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ABSTRACT

We discuss weak disjointness of homomorphisms of minimal transformation groups and we use the
techniques involved to deepen our knowledge of the equicontinuous structure relation.
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0. INTRODUCTION AND NOTATION

A topological transformation group (tig) is a triple X=<T,X,7>, where T is a T, topological
group, X isa compact T, space and 7:7 X X — X is a continuous map such that 7(e,x)=x and
w(s,m(t,x))=m(st,x). le, T acts as a continuous group of homeomorphisms on X . We shall
fix T and suppress the action symbol.

Let %X be a ttg, x € X, then Tx (T;) denotes the orbit (-closure) of x in X and a subset
A C X is called invariant iff TaC A forevery a€A . Attg X is called minimal iff X contains
no proper closed invariant subsets, % is called ergodic iff every invariant open subset of X is dense.
An example of an ergodic ttg is a pointtransitive ttg, which is a ttg with a dense orbit. A ttg is minimal
iff every orbit is dense.

For (our fixed) T there exists a universal pointtransitive ttg Sr , such that T can densely and
equivariantly be embedded in S7 . The multiplication on T can be extended to a multiplication on
St , then S7 is a closed semigroup with continuous right translations. The universal minimal ttg
M=<T,M> for T isisomorphic to every minimal left ideal in Sr and so M is a closed semi-
group with continuous right translations. Hence the collection J:=J(M) of idempotents in M is
nonempty. Moreover, {vM |v €J} is a partition of M and every vM is a group with unit element
V.

The sets Sy and M acton X as semigroups and Tx = Syx , while for a minimal ttg %X we have
Tx = Mx for every x € X . Let x be an almost periodic point in X ,ie. Tx is minimal, then
denote the nonempty set {v €J |vx =x} by J, . Note, that for a ttg X, JX is the collection of
almost periodic points in X .

Proximality is another dynamical concept that can be described by the action of Sr . Two points x
and x, are called proximal iff T(x;,x;)NAx % & . Let AUy be the unique uniform structure of
X ,then P = ({Ta|aE Uy} is the collection of proximal pairs in X , the proximal relation ; if
P =X XX then % is called proximal.

It turns out that x; and x, are proximal in % iff vx; =vx, for some idempotent v € Sy iff there
is a minimal left ideal I in S7 such that px, =px, forevery pE€1 .

Let 2X¥ be the collection of nonempty closed subsets of X endowed with the Vietoris topology

[Mi 51]. Note that a base for the Vietoris topology on 2% is formed by the sets

<U,,...,U,>:={4€2X|AC YU, and ANU, # @ forevery i},

i=1

where U, ‘isopenin X . Then %= < T2%X #> defined by #(:,D):=x[{t}X D] is a ttg again,
and S; actson 2% too. To circumvent ambiguity we denote the action of S on 2% by the circle
operation as follows. Let p € Sp then for D €2* define poD:= lim,y4; D for any net {7}, in

T with t; ->p . Moreover
poD ={x € X | there are d; € D with x =limd;}
for any net t; »p in T . If FC Sy, D €2* then we define

FoD:= U{foleEF}.



A homomorphism of ttgs ¢: X —%Y is a continuous map- ¢: X — Y of the phase spaces of the ttgs such
that ¢(tx) =t¢(x) forall t€T, xE€X .
The map ¢ is called proximal iff R,C P iff Py,:= ({TaNR,|aEUx} =R,.

Let ¢:X—Z and ¢:Y—Z be surjective homomorphisms of ttgs, then ¢ and  are called disjoint
iff Rgy:={(x,y)|¢(x)=4v¢(y)} is minimal, notation ¢ Ly ; ¢ and ¢ are called weakly disjoint
iff R4y is ergodic, notation ¢ - ¢ .

In section 2 we shall relate weak disjointness of homomorphisms of ttgs to that of their maximally
equicontinuous factors. A homomorphism of ttgs is called equicontinuous or almost periodic iff for
every a € Uy thereisa BE Ay such that TaNR,C B, where Ry:= Ryy -

Let Q4:= M {TaNRy|aE Uy} be the regionally proximal relation and define the equicontinuous
structure relation to be the smallest closed invariant equivalence relation that contains Qg . Then
¢:X—>% is almost periodic if Q4=Ay. If ¢:X—>%Y is a homomorphism of ttgs, then
0:%X/Ey,—% is the maximally equicontinuous factor of ¢ (also called the maximally (uniformly)
almost periodic factor of ¢ ).

Before we can discuss the material in section 2 we need to collect some results concerning the equicon-
tinuous structure relation of certain types of homomorphisms of minimal ttgs, which will be done in
section 1. Most of the results in that section 1 are known, but the results in 1.9.d, 1.12.c and 1.16.b
seem to be new.

In section 3 we refine our knowledge about the regionally proximal relation being an equivalence rela-
tion. We prove that in several cases (RIC, Bc, RIM) we have

Ey=Q4= N{intg, TaN Ry | a € Ay} (=0§).

Note that it was already known that E, = Q, for open Bc extensions [B 73], Bc extensions [V 77] and
open RIM extensions [Wo 80].

In section 4 we revisit the transitivity of the regionally proximal relation and translate some of the
" #-ideas” as exposed in section 3 to the idea of regional proximality of second order.

A more detailed discussion about ttgs may be found in [B 75/79] and, with more notational resem-
blance, [G 76] and [V 77]; for a function-algebraic approach see [E 69].

We like to thank J. DE VRIES for his many valuable suggestions, and T. S. MCWOULANDER for his com-
munications.

1. SOME GENERALITIES

Let X be a CT, space and let I (X) be the collection of regular Borel probability measures on X
provided with the weak star topology; i.e., a net {i;}; in I (X) converges to p€ M(X) iff
f f dp; converges to / f dp for all real valued continuous functions f on X . Then M(X) is a



CT, space in which X is embedded by the mapping x+ 8, , where §, is the dirac measure at x .
If ¢:%X—>% is a continuous map between CT, spaces, then ¢ induces a continuous map
M (p): M(X)—>M(Y) which extends ¢ . Note, that D (¢) is surjective (injective) (homeomorphic)
iff ¢ is.

Let X beattgfor T.For t€T and p€ M(X) define rpe M(X) by tpu(d)=p@ '4); or,
what is the same, ff d(tp) = fft du, where ft:X >R is defined by fr(x)= f(tx). Also one
could say tp:=M (7' )w), where 7 i=xpix: X—>X. One <can show  that
(t,wWtp: TXJM(X)— M(X) is continuous. So IM(X) is a ttg for T .

If $:%X—% is a homomorphism of ttgs, then M (¢): M (X) — M (%Y) is a homomorphism of ttgs.

A surjective homomorphism ¢: %X— % of ttgs is said to have a relatively invariant measure (¢ has a
RIM, ¢ is a RIM extension) if there exists a continuous homomorphism A:%Y— M (X) of ttgs such
that IR (¢)oA: Y — M (Y) is just the (dirac) embedding. In other words: ¢ is a RIM extension iff for
every y €Y there is a A, € M(X) with suppA, C¢(y) and the map yrA, :Y->M(X) is a
homomorphism of ttgs; this map A is called a section for ¢ . If ¢ is a RIM extension, then a point
x € X is called a supprim point if for some section A for ¢ we have x € suppAyy) -

In particular, ¢:X— {*} has a RIM iff % has an invariant measure iff I (%) has a fixed point. In
case X is minimal it follows easily that every point of X is a supprim point.

Another example of a RIM extension is an almost periodic homomorphism of minimal ttgs, which even
has a unique section and every point is a supprim point. For more details on RIM extensions see
[G 75].

RIM extensions of minimal ttgs turn out to behave nicely with respect to the interpolation of maximal
almost periodic factors, i.e., with respect to the equicontinuous structure relation.

1.1. THEOREM. ([M 78] 2.2.) Let ¢:X—%Y be a RIM extension, then ¢ is open in the supprim poinfs]

In [M 78] a technique is developed to investigate the equicontinuous structure relation for RIM exten-
sions. The most important results are 1.2. and its consequences 1.3. and 1.4. below.

1.2. THEOREM. Let ¢:X—%Y be a homomorphism of minimal t1gs, and let : E— Y be a RIM exten-
sion with section N (% not necessarily minimal). Let x € X and let U be an open set in Z .
Then

Ey[x] X (VNsuppAyx)C T({x}X VN Ryy) . 0

1.3. COROLLARY. Let ¢:X—%Y be a RIM extension of minimal ttgs with section \. Then for every
X € X with x € suppAy) we have the equality Ey[x]= Q4lx]. In particular, if a minimal ttg
X has an invariant measure then Eo = Qg . O

1.4. COROLLARY. Let ¢:X—%Y be a RIM extension of minimal tigs. Then
Ey=Q4oPy=PyoQy={(x1,X2)E Ry | (ux;,ux)€ Qg4 for some u€J} . a



Two other types of extensions that behave nicely with respect to the equicontinuous structure relation
are the Bc extensions and the RIC extensions.

Let ¢:X—Z and ¢:%—>Z be surjective homomorphisms of ttgs (not necessarily minimal). Then ¢
and ¢ are said to satisfy the generalized Bronstein condition (gBc) if JR,y = Ry, ; ie., if the almost
periodic points are dense in R,y . If JRy;=R, then ¢ is said to satisfy the Bronstein condition
(Bc); we shall also say that ¢ is a Bc map or a Bc extension .

We say that ¢ satisfies the n — fold Bronstein condition for certain n € N whenever

RG:={(x1,. .., X)) EX" |$(x)) = -+ =¢(x,)}
has a dense subset of almost periodic points (notation: ¢ is n-Bc).
So ¢ is a Bc map iff ¢ is 2-Bc.

