) - ½h2 K'(O) should be a Sahur polynomial. 

This results in 

(6. 4') K(O) ~ 0; K' (O) < 0; h < 2 

/jK' (O) r 

so that in case of equation (6.1) th"e. locai.comfi-:t'i:ou-h <:.2//).,, A> 0 is obtained, 



Finally, we choose the polynomial (5.10') as our starting point to 

obtain the "rigorous" local condition (again w.r.t. 11[0, 00]) 

(6.5) [1 - ½hK(O)Jz - [1 + ½hK(h)J should be a Schur poZinomiaZ, 

leading to the condition 

(6.5 1 ) [K(h) + K(0)J[4 + hK(h) - hK(0)] < 0, 

and in the case of (6.1) to the step size condition h < 4/Aln(J+h), A> 0. 

Summarizing, the following stability conditions are found for (6.1): 

·test equations used condition (A=I00,T=4) 

basic test equation Ah 2: 0 no condition 

convolution test equation h<2✓(1+t)/A h < • 44 

{ ap.pr • (S. I I ) h < 2/h h<, 20 
general convol. eq. 

rigorous h < 4/Aln(l+h) r < • 21 

2) 

In order to test these results we have integrated (6.1) with A= 100 

and T = 4 to obtain the accuracies (measured by the number of correct signi­

ficant digits sd := - 101oglrelative error!) listed in the following table: 

h .24 

sd -7.81 

.23 

-6.47 

• 22 • 21 

-4.87 -2.77 

.20 

1.88 

.)9 

2.70 

.18 

2.61 

• I 7 

2.65 

These figures clearly show for this example the reliability'of the local sta­

bility conditions and the too optimistic prediction if the kernel is appro­

ximated by the basic or convolution test kernels. 

7. NEGATIVE DEFINITE CONVOLUTION KERNELS 

Recently Lubich [19] has developed global stability results for (p,o)­

reducible DQ methods when applied to second kind equations with convolution 



22 

kernels of the form 

(7. I) k(t,s,y) = ~ K(t-s), Re~< 0 

where K(t) is a continuous, positive definite functio~ e L1[lR+]. Here, a 

continuous function a: lR + a: is said to be positive definite if 

1 
i,j 

a(t.-t.)z.z. ~ 0 
l. J l. J 

for any choice of finite sequences {t.} and {z.} with t. E lR andz. Ea:. Si-
l. l. l. l. 

milarly, a sequence {an}:00 is said to be positive definite if 

1 
i,j 

a .. z.z. ~ 0 
1.-J l. J 

for any choice of finite complex sequences {z.}. 
l. 

This work extends earlier work of Nevanlinna [22, 23]. Without proof we 

give the basic lennna's and the stability theorem from Lubich's paper. 

LEMMA 7. I. Let h > O. If a : lR+ + a: and {w,e_}~ are positive definite, then 

the sequence {w,e_a(lh)}~ is again positive definite. • 
00 

LEMMA 7.2. (ToepZitz, Caratheodory). The sequence {an}O is positive definite 
00 ,e 

iff it is bounded and Re E i.=O a,ez ~ 0 in I z I < I. D 

LEMMA 7.3. Let w(z) := p(z- 1)/o(z-1) = E~=O w,ei. The stabiZity regicn R of 

the LM method {p,o} contains an open disc (stabiZity disc V~ of radius r in 

the Zeft haZf-pZane touching the origin iff there exists a number c su.ch tha1: 

the sequence {w0 +c ,w 1 ,w2 , ••• } is a posi t.ive definite sequence. Here c = I/ (2r) . J 

LEMMA 7.4. (Lubich, PaZey-Wiener). Let {y} satisfy the recurrence r8Zation 
n 

(7. 2) y = g + 
n n 

n 
l b((n-l)h)y,e_, n ~ 

l=O 
O, h > 0 



where b(t) E 11 [JR+] and let 

(7. 3) 

(a) 

(b) 

00 ,t 
L b(lh)z IO for lzl s 1. 

~~=O 

y + 0 uJhenever g + 0 as n + 00 iff (6. 3) is satisfied. 
n. n 

y is bounded whenever g is bounded as n + 00 iff (7 .3) is satisfied. 
n n 

THEOREM 7.1. (Lubich). Let R contain a stability disc V of radius r, let 

h I; EV, and let k(t,s,y) be of the definite convolution form (7.1) with 

K(O) = I. Then 

(a) 

(b) 

y + 0 tJhenever g(t ) + 0 as n + 00 , 
n n 

y is bounded whenever g(t) is bounded as n + 00 • 
n n • 
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• 

Sketch of the proof. First the numerical scheme is written in the form (6.2) 

so that 

b(lh) = 

by Lemma 7.4 it remains to verify Paley-Wiener's condition (6.3) with 

-I 
i;hw,eK(lh). By Lemma 7.1 and 7.3 the sequence {(w0+(2r) )K(O), 

w1K(h), w2K(2h), •.. } is positive definite, hence by Lemma 7.2 

Re K(O) 
- ~ = - 2r for I z I s 1. 

Thus E~=O wl K(lh)z,t # 1/(i;h) for i;h EV which is just the Paley-Wiener con­

dition. D 
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