A homomorphism ¢: X—Z of minimal ttgs is called a RIC extension iff ¢ (z) =uoup=(z) for
every z€Z and for every u€J, (RIC stands for Relatively InContractible). Note that a RIC
extension is an open extension ([G 76] X.1.1.).

Examples of RIC extensions are almost periodic-, distal- and open point distal maps.

The proof of the next lemma is straightforward and will be omitted.

1.5. LEMMA. Let X be minimal. Consider the next diagram of surjective homomorphisms.

% Y

The following statements are equivalent:

a) ¢ and Y satisfy gBc;

b) Ry, =T({x} Xuy“¢(x)) for some x € X andsome u€lJ, ;

) Ryy=T({x)}Xuy“¢(x)) forevery x €EX andevery u€J, . O

Two other useful remarks concerning dense sets of almost periodic points are

1.6. REMARK. (Situation as in 15.) Let u€J. Then ¢ and  satisfy gBc iff

Yo (x)=Jcouy“¢(x) forevery x EX .
In particular, ¢ is a Bc extension iff ¢“¢(x)=J,oudp~¢(x) for every x € X .

PROOF. The "if-part” is obvious.

Conversely, let x€X and y€yYy~¢(x). Then, by 1.5.c, (x,y)=lims(ux,uy;) where
uy; Euy¢(ux) =y“¢(x) . After passing to a suitable subnet let p =lims;u € M . Then it follows
that

y =limtuy;, Epoud~¢(x) and px =x .
For vE€J with yp =p we have v €J, and
YEPouYG(x)=poup Tl upyo(x)C v oupyH(x)C v ouyTGpx) = v ouy P (x).
So yEvouy o(x)CJoudTo(x). O



1.7. REMARK. Let ¢:X—% be a homomorphism of ttgs with Y minimal and X having a dense sub-
set of almost periodic points. Then ¢ is semi-open (i.e., for every nonempty open U C X , ¢[U]
has a nonempty interior in Y ).

PROOF. The remark is well known for %X minimal. Let % have a dense subset of almost periodic
points and let U C X be open and nonempty. Then UNZ % @ for some minimal orbit closure
Z in X . As ¢[UNZ] has a nonempty interior in Y the remark follows. O

For the following denote by (u¢~(z))" the cartesian n-power of u¢“(z); and by 2},’( the "relativ-
ized hyper ttg”, defined as a subttg of 2% by

2X:={4 €2X | $[4] is a singleton} .

The simple proof of the following lemma is left to the reader.

1.8. LEMMA. Let ¢:X—Z be a homomorphism of minimal ttgs.
a) ¢ isn-Beiff Ry =cly,[T.(u¢"(2))"] forevery zE€ Z andevery u€J; .
b) If ¢ isn-Bc forall n €N, then for every z € Z andevery u€J, the set

U{t{xl,...,x,,}|x,-€u¢‘_(z),nEN,t€T}g2¢’,Y

is dense in 2({," . O

1.9. THEOREM. Let ¢:X—>Z be a homomorphism of minimal ttgs. The following statements are
equivalent:
a) ¢ is a RIC extension;
b) ¢ Ly for every proximal extension ¢:%Y—Z of minimal ttgs;
c) ¢ and  satisfy gBc for every Y:Y—>Z with Y having a dense subset of almost periodic
points;
d) ¢ is open and n-Bc for every n eN.

PROOF. a and b are equivalent by [G 76] X.1.3..

a=clet UXVNRy, be a nonempty (basic) open set in Ryy . As ¢ is open and ¢ is
semi-open (1.7.), W:=¢[y"¢[UINV]° is a nonempty open subset of Z and ¢[U'1=¢[V'],
where U':=UN¢[W] and V':=V Ny [W].
Let y € V' be an almost periodic point, say y =vy for certain vEJ ,andlet x € U'N¢ Y (vy).
As ¢ is RIC, x Evove y(vy) so x =limtvx; for some net 1, »>v and vx; € ¢y (vy). Hence
(x,y)=limy(vx;,vy) and for certain i

,EUXV'NRyCUXVNRyy.
Consequently, Ry, has a dense subset of almost periodic points.
¢ = d Follows by induction from the observation that R}*!' = R,,, where n:®]—>Z is the
restriction of ¢" : X" - Z" .
d=alet zEZ and u€J, . By 18b, there are sets £ {x},..., x,’;’, } with x/€u¢p(2)
which in 2 converge to ¢(z) . As

n{xt, . ox Y =nu{xt, o X JChuoudt(z),

it follows that



¢“(z)=limg;{x}, ..., x; JClimfuou¢™(z) =poudp(z),

where p =limy,u € M (after passing to a suitable subnet).
But, clearly, pou¢=(z)C¢“(pz), so z =pz and z = up"‘z . By openness of ¢ we know that
¢ () =up log(z), 50

$@) =up o ¢ () Cup Popoud(z) = uous(z).
Obviously, uou¢p=(z)C ¢~(z) , which shows that ¢ (z) =uouedp=(z). O

There are several ways to study the equicontinuous structure relation for Bc extensions:

(1) Elementary, using some trickery with syndetic sets and the uniform structure. In [B 73] thm 3, it
was proven that E, = Q, for open Bc extensions ¢ of minimal ttgs, so certainly for RIC. exten-
sions. A suitable “shadow diagram” ([EGS 75]) finishes the general Bc case.

(ii)) Using our knowledge about (open) RIM extensions ([M 78], [Wo 80]) and a(nother) shadow
diagram ([G 75]).

(iii) The method of the &-topologies ([F 63], [E 67], [EGS 75] and [V 77)).

With help of the F-topologies one tries to imitate the properties of a compact group action. We shall
briefly describe the ¥-topologies and some of the properties, resulting in a first description of the
equicontinuous structure relation (1.16., 1.17.). Our approach will be based upon [V 77] which will also
serve as a general reference.

First we shall specify a certain neighbourhood base at U in M (for the usual topology).
Let V' be asubset of T such that u € intSTclST[V] ,and let A(V):= clST[V]ﬂ M . Then define
Vwu):={t €T |tu€intyyh(V)}.

Clearly, V(u) isopenin T , butin general ¥V and V(u) do not coincide. However, the collection
of subsets V' of T for which V' and V(u) are the same can be used to define a neighbourhood
base for u in M , as follows.

1.10. LEMMA. The collection {h(V)|V =V (u)CT,u€Eintg cls [V]} forms a neighbourhood base for
u in M. Od

Let X be a ttg. We shall define a topology &(%X,u) on uX = {x € X |ux =x} by specifying a
neighbourhood base for every x =ux in uX . Solet x EuX . A typical neighbourhood of x in
(uX,F(%X,u)) will be a set of the form

[U,VINuX with [U,V]:= J{t"'U|teV},

where U is a neighbourhood of x in X (usual topology) and V is an open subset of 7 such
that u Eintg clg [V] and V =V (u).
The union of those neighbourhood bases forms a base for the & (%X, u) topology on uX .



1.11. PROPERTIES.
a) The ¥ (X,u) topology can be defined by the closure operator Au(uoA) (A CuX).
b) (uX,&(X,u)) is a compact T, topological space;
0 Ag:ixebax:(wX,FX,u)—-wX,F*,u)) isa homeomorphzsm for every a € uM ;
d) Aixevx:i@X,F&,u)> 00X, &K, v)) is a homeomorphism for every v €J . O

A special case is (uM,F(9M,u)). With the F(ON,u) topology uM is a group with a compact T,
underlying space and not only the left translations are homeomorphisms (1.11.b) but also the right
translations and the inversion are. This space (uM, % (9, u)) is some sort of prototype for the & topo-
logies; i.e., we can consider the & topologies as quotients of the & (9, u) topology.

1.12. THEOREM. Let ¢:X— %Y be a homomorphism of minimal ttgs and define the map ¢, by

¢'u ::¢|uX:(qu%(%’u))'—)(uY’%(Gy’u)) .

Then

a) ¢, is a homeomorphism iff ¢ is proximal;

b) ¢, is a closed continuous surjection;

c) ¢, isopen.

PROOF.

a) [V 77] 2.5.8..

b) [V 77] 2.5.7..

c) It is well known (e.g. [G 76] X.3.2.) that there are proximal maps ¢ and 7 and a RIC exten-
sion ¢ such that 7o¢’ = ¢oo (EGS diagram). From a) it follows that it suffices to show that ¢/, is
&-open; or better, it follows that we only have to prove the statement for RIC extensions.

Let ¢ be a RIC extension, x €EuX and let [U,V]NuX be an &F(X,u) neighbourhood of X in
uX with V=V (u) openin T and U is a neighbourhood of X in X . As ¢ is open, it will
follow that ¢, is open. First note that

o, [[U, VINuX]C (U, VIIN¢[uX]=[¢[U], V]NuY .

Let y =wy €[¢[U],V]NuY , then y = ¢t~ Ix’) forsome t€V and x’€U . As ¢ is RIC we
have z:=t¢t"x’'€ ¢ () =uoudp (y). Let {f;}; beanetin T with , >u andlet x; Eu¢p=(y)
be such that z =lim#x; . Since left multiplication with ¢ is a homeomorphism we have
t;x; >tz =x' and t; >tu , hence tiu > . Ast€V =V (u) we have ru € inty (cls [V]N M),

SO tiu € intM(clsr[V]ﬂM ) eventually, hence 1, € V(u) =V eventually. Also t;x; €U eventu-
ally, so we can find some i such that #; x; €U and 1;; € V. This shows that

— -1 -1
xi, =) 1 x; € VU,

so x;, €U, V]Nu¢™(y). Hence x; €[U,V]NuX, while ¢(x;) =y and so it follows that
y €¢,[[U,V]NuX], which implies
o, [[U, VINuX]=[o[U],V]NuY

in case ¢ is a RIC extension. O



As every minimal ttg X is a factor of 9, it follows from 1.12. that (uX,¥(%X,u)) is an open,
closed and continuous image of (uM,F(9M,u)). So (uM,F(IM,u)) plays a central role in the obser-
vations about -topologies.

Let % be a minimal ttg, xo=uxo€ X . Then define the Ellis group &(X,x,) of X with respect to
X0 by

&(X,x0) = {a€uM | axo=xo} (= uM Np; (xo)) .

Clearly, &(%,xo) is a subgroup of uM . As p, amaxy:IM—X is a homomorphism of minimal
ttgs and (uX,%(X,u)) is Ty, it follows from 1.12.b that &(X,xg) is F(IM,u)-closed.

Note that, by 1.12.a, ¢: X —% is proximal iff &(X,uxq) = &, ¢ (uxo)) .

On the other hand, if F is an & (9, u)-closed subgroup of uM , then there exists a minimal ttg
A(F) defined by

A(F):={poF|peM)c2M,
such that F = A (F),uoF),ie., F is the Ellis group of % (F) with respect to uoF .

1.13. The ttg A(F) is the universal minimal proximal extension of every minimal ttg % with Ellis
group F . Solet xo=uxoE X be such that &(X,x¢) = F , then o6:poFrpxy: A(F)—>X is the
maximally proximal extension of % .

Note that every extension :%Y— A (F) is a RIC extension (use 1.9.b and the universality of A(F) ).

Let ¢:%X—% be a homomorphism of minimal ttgs, x EuX , y =¢(x) and F =& ,y). Then
u¢(y)=Fx .Let M, denote the F(X,u) neighbourhood system of x in Fx . Define ([V 77])

E(x):ZE(x,cp,u) = m{Clg(%’u)u Iue%} .

For p,:prpy : M—Y we have H(F):=E(u,p,,u) is the smallest (M, u)-closed normal sub-
group K of F such that F/K isa CT, topological group.

By 1.12,, it follows easily that E(x)=H(F)x . It turns out that {E(x’)|x’€ Fx} forms a partition
of u¢“(x) and that F/H(F) acts on it as a CT), topological group. This is what we meant with imi-
tating the compact group action (discussion after 1.9.). Paraphrazed we may say that in H(F)x we
collect all the non-equicontinuous garbage for ¢ in u¢“(y), which might be illustrated by the follow-
ing theorem ([E 73] 5.4., 6.3.).

1.14. THEOREM. Let ¢:X—>%Y be a Bc extension of minimal ttgs, x €uX and F =&Y,¢(x)).
Then Ey[x]1=Jy H(F)x (andso S(X/Ey,E4[x]) = H(F).S(X,x) ). O

The next lemma is a slightly modified version of the crucial idea in [V 77].

1.15. LEMMA. Let ¢:X—% be a homomorphism of minimal ttgs, x €uX , F =&%,¢(x)), and
denote by N, the collection of T(%X,u) neighbourhoods of x in u¢“¢(x)=Fx . Then

uoFx NJH(F)x CuoUl forevery UEN, .

PROOF. Let U be an open & (%,u) heighbourhood of x iln Fx . Then 0:={f€F|fx€U} is
an & (9,u) open neighbourhood of u in F,so 0NO is an % (9M,u) neighbourhood of u in



F , hence V:=(0 ﬂO—l)x is an open &(%,u) neighbourhood of x in Fx and V CU . Note
that V is symmetric in the sense that for f € F we have fx €V iff f~'x €V , and remark that
clgx,4)V is symmetric too.

Define A4 :=intg, 4 )Clg@,4)V in the relative & (%,u)-topology on Fx . We claim that

{AYU{gV |g € F and gx & cly 4V }

is an &(X,u)-open covering of Fx . As follows:
Let f € F besuchthat fx¢& A4 ;ie,

fx € Fx \ A = clge,,(Fx \ clgex.)V) -

So we can find a net {f;x};, with f;x € Fx \clg«,,)V such that f;x —fx in the &(X,u)-
topology. Since

Ap—1:(Fx, & (X, u)) - (Fx, & (X, u))

is a homeomorphism, f = fix »>x in the F(X,u)-topology. As V €N, , there is an iy with
f_'fiox €YV and by symmetry of V , fio_lfx €V . Hence fx €f;V , where f; €F issuch that

figx € Fx \clg, )V , which establishes our claim.
By compactness, there are finitely many g; € F with g;x & clg . 4)V ,say gi,...,8: ,such that
FxCAU J{gV]|ie{l,...,n}}.
As {A}U{gV |i€(]l,...,n}} is afinite collection it follows that
uoFx =uo(AU J{gV|i€L...,n}} )= =uoAU |J{uogV|i€(l,...,n}}.
Now let x'€JH(F)x NuoFx ,say x'=vwpx forsome vEJ and p € H(F). We shall prove that
x'=vwx&uogV forevery i € (1,...,n}. It then follows that
X'€EuoA Cuoclyg )V =ttou(uoV)CuoV ,

which proves the theorem. Suppose vpx Euog;V , then

X =ux =up_1vprup_1(uog,~V)g =up_1(uoupup_‘g,~V)g

1

Cu(up™ 'oup oup'lg,-V) =u(uo up'lgiV) = clg(ex,,,)up"lg,'v .

As H(F) is a normal subgroup of F and g € F we can find g € H(F) such that wp g, =gq ,

SO

x € cly@,u) 89V = & Clye,u)gV C giCly @, HEF)V.

But clgo,y)H(F)V Cclg«,,)V . For, let vEV then VEN,, so E(v)Cclyw«,.)V for every
VEV ;as E(v)=H(F) , HF)V Ccly«,.)V and consequently, clg o ., \H(F)V C clgx, )V -

This shows that x Egclye.,)V and so g 'x Eclye,,)V . By symmetry of clye )V »
8 X € clg .,V , which contradicts the choice of g; . ‘ O
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Now we are ready for the main theorem of this section.

1.16. THEOREM. Let ¢:X—% be a homomorphism of minimal ttgs, x EuX and F = &(%,é(x)). j
a) If ¢ is a RIC extension then E [x]Cuoll for every U E N, (V 77] 2.6.1.).
b) If ¢ is a Bc extension then E4[x]CJ, 0o U for every x'€ ¢“¢(x) and every U E N, .

PROOF. As the proof of a) is similar to that of b), we just prove b).
b)Let €N, and let x'€E¢"¢(x)=9¢"¢(x"). By 1.6, ¢ ¢(x)=J,r0udp d(x); so from
1.14. it follows that

Ey[x]1CJy0 Fx NJ gyH(F)x .
Let z€ Ey4[x],say z €EvoFx NJH(F)x for certain v €J, . Note that
VoFx =vouvFx CvuovFx =vovFx =vovuFx CvouFx =voFx ,
$0 voFx =vovFx =vovFvx and z €vovFvx NJvH(F)vx . Applying 1.14. to vx it follows that
vovFx NJvH(F))vx Cvovld .
As vovlU =voull =voll (similar to voFx =vovFx ), we may conclude that
z€EVvo FxNJH(F)x =vovFx NJYH(F)yx CvovlUd =voll .

Consequently E4[x]CJ,oU . O

1.17. COROLLARY. Let ¢:%X— % be a Bc extension. Then Ey,= Q..

PROOF. Let x€ X , and u€J, . By 1.16.b with x"=x we know that Ey[x]CJ,oU for every

UEN, . Let aEUy and let U be a neighbourhood of x in X (usual topology) such that
UXUCa. By 110, there is a V =V(@w) open in T such that VxCU . Define

V:=[U,V]INu¢“¢(x) . Then
(X IXEG[x]1C{x}XJyoV =J,0({x}XV).
As, clearly, {x}XVCV L(¥x X UNR,)C TaNR,, it follows that
(x}X Eg[x]CJ o ({x}XV)C TaNR,.

Since a€ AUy was arbitrary, we have {x } X E4[x]C Q4,50 E4[x]C Qq4lx].
But x and u €J, were arbitrary in whole discussion up to now, so it follows that E, = Q. a

We can do better than the corollary above as will be shown in 3.7..
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2. RELATIVIZED WEAK DISJOINTNESS

In this section we relate weak disjointness of maps and that of their maximally almost periodic factors.
For that we need to keep control over open sets, which can be done by means of a fair amount of
openness in the maps involved.

2.1. LEMMA. Consider the next commutative diagram of surjective homomorphisms of tigs:

« :
X—> X ]
0
¢ ¥
Z

and let m: R4y, — Z be the obvious map (m(x,y) =o(x)=¢(y) ).
a) If ¢ or  isopenand § or ¢ is semi-open then m is semi-open, and for every nonempty
open W CRy, there are open sets U and V in X and Y  with
B #= UXVNRGWCW and ¢o[U]=y[V].
b) If n and k are semi-open then kX idy:Rgy,— Ry, is semi-open.

PROOF.

a) Without loss of generality let ¢ be open and ¢ semi-open and let W C R, be a nonempty
open set in Ry, . Let U’ and V'’ be openin X and Y such that & 5= U'XV'NR,,CW .
Then U’N¢“Y[V’] is nonempty and open so by semi-openness of ¢, O:=¢[U'N¢"Y[V']]° is
nonempty and open. define U:=U'N¢[0O] and V:=V'NyY~[O]. Then as is easily seen,
i) OColUINY[V'ICn[W],so 7 is semi-open;
(i) @ #FUXVNRLGCW and ¢[Ul=y[V]=0 .
which proves a).

b) Let W be nonempty and open in R4y and let U and V be as in a). Semi-openness of
k implies k[U]°# @ and as ¢[U]=¢[V] it follows that k[U]°X VN R4, #* & ; hence
kX idy is semi-open. a

In the following remark we collect some situations in which 7 is semi-open and that are useful for our
purposes. So consider the next diagram:

2.2. DIAGRAM.

K
% ———>%/E, @
0
¢ l 4
g

with X and € minimal and % not necessarily minimal.



12

2.3. REMARK. Consider diagram 2.2.. In each of the following cases m:Rgyy,— Z is semi-open (and, by
minimality of %, also kX idy:Rgyy,— Ry, is semi-open).
a) ¢ and Y satisfy gBc;
b) ¢ is open;
C) ¢ isopenand Y has a dense subset of almost periodic points;
d) ¢ isopen, Y is a RIM extension and Y has a dense subset of supprim points.

PROOF.

a, b and c are obvious from 1.7. (and 2.1.).

d) As ¢ is open in the supprim points, there is a dense subset of Y in which ¢ is open, hence
Y is semi-open. : O

2.4. THEOREM. Consider diagram 2.2. and let ¢ and  satisfy one of the conditions in 2.3... If for
every nonempty (basic) open set UX VN Ry, there is an open set U = E,[U] in X such that
B #UXVNRGWCTWUXVNRGy) then ¢ iff 6_—y.

PROOF. As kX idy[Rsy] = Rgy, ¢ - ¢ implies 0 - ¢ .

Conversely, suppose 8-y . Let UX VNRy, be a nonempty (basic) open set in R4y and let U
be as in the assumption. Clearly, as «“x[U]=0U, «[U] is open in X/E, and
k[U]X VN Ry, @ . So, by ergodicity of Rgy, T(k[UIX VNRgy) is dense in Rpy. As
kX idy is semi-open, (kX idy)[T(k[U]X VN Ryy)] is densein R, . Hence, as

(X idy) [T®[UIX VNRg)I =T(UXVNRGCT(UXVNR,y),

it follows that Ry, = T(UX VN R,,) . Consequently, R, is ergodic. d

Now we shall look for situations in which the assumptions of 2.4. are satisfied. For that we need the
following lemmas.

2.5. LEMMA. Consider diagram 2.2. and suppose that one of the conditions in 2.3. is satisfied. If every
nonempty  (basic) open set U’XV'NRy, contains a point (x,y) such that
Ey[x]X{y}C T(U'X V'NRy,) then the assumption in 2.4. is satisfied.

PROOF. We shall show that for a nonempty (basic) open set U X VN R,y with ¢[U]=¢[V] the set
U = E4[U]:= «“[k[U]°] is such that

UXVNRyGCTWUXVNRy.

As one of the conditions in 2.3. is satisfied, the lemma follows.

Let U and V beopenin X and Y such that ¢[U]=y[V], define U :=«k“[k[U]°] and remark
that U X VNRyy,# @ . Note that it is sufficient to show that for an arbitrary nonempty (basic)
open subset U'X V'NRyCUXVNRy, wehave U'XV'NT(UXVNRy) #* @, as follows:
By assumption, there is a point (x,y)€ U’X V'N R4y such that

E,x]1X {y }CT(U'X V'NRyy).

As U’'C U =«“[k[U]°] thereis an x’€ U such that x €k“k(x’) = E4[x'], so x'€ E4[x]. But
then

' P)EUXVNEGxIX{}CUXVNTWU'XV'NRyy),
0 UXVNTWU'XV'NRyy) 5+ @ and U'XV'NTUXVNRy) #* D . O
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2.6. LEMMA. Consider diagram 2.2.. Suppose ¢ is a RIM extension, Y has a dense subset of supprim
points and ¢ and { satisfy one of the conditions in 2.3.. Then every nonempty (basic) open set
UXVNRy, contains a point (x,y) such that E4[x] X {y }CT(UXVNRy,).

PROOF. By 2.3. and 2.1.a, we may assume that ¢[U]=¢[V]. As the supprim points are dense in
Y , there is a section A for ¢ and a y € VNsuppAy,). Let x €U be such that ¢(x)=¢(y).
Then, by 1.2,,

E [x]1X {y } C E4lx] X (V NsuppAyu) C T({(x} X VN R,)C T(UX VN R,y). -

2.7. LEMMA. Consider diagram 2.2.. Suppose ¢ is a RIC extension and let (x,y) be an almost
periodic point. If UXVNRy, is a basic open neighbourhood of (x,y) in Rgyy, then
Ey[x]X{y}CT(WUXVNRy).

PROOF. Let v €J be such that v(x,y)=(x,y). By 1.10,, there is an open set W =W () in T
such that Wy C V . Define U:=[U,W]Nvo~¢(x). Then U is an K (X,v) neighbourhood of
x in v~ ¢(x).Let x’EU ,then x’Et~'U for some t E W , so

' P)ETNUX Yy NReYCI NUX Wy NRyCTWUXVNR .

Consequently, U X {y }C T(UX VN Ryy) and so, by 1.16.a,

Eslx]1X {(p}CvoUX (y NCTWUX VN R,y).

2.8. THEOREM. Consider diagram 2.2.. In each of the following cases we have ¢ iff 0 :
a) ¢ is a RIC extension, ¢ and { satisfy gBc (or equivalently, Y has a dense subset of almost
periodic points);
b) ¢ is a RIM extension, Y has a dense subset of supprim points and one of the conditions in
2.3. is satisfied.

PROOF.
a) Follows from 2.7., 2.5. and 2.4..
b) Follows from 2.6., 2.5. and 2.4.. a

2.9. In order to prove 2.11., the Bc version of 2.8. (thus generalizing [V 77] 2.6.3.), we consider a com-
mutative “double” diagram similar to the one constructed by VEECH in [V 77], as follows:

¢I
D —————— Gyl

91(?[6) \ /91(93) 17

U (X)/Ey
5L ¢ s ;

\ N ‘P
%/E, 0

Here H:=®&(%,xq) and K:=®&%,z() are the Ellis groups of % and £ with respect to
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xo=uxg and zo=uzg, ¢ :AH)—->A(K) is the RIC extension defined by po HpoK , o and
n are the maximally proximal extensions of % and £ (1.13.). Then the ttg y’ is a subttg of
Y X A(K) defined by

Y'={(.poK)|y Epouy(z0)},

and the maps ¢ : % - A(K) and 7:% — %Y are just the projections.

The following facts are easily verified:

(i) Y’ is T-invariant and closed in Y X A(K) ;

(i) Y’ has a dense subset of almost periodic points;

(iii) 7: %Y —>% is proximal and 7 is a surjection iff Y has a dense subset of almost periodic points.

As o and 7 are proximal and ¢ and ¢’ are Bc extensions; it follows from 1.14. (remark between
parenthesis) that £ is proximal.

We shall need the following lemma about lifting of ergodicity.

2.10. LEMMA. Let ¢:%X—%Y be a surjective proximal homomorphism of ttgs and let X have a dense
subset of almost periodic points. Then X is ergodic iff ¥ is ergodic.

PROOF. Clearly, if % is ergodic then % is ergodic.

Conversely, suppose that % is ergodic. Let A CX with 4 =T4 and A°5# @ and let
B:=X\A . Then B=TB and X =AUB .

As ¢[AJU¢[B]=¢[X]=Y , ¢[4] or ¢[B] must have a nonempty interior in Y , and so, by
ergodicity of ¥, ¢[A]=Y or ¢[B]=7Y .

Suppose that ¢[4A]=Y . Let xE€X be an almost periodic point. Then for some a€4 ,
¢(a)=¢(x). As ¢ is proximal, a and x are proximal and by almost periodicity of x we have
that x € Ta CTA = A . Consequently, every almost periodic pointin % isin 4 ,s0 X =A4 .
Suppose that ¢[B] =Y then, similarly, it follows that X = B ; which contradicts the assumption of
A°# @ .

Hence X =4 and % is ergodic. a

2.11. THEOREM. Consider diagram 2.2. with ¢ a Bc extension and ¢ and  satisfying gBc. Then

PROOF. Construct the diagram in 2.9. and suppose that 6 - ¢ . As ¢ is a RIC extension (1.13.) and
as %Y has a dense subset of almost periodic points, Rgy has a dense subset of almost periodic points
(1.9.). By 2.10,, it follows from the proximality £ X7 that Rgy is ergodic, so ¢ - /. As ¢' isa
RIC extension (1.13.) and as %’ has a dense subset of almost periodic points, ¢’ and {/ satisfy gBc
(1.9.). By28.a, ¢ -~/ .Since o X 7[Ryy] = Ry, it follows that ¢ - . O

A homomorphism of ttgs ¢: X —Z is called n —weakly mixing iff Ry is ergodic.
If ¢ is 2-weakly mixing then ¢ is just called weakly mixing.
If ¢ is n-weakly mixing for every n €N, then ¢ is called totally weakly mixing.
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2.12. THEOREM. Let ¢:X—Z be a homomorphism of minimal ttgs with E, = R .
a) If ¢ is n-Bc then ¢ is n-weakly mixing. In particular, if ¢ is n-Bc for every n €8 (e.g
¢ is a RIC extension) then ¢ is totally weakly mixing.
b) If ¢ is an open RIM extension then ¢ is totally weakly mixing.

PROOF. Consider diagram 2.2. and note that E, = R, implies that # is an isomorphism. So, under
the conditions in 2.8. and 2.11., we have ¢_- ¢ iff ¥ is ergodic. We shall prove the statements by
induction.

a) First note that R2 = R, is ergodic (apply 2.11. to ¢ and ¢ ). Assume R is ergodic for
certain m with 2<<m<n . Then define Y:Ry —Z as a restriction of ¢” . By 2.11. and the
observation that Rgy == R} , it follows that R, is ergodic. So, as RJ ™! = R,,, RZ*! is
ergodic. :

b) As % is minimal, the supprim points are dense in X , so R, is ergodic (apply 2.8.b to ¢
and ¢ ). Define y:R§ —Z as a restriction of ¢” . Then A™ is a section for ¢ (A a section for
¢ ). As ¢ is open, one sees readily that ¢ is open and that the supprim points are dense in R} .
Suppose R} is ergodic, then application of 2.8.b to ¢ and y shows ergodicity of R *! . O

2.13. We shall now turn to a generalization of [P 72] 6.11. and [M 78] 1.9.. Consider the next diagram
of homomorphisms of minimal ttgs:

\/

We are interested in the question whether or not 6y _- 6y implies ¢_- 4 (the other way around is
obviously true).
First we shall show that Oy - 0q iff 6 L 0 .

2.14. LEMMA. Let ¢:X—% be a surjective homomorphism of ttgs. Let X'C X be a closed invariant
subset of X such that
@ ¢[X1=Y
(i) ¢|x:X'—>Y is open.
If X is ergodic then X = Q4[X'].

PROOF. Let x € X and let x'€ X’ be such that ¢(x’) =¢(x). As X is ergodic it follows that
x’€ Ta(x) for every a€ Uy ; so for every a€ Uy we have a(x)NTa(x)* & . For aE€ Uy
let x,€a(x) and (,€T be such that ¢t x,€a(x’). Then x,—»x and t,x,—x"; so
td(xq) > (x’). As ¢|x- is open, there are x, € X’ with ¢(x5) = ¢(x,) such that 1,x,—x".
Let for a suitable subnet z =limx, . Then z€ X’ and (x,z)€EQ,. Hence x € Q4[z] and so
XCQ4[X. O
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2.15. THEOREM. Let ¢:X—%Y be an almost periodic extension with X ergodic and % minimal. Then
X is minimal.

PROOF. Let X’ be a minimal subset of X . As ¢|y is almost periodic, ¢|x- is open. From 2.14. it
- follows that X = Q,[X'] . As ¢ is almost periodic, Q4 =Ax ,s0 X = X’. O

2.16. As 0y and 64 are almost periodic extensions, X Ox: Rg,0,— Z is almost periodic too. By

minimality of € and 2.15., it follows that 6 - 6 implies 0y L 6y . The other way around is trivial.
Note that with little extra effort (AW 81]) one can prove the following

THEOREM. Let ¢ and  be HPI extensions of minimal tigs such that ¢ and  satisfy gBc, then
o~y iff ¢ L. In particular this holds for distal maps ¢ and .

2.17. THEOREM. Consider the diagram in 2.13.. In each of the following cases we have ¢_-{ iff Ox - 0
iff Ox L 0.
a) ¢ is a Bc extension and ¢ and  satisfy gBc,
b) ¢ is a RIM extension and ¢ and  satisfy gBc;
¢) ¢ is a RIM extension and ¢ or { is open.

PROOF. Consider diagram 2.13.. As almost periodic extensions of minimal ttgs are open RIM exten-
sions, it follows from 2.8.b that Oy - ¢ iff Oy - O iff ¢_- Oy .

a) Assume 0Oy _- 0y . Then, by the above, 8y _- . Hence, by 2.11., ¢ - .

b) and c¢) Assume 0y - 6q . Then, by the above, 0y ¢ . As ¢ and ¢ satisfy one of the con-
ditions in 2.3., it follows that ¢ _- ¢ (apply 2.8.b with ¢ and ¢ interchanged). O

2.18. COROLLARY. Let ¢:X—Z be a homomorphism of minimal tigs with E, =R, . If ¢ is a RIC
extension or an open RIM extension then ¢ is weakly disjoint from every homomorphism
V:Y—>Z of minimal tigs.

PROOF. As E,= R, implies # to be an isomorphism, this follows immediately from 2.8.a or 2.17.c0

3. A YARIATION ON REGIONAL PROXIMALITY

In studying the equicontinuous structure of a ttg, the notion of the regionally proximal relation is fun-
damental. It expresses how far the ttg is from being equicontinuous ((uniform) almost periodic). For a
deeper understanding of the bad behavior of certain points that keep the ttg from being equicontinu-
ous, we need a more detailed knowledge of how the regionally proximal relation is produced and why
transitivity occurs in the standard cases in which it does.

Let us recall that the regional proximal relation Qg is the set of points in X X X , such that there
exist nets (x;,y;)—(x,y) in XXX and {4}, in T such that ¢ (x; ,yi)—>(z,z) for some
z € X . Here all that is required is the existence of such a net {(x;,y;)}; without regarding the way
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it approaches (x,y). Thus there might be “few” such nets for one pair in Q¢ and “many” for an
other pair, which results in a difference in dynamical behavior of the pairs. It is difficult to define the
notion of “few” or “many”. Eventhough, intuitively, the abundance of nets (x;,y;) approaching
(x,y) in a regionally proximal way should be clear to the reader; which, roughly speaking, means that
in every direction there is such a net.

Now with the above discussion in mind, the meaning of the following notion is clear.

First a rough description. Let x and y be elements of the ttg . we say that (x,y) is a sharply
regionally proximal pair iff for every net {(x;,y;)}; tending to (x,y) there is a net {(x; i)}
which is suitably close to the original net but which has the property that there are € T such that
t;(x;pyi)—>(z,z) for some z€ X . Therefore, the net ‘{(x;,y;)}; provides a direction and
{(x%,y%)}; is the one that makes the pair (x,y) regionally proximal and that follows the direction if
it is suitably close. Clearly, this notion has a relativized version, that is defined for a homomorphism
¢: X —>%Y of ttgs. Now, the rigourous definition follows.

Let ¢:X—% be a homomorphism of ttgs. We say that (x;,x;)€ Ry is a sharply regionally proxi-
mal pair iff given some net {(x},x})}; in R, converging to (x;,x;) and given neighbourhoods
U' of (xi,xb) in R,, there exist (after passing to suitable subnets) # in 7 and (x},X3)€ U’
such that 7 (X} ,X3)—(z,z) for some z € X .

Denote the collection of sharply regionally proximal pairs for ¢ by QF .

The following remark is another way to formulate the notion of sharp regional proximality. The proof
is straightforward, thus omitted.

3.1. REMARK. Let ¢:X—%Y be a homomorphism of ttgs. Then

Q¢ = m {intR¢(Taﬂ R¢) | ac G?Lx} .

O
3.2. EXAMPLES. Let ¢:X—%Y be a homomorphism of tigs.
a) P,CQF CQ,,s0if ¢ isproximal, Ry=P,=0QF =Q,=E,.
b) If ¢ is weakly mixing then Ry= Q¥ = Q,=E,.
¢) If ¢ is almost periodic then Ay =E,=Q,=QF =P,. O

The following example shows that there are minimal ttgs for which Q = Q% . Moreover, it shows
that if ¢ and ¢ are homomorphisms of minimal ttgs with Q4= Qf and Qy= Qf then Q.4
and QF , may be different from each other.

3.3. EXAMPLE. Let Y be the fourfold covering of the minimal proximal rotation. Then
048 # Qa7 Eq.

PROOF. Let T be the free group on two generators. Let X be the circle, define a: X — X by
a(x)=x+a (a irrational) and define b: X - X by b(x)= x?. Then a and b are homeomor-
phisms of X , and % is a minimal proximal ttg for T(a,b), the minimal proximal rotation. Let
Y be the circle and define the map c:Y—>Y by c(y):=y+%a and d4:Y—>Y by
d(y):= Yk +4(y —%k)®>  whenever k<4y<k+1 (ke{0,1,2,3}). Define the ttg
Y:=<T(c,d),Y> andlet ¢:¥Y—% be defined as ¢(y) =4y (mod 1) . Then ¥ (or better ¢ ) is
the fourfold covering of % .

Note that Py=Q% =Qqx=Eqx=XXX,; and that ¢ is almost periodic, so that
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Py=0QF =Qs=E,=Ay.

Obviously, % does not admit nontrivial almost periodic factors, in other words Eq =Y XY . As ¢

preserves distances, it is not difficult to see that (y,y’)€ Qg iff the distance (mod 1) between y and
y’ is smaller then or equal to Y4. So Qg % Eqg .

If the distance between y and y’ equals %, then we can approach (y,y’) with pairs with a distance
greater then % (from the outside), which shows that (y,y")& Q& .So Qg #* Q& . O

An indication of the power of sharp regional proximality is given in the following theorem, which hints
at regional proximality of second order as will be discussed in section 4.

3.4. THEOREM. Let ¢:X— %Y be a homomorphism of minimal ttgs.
a) Let (xl,xz)SRd,. If T(xl,xz)ﬂQf #= & then we have (x,,xz)EQf, and so

T(x1,x)C QF C Q4.
In particular, if Q4= Qf then Qg contains the orbit closures that have a nonempty intersec-
tion with Q. .
b) Let (x1,x)€QF and let {(x},x5)}; be a net in R, converging to (x;,x;3). Choose
{t:}; in T and (for a suitable subnet) let (z,,z,) =limz;(x} ,x%). Then (z1,2)€ Q.
o If JQFcQF (eg QF is closed in particular if Q,=QF ) then
QF oPy=P,00F =0F .
PROOF.
a)If T(x;,x)N Qf #* @ then T(xl,xz)ﬂintk¢(Taﬂ R,) # @ for every a€ Uy , and so
T(xl,xz)ﬂintR¢(TaﬂR¢);": @ . But then it follows that (x,,xz)eintk¢(TaﬂR¢) for every

a € Uy and, consequently, (x;,x;)€ QF .
b)Let a€Uy. As (x;,x3)€E intR¢(TaﬂR¢) , there is an i(a) such that

(xi,x5He intg (TN R,) for every i=i(a). But then, also, f;(x} ,x%)€ intg (TaNRy) for every

i=i(a) and so
(z1,22) =limg(x} ,x4)E TaNR,.
As a was arbitrary it follows that
(21,290 € N{TaNR,| a€EUx} =Q,.

c)Let (x;,x2)EP, and (x;,x3)E Qf . Let I be a minimal left ideal in S;y such that
px1=px; forevery p€l andlet vEJ, (/). Then
v(x1,x3) = (x1,x3) = (X2,x3) = v(x2,x3)EJ.0F CQF .
By a, it follows that (x;,x3)€ QF . Hence QF oPyCQf . Cleartlyy, Q¥ cQ¥oP,, so

Q¥ oPy=0QF . In a similar way it follows that P,oQJ =QJ . O

Before we can use some results of the preceeding section in order to understand the equality
Ey,=Q,=QF , we need the following lemma.
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3.5. LEMMA. Let ¢:%X—%Y be a homomorphism of minimal tigs and let k:%X—%/E, be the quotient
map and 0:%X/E,—%Y the maximal almost periodic factor of ¢. Denote the collection of
nonempty open sets in X/Ey, by 0. Then

Ey= N{T&TUIXcTUINRY|UEO) = N{TKTUI Xk [UINR,| UEO).

PROOF. Let U€ 0 and (x,,x;)€ E, . Then for some ¢t €T we have tk(x;) =1Kk(x2)€ U and so
(x1,x)E k[t U X 1T 'UINRHC T([U] X k[UINRy) .

Hence

EyC N{TEUIXkTUINRY|UEGIC N{T«[UIXk[UINRY |u€EO}.

On the other hand,

kX k[ {TTUIX e [UINR,) | UEONC N{Tk X x(x[UI Xk [UINR,) |UEOC

C N{TWXUNR,|UEB)=05=Ay,.

So N{TETUIX«T[UINR,)|UEBOC (kX n)“[AX/Eq)] =E,;. 0

3.6. THEOREM. Let ¢:X—%Y be a homomorphism of minimal tigs and let k:X—X/E, be the quo-
tient map and 0:X/E,—% the maximal almost periodic factor of ¢ . Then the following state-
ments are equivalent:

a) Ey,=Q4= Q«f s

b) for every a&€ Uy there is a nonempty open set V in X such that V =E[V] and
VXVNRyCTaNR;

c) for every open set U in X there is a nonempty open set V in X such that V = E [V]
and VX VNR,CT(UXUNR,).

PROOF.

b= c As % is minimal, T(U X U) is an open set containing the diagonal for every open U
in X .Hence a:=T(UXU)EUy .

c=bFor every aEQy there is a LUy with B=B""' and p*Ca. Then
B(x)XBx)NRyCanR, for every x € X and so there is a nonempty open U in X with
T(UXUNRGH)CTaNR,.

b=alet a€Uy . By assumption, there is a nonempty open set V in X with
V=E4V]=«"k[V] and VXVNR,CTaNR,. As «[V] isopenin X/E, it follows from 1.5.
that

E,C T k[V]IXkk[V]INRY=T(VXVNR,).

So EqCT(VXVNRYCT.TaNRy=TaNR, and as T(VXVNR,) is an open set in Ry,
E,C inthb(Taﬂ R;) . As a€ AUy was arbitrary, it follows that E,C Qf COLCE,.

a = b Let V be the collection of nonempty open sets ¥ in X with V = E4[V]. Suppose
there is an a€ AUy with

VXVNR,N(XXX\TaNR,) # @

for every V € V.
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Define
X(V)=TH X VNRY\intg (TaNR,),
then IC(V') is closed and nonempty for every V' € V. As 7V is closed under finite intersections and
invariant under T , it follows that {3C(V)| ¥V € V} has the finite intersection property. Hence
H:= N{XWV)|VeV}#a.

By 15, HCE, and by construction H N QJ = @ , which contradicts assumption a. O

3.7. THEOREM. If ¢:X—% is an open RIM extension or a Bc extension then E,= Q,= QF .

PROOF. First we shall show that E,=Q,=QF if ¢ and ¢ satisfy the conditions in lemma 2.5..
As follows:

Let U be a nonempty open set in X . By 2.5., there is a nonempty open set U with U =E +[U]
such that U =«“[k[U]°] (for ¢[U]=¢[U]) and

@ #UXUNRL,LTWUXUNRy).
Again by 2.5. and by the facts that 6[U]1=¢[UNU] and U =« [xk[UNU]°] it follows that
@£ UXUNR,LCT(UXUNR).

Hence UX UNR,CT(UXUNR,) and the theorem follows from 3.6..

By 2.6., we know already that an open RIM extension ”satisfies” the conditions in lemma 2.5., which
proves the theorem for the open RIM case.

Suppose that ¢ is a Bc extension. Let U;X U,N R, be a nonempty (basic) open set in R, and let
(x1,x2)€ Uy X U,N R, be an almost periodic point; say (x;,x;) =u(x;,x;) for some u€J . We
shall show that

E [x ] X {x,} CT(U X U;NRy).

Let ¥V be an open set in T with V=V(@u) and Vx,CU, (1.10.). Define
U:=[U,;,ViNuo~d(x,), then U is an F(%X,u)-neighbourhood of x; in u¢p~¢(x;). Consider
an arbitrary x'€U; say x'=t"!z for some €V and z€U;. Then
(x,x2) =t Nz,tx)) € T(U,; X Uy) , 50 (x',x)€ T(U;X U,NR,) . Hence

Uux {XZ}Q T(U]X U2ﬂR¢)

By 1.16.b, E4[x]CJx,0U ,s0

E¢[x1] X {XZ} gszou X {Xz} :szo(u X {xz})g T(U]X Uzm R¢) .
Therefore ¢ and ¢ satisfy the conditions in lemma 2.5.. This proves the Bc case. O
3.8. The truth of 3.7. is the consequence of certain incompressibilities. As those incompressibilities are

preserved under factors, it is natural to ask whether the property E,= Q,= QF is preserved under
factors too. To that end we consider the following diagram of homomorphisms of minimal ttgs:
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3.9. THEOREM. Consider the diagram in 3.8.. If  is open then Q,= QF implies Q9= QfF .
In particular, if { is open then E,= Q4= Q;f implies Eqg=Qq¢=QF .
PROOF. If ¢ is open then ¢ Xy[g :Ry—>Ry is an open homomorphism of ttgs. For

YXY: XXX —>ZXZ is open and Ry = (Y X{Y)T[Ry]. Let a€E Uy ; then there is a BE Uy
such that ¢ X ¢[B]C a , hence

TYXY[BNRC TaNRy.
Since Qp =1y X ¢[Q,] (MW 80] 3.2.), we have, assuming that 'RQf = QF
Q=¥ X$[QF 1C ¥ X Y[intg (TBNR,)] .
As ¢ X y|g, is open
Qo C intg (4 X Y[TBORy)) = intg (TY X Y[BNR,]) .
Hence it follows that
QCintg (TY X Y[BN RG] Cintg (TaNRy) .

As a€ @, was arbitrary, it follows that Q4C QF ; so Qg=QF .
(In particular, if E, = Q, then, by [MW 80] 3.2., 3.3, it follows that Ey= Qg .) O

3.10. THEOREM. Consider the diagram in 3.8. If Q,= @ XY)[Qq] then Q,= Qf implies
Qs=0§ .
PROOF. Let BE A, andlet a€ Ay be such that ¢ X Y[a]C B . Then

YXY[TaNRIC TY X Y[a]NRyC TBNR,.
Suppose Q,= QF then
Q4Cintg (TaNRy) = Ry\ clg (Ry\ (TaNRy)) .
As Q4= X ¥)"Q9 = X ¥) (¥ X Y)[Qy] it follows that
Qs =¥ X Y[QICY X Y[R\ ¥ X Y[clr (R \ (TaNRGIC Ro\ clr (Rg\ ¥ X Y[TaN Ry] =
= intg (¢ X Y[TaN R C intr (T¥ X $[a] N Ry) C intg (TBORy) .

As B was arbitrary this shows that Q4C oF . . O
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3.11. REMARK. Consider the diagram in 3.8.. If E4= Qg andif RyC Q4 then Q,= { X {Y)T[Qy].

PROOF. Note that ¢ X ¢[Q4] = Qy, hence Q,C (¥ X Y)T[Qg] . Let (x;,x2)E (¥ X ) [Qg] . Then
there is a (z1,2z2)€ Q4 such that ¢ X y(zy,z2) =¢ X ¢(x,x;). But then (x,,z;)€ Ry and also
(x2,z2)€ R, . Hence

(x1,X2)E R0 QyoR,CQJ ,
and so (x,x))EE,=Q,. O

By now we are able to prove that the equality E,= Q,= QF is preserved under factors.

3.12. THEOREM. Consider the diagram in 38.. If E,= Q,= Q¢ then Eqg= Q4= 0F .

PROOF. Note that E, = Q, implies that Eg= Qg .
Now consider the following diagram of homomorphisms of minimal ttgs.

Let k:X—>%/Q, and A:Z—Z/Qy be the quotient maps. Since ¢ X ¢[Q,4]= Q4 there exists a
unique homomorphism p:%X/Qs— %Y/Q4 such that Aoy =pok.As a=Bop, p is almost pEriodic.
Let x €uX, z:=y(x) and note that (k(x),z)E R,). Define W:=T(k(x).z), then W isa
minimal subset of R,) (for J, CJ,x)NJ. )and W projects onto X/Q, and Z by = and m
respectively. It is an elementary exercise to show that , is an almost periodic map ( p is almost
periodic!), so m, is open. Define x:W—% by x=aom and let £: XU be defined by
£(x)=(k(x),z). Then ¢=xo0&. As, clearly, R;CR,=Q, it follows from 3.11. that
Q4= (X §[Q,]. Hence by 3.10., we know that Q, = Q;‘ . As x=0om and m, is open it fol-
lows from 3.9. that Qy = QF , which proves the theorem. O

In 3.7. we have seen that E,=Q, = Q¢ in the case of open RIM extensions and of Bc extensions.
Is the equality of those three relations a coincidence? We shall see that it is not; at least, we shall see
that in several situations the equality of Q4 and QF implies E,=Q,=QF . Whether or not
transitivity of Q, implies Q4= Q¢ is unknown.

First we introduce some notation:
Let ¢:X—% be a homomorphism of minimal ttgs. Let (x;,x;)€ Ry and p € St . Then define

px(x1,x2):= ({poV |V is a neighbourhood of (x;,x;)in Ry} .

Clearly, px(x,,x2) = ({po(UiXU,NRY) | U; € V,,} (we denote the neighbourhood system of x
in X by V).
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Note that there is some ambiguity in the notation as we do not specify the map. As we use it only in
the situation of one specific homomorphism ¢ and never with respect to X X X , no serious problem
will arise.

3.13. THEOREM. Let ¢:X—%Y be a homomorphism of tigs (not necessarily minimal) and let
(x1,X2)€ERy. Then (x1,x2)E Qg iff there is a minimal left ideal I in St with
pr(x1,x)NAx # @ forevery pEI .

PROOF. Let (x;,x;)€ Q,. Then there are nets {(x},x5)}; and {4}, in R, and T such that

(x},x5)—>(x1,x2) and f(x},xb)—(x,x) for some x € X . Without loss of generality we may

assume that the net {r;}; converges to some p € Sy . Let V' be a neighbourhood of (x;,x;) in

R, . Then there is an iy such that (x},x3)€V forevery i=i,. Hence

(x,x)=1lim {t;(x} ,x}) | i =i} Elimy, V =poV .

As V was arbitrary, (x,x)Epx(x;,x;) andso px(x;,x2)NAy #* & .

Conversely, suppose that for some p € St we have p«(x;,x3)NAy # & ,say (x,x)Epx(x;,x3).
For a€Uy, po(a(x))Xa(x)NRGHE R and <(aNRy° Ry> is a neighbourhood of
pola(x)Xa(xy) NRy) in 2%e . Let {t;}; beanetin T with f;, ->p in St . Then

L(a(x )X a(xz) NRy)—»po(a(x)X a(xz) NRy) in ZR"’.

So there is an i, such that

4 (a(x )X a(xy) NRH)N(@NRG° #* T .

Hence 4 (a(x))X a(xz) NRy)NaNRy# & and we can find t,:=1¢ in T and

(xf,x5)Ea(x)X a(xz)NRy such that f(x{ ,x7)EaNR,. Doing this for every a€ AUy , we
obtain nets {t,,}ae%x in T and {(xf‘,xf‘)}aeaux in R, such that
(xf,x3)—>(x1,x2) and 1(x{,x3)—>(x,x).
" Consequently, (x;,x;)€ Q4. What we have proved by now is
(x1,x2)€E Q4 iff px(xy,x2)NAxy = & for some p € St ,

hence the ”if”-part of the theorem is proved.
Let (x;,x)€ Q, and define

S:= {p EST Ip*(x],xz)ﬂAX 7’—'— Q} .

By the above, S % @ and, clearly, S is T-invariant. We shall show that S is closed; hence it fol-
lows that S contains a minimal left ideal, which proves the theorem.
For each neighbourhood V of (x;,x;) in R, the mapping pwpoV is continuous, hence the

mapping
¥:pe ({poV |V neighbourhood of (x;,x;) in R,): Sy —2%¢

is upper semi continuous. Since Ay is closed and as S is the full original under ¥ of the closed
subset {4 € 2R |ANAy # @} of 2% it follows that S is closed. - O
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The following remark in fact repeats and extends 3.4.a, b.

3.14. REMARK. Let ¢:%X—% be a homomorphism of ttgs and let (x,,x;)E Ry .
a) If (x1,x2)€EQF , then px(x,,x2)C Qg4 for every p € St .
b) If px(x;,x2)N Qf # @ for some p € St , then (x;,x2)€E Q.

PROOF.
a) Let a€ Uy , then (x;,x,)€E intR¢(Taﬂ Ry) . So there are open neighbourhoods U, € Vs,

and U,€ ‘VXZ such that
(X],Xz)e UIX UzﬂR¢gintR¢(TaﬂR¢).

For every p € St it follows that

pr(x1,x2)Cpo(UiX UaNRYC T.intg (TaNRH)C TaNR,.

As o was arbitrary, px(x,,x,)C Qg4 for every p € St .
b) Suppose px(x1,x))NQF # @ . Let {1}; beanetin T with #, —»p andlet a,B €Uy
be such that BC «. Then

Po(Bx)X B(x2) NRy) Nintg (TaNRy) # 2

and as <intR¢(Taﬂ R4),R,> is an open neighbourhood of the element p o (8(x;) X B(x)NRy) of

2%e  while

Li(B(x1) X B(x2) NRy)—>po(B(x1) X B(x2) NRy),

it follows that, eventually,

(B(x1) X B(x2) NRy) N intg (TaNRy) # @ .

But then B(x;) X B(x) NTaNRy,+* &, and as is easily seen (x;,x,)€ TaN R, . Consequently,
(x1,x2)€Q, - 0

3.15. LEMMA. Let ¢:%X—% be a homomorphism of tigs and suppose that Q,=QF . Let
(x,y)EQy and (y,z)EQy. If ¢ isopenin x € X, then (x,z)E Q.

PROOF. By 3.13., we can find a minimal left ideal / in Sy, p€] and a z'€X such that
(z',2")Epx(y,z). Let a€Uy and let U, Ca(x), U, Ca(y) and U, Ca(z) be open neigh-
bourhoods of x , y and z in X , such that

Uy X U, NR,C intg (TaNR,)

(for U, no further conditions). As ¢ is open in x , we may assume that U, is such that

Y
$1U,1C $[Uy] . Since
(z',2)Epx(y,2)Cpo(U, X U, NRy),

we can find nets {4}, in T and {(y;,z)}; in U, XU, NR, such that p =lims and
(z',z")y=1lim#;(y;,2z;) . Let x; € U, be such that ¢(x;) =¢(y;) . Then, for every i,

(xi,yi)EUXU,NRy and (x;,z,)€ U, X U, NR,.
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Let x,:=1limysx; (after passing to a suitable subnet). Then

(x%,2)=1lim;(x;,p;))EPpo(Uy X U, NRYCpo(TaNRHYC TaNR,
and
(x%,2)=limy(x;,2,)Epo(Uy X U, NRy)Cpo(a(x)Xa(z)NR,).

So for every a&€ AUy we can define in this way an element x,€ X . Let x’=Ilimx’ (after passing
to a suitable subnet). Then

(x,z)y=lim(xg,z )€ TaN R, for every a€ Uy ;
hence (x’,z")€ Q4= Q¢ . And
(x’,z)y=lim(xg,z)Epo(a(x)X a(z)NRy) forevery a€ AUy .

As px(x,z)= (M {po(a(x)Xa(z)NRy) | aE Uy}, it follows that (x’,z")E px(x,z) and so that
p*(x,z)ﬂQ;;'b #* @ . By 3.14.b, it follows that (x,z)E Q. O

3.16. THEOREM. Let ¢:X— %Y be a homomorphism of minimal tigs, such that ¢ is open in some point
XEX. Then Q4= Qf implies Eg= Q.

PROOF. Let (x;,x;)EQ4 and (x,,x3)€EQ4 and let pEM be such that x =px,. Then
(x,px3) =p(x1,x2)€ Q4 and (px;,px3)€ Q4 ; so, by 3.15, it follows that (x,px3;)€ Q,. Let
vEJ, , then

(x1,vx3) = wp " (x,px3) € Q.

As (vx3,x3)€ Py we have (x;,x3)€PyoQ,. So, by 3.4.c, (x),x3)€Q,. Hence Q4004,C Q,
and Q, is an equivalence relation. a

3.17. COROLLARY.
a) If $:X—>% is a RIM extension or if ¢ is a homomorphism of metric minimal ttgs, then

Q,=QF implies E,=Q,=0QF .
b) If X is a minimal ttg then Q« = 0¥ implies Eqx=04=0% . O

It is not known whether or not Q, = Q¢ implies E, = Q4 without further restrictions on ¢ . We
shall now give some other conditions on ¢ that are sufficient to deduce E,= Q, from Q,=Q§ .

3.18. THEOREM. Consider the diagram in 3.8., and suppose that  is proximal. In each of the following
two cases we have Q.= QF implies E,=Q,=QF .
a) 0 is open;
b) Ey=QgoPy, eg, 0 isaRIM extension.

PROOF. If ¢ is proximal, then
(‘P X ‘P)*.[QH]Q R¢° Q¢°R¢,§ P¢o Q¢0P¢ .

and so, if Q,= Q<,> , it follows from 3.4.c that (Y X ) [Q4]C Q4. Hence, by 3.10., Q,=QF
implies Qg = QF . But then, in both cases a and b, it follows that Ey= Q4 (cf. 3.16. and 3.4.c
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respectively). As ¢ is proximal and as

YXY[E =Eg= Q=9 X¢Y[Qy],
it follows that E,C PgyoQg40P, . But, again by 3.4.c, this gives

EyC PyoQyoPy=PyoQf 0Py =07 . O

3.19. THEOREM. Let ¢:X— %Y be a homomorphism of minimal tigs and let ¢ = 0oy . Suppose ¢ is
open, R,C Qg4 andlet Eg= QgoPq. Then Q,= Qf implies Ey= Q4= Qf .

PROOF. As v isopen, Q,= QF implies Qp= QfF by 3.9.. Hence, by 3.4.c, it follows that
Eg=Q¢oPg=Qf oPg=0Qf =Qy.

Also, by the openness of ¢ we have that ¢ Xy:R,;— Ry is an open map. We shall show that
Qs = XY)[Q4] , hence that Q, is an equivalence relation.

Let (x1,x2)€ W X ) T[Qg]; then (z1,22):=¢ X Y(x1,x,)E Qp. So there are nets {(z},z})}; in
Ry and {f}; in T such that (z},z5)—>(z1,z5) and (2} ,25)—>(z1,2)). As
(x1,x2) € @ X Y)(z,2z,) and as the map ¢ Xy:R,— Ry is open, we can find (x},x) in R,
such that ¢ X ¢ (x},x5)=(z},z5) and (x},x3)—(x,x;). After passing to a suitable subnet let
(X1,X,) =limz;(x} ,x5) . Then

Y =limgy(xh) =limgzh =z, =limg 2y = limgy(xh) = ¢ (X)) ,

hence (x;,x;)€ R, and therefore (x;,x)€ Q4= Qf . By 3.4.b, it follows that (x;,x;)E€ Q.
Consequently, (¢ X¢)7[Q4]CQ, and as, clearly, Q,C{ X{)7[Qg, it follows that
Q4 =W XPT[Q] - 0

4. REGIONAL PROXIMALITY OF SECOND ORDER

Let % be a ttg. It is not difficult to see that a pair (x;,x,)€ X X X is regionally proximal if we can
find suitable pairs in the neighbourhood of (x;,x;) such that after suitable T -translations they tend to
a proximal pair. If we could find pairs in the neighbourhood of (x;,x;) that after suitable T-
translations tend to a regionally proximal pair, we could say that the pair (x;,x;) is regionally region-
ally proximal. We call it regionally proximal of second order.

Let % be attg and let 4 C X . Then define
D(4,%):= U (p+4 |pESr) .
where pxA is defined as
pxA:= ({poV|ACV and V openin X}.

Remark that the « defined in section 3. is in full accordance with this definition, after noting that
pra:=px{a}.
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4.1. REMARK. Let %X beatigandlet A C X . Then
a) D(A,%X) is T -invariant;
b) DA, X)=D(A,X) forevery t€T ;
c) if A isclosedthen DA, %)= \J{DP{a},X)|a€A};
d) if A isclosed then D(A,%X) is closed.

PROOF.

a) Let x€D(A,%X) and let p € S be such that x Epx4 . Then x EpoV for every open
V in X with ACV . Hence tx EtpoV forsuch V and tx EtpsACD(A,%X).

b) Note that po V =pt " 'otV forevery VC X, pESr and tE€T . As

(W |WCXopen,tACW}={V|VCX open,ACV}

for every t €T , it follows that pxA4 =pt~'«x14 .

c) Obviously, D({a},X)CD(4,%X) forevery a€ A4 .
Conversely, let x € D(4,%X) and let p & Sr be such that x Epx4 . Let aE€E AUy be an open
index. Then there are a,,...,a, in A such that

V= Ufa@)|ief{l,...,n}}
is an open neighbourhood of 4 (in X ). So xEpoV, and as
poVe=U{poa@)|i€(l,...,n}},

we can find a,€ {a; |i € {1,...,n}} such that x Epoa(a,). In this way we obtain a point a,
in A for every open index a€EUy . Let a:=lim{a,|a€ I} for a suitable subnet I C Ay . We
shall prove that x Ep«{a} .

Let VC X be open and let {a}C V . Then there are B and y in I such that B(a)C V and
yoyCB. Let &€ with §Cy such that as€ y(a). Then

X Epod(as) and 8(as)Cy(as)Cy(y(a)CB(a),

SO XxEpod(as))Cpofa)CpoV ; hence xEps«{a}. As a€A=A it follows that
DA, X)Cc U{P{a},X)|aEA}.

d) Let {x;}; be a convergent net in D(4,%) and let x =limx; . By c, we may find nets
{a;}; and {p;}; in A and Sy such that x;Ep;x{a;} . Let p =limp; and a =limg; after
passing to suitable subnets. We shall prove that x Ep«{a} .
Let VC X beopenwith {a}CV . Then {q,}CV forall i=i(V). Hence

But then i; follows that
x =limx; €limyx(@; o V)=poV .

As V was arbitrary, it follows that x Ep«{a} , hence x€D(4,%). O

The proof of the following remark is straightforward and will be omitted
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42. REMARK. Forattg X, x€ X and a € X the following statements are equivalent:
a) x Epxa for some p € St , in other words, x € D({a},%X);
b) forevery V,E€Y, ,and every V., EYN, thereisa t €T suchthat tV,NV, % @ ;
C) thereisanet {a;}; in X with a,>a andthereare t; in T with x =lim¢ta; ;
d) a€gqxx for some q € Sy, in other words, a € D({x},%). O

4.3. EXAMPLES. Let X be a ttg and let ¢:X— Y be a homomorphism of ttgs. Then

a) DAx ,XXX)=0Q«;

b) D(Ax,%Re) = Q>

c) D(Ey,Re) =E, andso D(Qy,Rg)CE,;

d) D(QF ,R4)=0Q,, hence Q,=QF implies D(Q4,Rs) = Q.
PROOF.

a) Follows immediately from b.

b) Using 4.1.c and 4.2. this follows easily from 3.13..

c)Let 0:X/E;— ¢[%X] be the maximal almost periodic factor of ¢ and let k:X—%/E, be
the quotient map. Then it is easily seen that

k X k[D(E4,Re)]C D(AX/E¢,K X k[Re])C Qp
As @ is an almost periodic extension, k X k[D(E4,%,)]C Ax/5¢ ; hence D(E,, Ry)CE,.

d) Clearly, Q,=D(Ax,Rs)C D(QF ,Ry) -
Conversely, as Qf C intR¢(Taﬂ R,) for every a€ AUy , we have

p* Qf cp ointR¢(Taﬂ Ry)CpoTaNRy,CTaNRy (a€EUy).
So pxQF CQ, and D(QF ,Re)C Q. a
The next theorem as well as its proof resemble 3.15. and 3.16..

4.4. THEOREM. Let ¢:X—%Y be a homomorphism of ttgs. If for every x,E X there is an x € X
with Tx NTx | #* @, such that ¢(x) is an almost periodic point and ¢ is open in x , then

E,=0Q, iff D(Q¢,€R,¢)= Q.

PROOF. If E,= Q, then, by 4.3., it follows that D(Q4,%4) = Q, .

Conversely, suppose that D(Q4,%R4) = Qg . Let (x,x2)€ Q4 and (x;,x3)E€ Q,, and assume ¢ is
open in x,; . We shall prove that (x;,x3)€ Q, .

Let {(x5,x5)}; and {1}; benetsin Ry and T such that

(x5 ,x5)—>(x3,x3) and #;(x5,x5)— (w,w) for some w € X .

As ¢(xh)—¢(x2) =¢(x;) and as ¢ is open in x;, there are z € ¢“¢(x5) such that z; -»x;.
Define z =lim¢z; (after passing to a suitable subnet). Then

(zi’x’é)_)(xl’xZ) and t,'(Z,',Xiz)—")(Z,W).
As (x1,x,)E Qg it follows that
(Z,W)EP*(X],Xz)gD({(X],Xz)},%(p)gD(Q(p,@@):Q¢,

where p =lim¢; € Sy (after passing to a suitable subnet). As
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(zi,x5) > (x1,x3) and 1(z;,x5) > (z,w),
it follows that

(x1,x3)€Egx(z,w)CD({(z,w)},Re)C D(Qy,%Ry) = Qs ,

where g =lim¢;,”'€ S (after passing to a suitable subnet).

Now assume that ¢ is not open in x;. By assumption, we may find x €X such that
Tx N 7_’3_5;!: @ and ¢ isopenin x , while ¢(x)E Y is an almost periodic point. For an almost
periodic point z € Tx NTx; let I and K be minimal left ideals in S; such that z =px and
z =qx, forsome p €I andsome g E K . Let v EJy,I). Then vx = vp_qul , and

(vx,vp_quz) = vp_lq(xl ,X2)€ Q, and (vp_:quz,vp”qx3)€ 0, -
As . (x,vx)EPg,, we have (x,vp_quz)e Q4o P, and it is easily seen  that
Q4oP,C D(Q4,R4) = Q4. By the above, (x,1p 'gx;)€ Q, and so
Op ~lgx1,vp T lgxs) = (vx o Tlgxy) = v(x,p T igxn) € Q.
But then
(e1,x3)ED({(p " 'gx1,9p 7'gx3)} , R) C D(Qy, Rg) = Q4

which shows the transitivity of @, . d

4.5. COROLLARY. Let ¢:X—%Y be a homomorphism of tigs.
a) If ¢ is open then Ey= Q4 iff D(Q4,Ry) = Q4. In particular, for every ttg X we have
Eq=Qq iff D(Qu,XXX)=Qq.
b) If X is a metric ergodic ttg and if % is minimal, then E,= Q4 iff D(Qg¢,Ry) = Q4.

PROOF.

a) This follows immediately from the first part of the proof of 4.4..

b) If X is metric, there is a residual set of points in which ¢ is open, also there is a residual set
of transitive points. As % is minimal, the assumptions of 4.4. are satisfied. |
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