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Log - convex trapezoidal approximation of an elementary integral 

by 

J. van de Lune & N.M. Temme 

ABSTRACT 

JI s 
The integral O x dx, s > O, is approximated by the canonical trape-

zoidal rule 

n-1 n 
Tn(s) = 2~ { l (k/n)s + l (k/n)s} 

k=O k=l 

CX) 

and the log - convexity of {Tn (s) }n=l is studied, with s as a fixed parame-

ter. The investigations are based on an integral representation of T (s) 
n 

CX) 

and it is proved that the sequence {Tn(s)}n=l is log-convex (inn) for 

1 < s < 3 and 5 < s < 7. 

KEY WORDS & PHRASES: Approximate quadrature., trapezoidal rule., convex se­

quences., Euler gamma function 



0. INTRODUCTION 

We consider the canoniaaZ trapezoidal approximations 

(0. 1) T := T (s) :=..!.(..!. nt{~)s +..!. I (~)s) 
n n 2 n k=O , n n k= 1 n 

of the integral f6 xsdx, wheres is any (fixed) positive reaZ number. 
co 

In [2] it was shown that for s > 1 (resp. O<s<l) the sequence {Tn}n=l 

is decreasing (resp. increasing), whereas somewhat later it was shown in 

[3] that for s = 0(1)7 ands~ 8 this sequence even has the much stronger 

property of being convex. 

In [4; p. 8] the first named author conjectured that for alls> 1 the 

sequence {Tn}""n--l is Zona.rithmicaZZy convex, i.e. T2 ~ T T for all n ~ 2. ;:,· n n-1. n+l 
The main goal of this note is to prove the correctness of this conjecture 

for the intervals I < s < 3 and 5 < s < 7. 

1 • PRELIMINARIES 

Our starting point is Hankel's integral representation of the recipro­

cal of Euler's gamma function (cf. WHITTAKER & WATSON [6; pp. 244-245] or 

SANSONE & GERRETSEN [5; pp. 201-204]) 

(I. 1) 1 1 i t -s 
"f(s)"" = Ziri J e t dt, s € (C 

where+ denotes integration along a contour as depicted below: 

phase ( t) = +lT 

phase (t) = -,r 

For any p > 0 we substitute t = pw in (I.I), replaces bys+ I and obtain 



2 

(1. 2) 
s r(s+l) + pw -s-ld p = 2 . e w w, 

7Tl 
s € a;. 

Setting p = *' k = l(l)n, we obtain by surmnation over k 
w + ew-1 w en+ 1 -s-ld 

------ w w, 
w 2n w (1.3) T = r(-s:1-1) 

n 27Ti 
s > o. 

n 
e - l 

Letting n • 00 it follows that 

r(s+l) + ew-1 -s-1 -- = --- --- w dw, s+l 27Ti w 
s > 0 

(a result obtainable in various other ways; compare Section 4) so that (1.3) 

may be rewritten as 

(1.4) 

where 

(I .5) 

I f(s+l) + eww-1 H(~n)w-s-Jdw, 
T = --1 + z.,,.1• n s+ " 

s > 0 

z ez+l l l I 
H(z) = - -- - 1 = z (-- - - + -) • 

2 ez_ 1 ez_ 1 z 2 

It is well known that (cf. SANSONE & GERRETSEN [5; p. 88]) 

I 1 1 ----+-= 
z l z 2 e -

CX) 

I 
k=I 

k IB2kl 
(-1) -1 

(2k)! 
2k-l 

......- z I z I < 27T 

from which it is clear that the (even) function H(z) has a zero of order 2 

at z = O. With this in mind we rewrite (1.4) as follows 

( 1. 6) T n 
1 

= -- + s+l 
r(s+l) _,___[_ eww-1 (-1 H(~)) 1-s 

2-rri J 2 n w dw, 
w 

s > o. 

2. THE CASE I< s < 2. 

-2 w For l < s < 2 (so that -1<1-s<O) we may, by the regularity of w H(-) 
n 

at w = O, contract the contour of integration in (1.6) to the negative 



real axis so that by a standard argument, using the fact that H(z) is an 

even function, 

00 

3 

(2. 1) T 
n 

= _l_ + f(s+l)sin(s-l)n 
s+l n 

l-e H(.!)x-s-ldx, f -x 
I < s < 2. 

X ·n 
0 

-nu 
. • . . 1-e J 1 e-nuvdv . (2 ) Substituting x = nu and writing --- = 0 we may write . 1 as 

nu 

00 1 

(2.2) 
T _ 1 r(s+ 1) sin(s-1 )n 

n s+l = n f <J 
-nuv -s-1 

e dv) H(u) u du. 

0 0 

Since sin(s-1 )n > O for 1 < s < 2 and H(u) > 0 for u > O, we find, by the 

general theory of log - convex functions (cf. ARTIN [I]), that the sequence 
{ 1 }00 • • • T - --1 1 is log - convex, a result which is even stro.nger than the pre-

n s+ n= 
00 

vious ly announced assertion that {T } 1 is log·- convex for all (fixed) 
n n= 

s e: (1,2). 

Similarly one may show that {-1- - T }00 

1 is log - convex for all (fixed) 
s+l n n= 

SE (0,1). 

3. INTERMEZZO: A SPECIAL PROPERTY OF H(u) = u(-1 -- .!. + .!.) 
u l u 2 e -

In the previous section we transformed (2.1) into (2.2) and then con­

cluded that {T - - 1-1 }
00 

1 is log - convex for all s e: ( 1, 2). In this section n s+ n= 
we will show that this result may also be obtained directly from (2.1) by 

observing that the function H(!), x > O, has the remarkable property of 
. + X 

being log - convex on E. . As a matter of fact we will prove the following 

THEOREM 3~1. There exists a aonstant aO > 2.863 suah tha.t for every 

(fixed) a. e: (O,a.0J trze function <pa. : E.+ + lR+, defined by 'Pc/x) := H(x-a.), 

x > O, is log- aonvex on E.+. 

PROOF. In order to prove the log - ·convexity of <p on m.+ we proceed by brute 
a 

force, at the same time inviting the reader to invent a nicer proof. 
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Writing 

we have 

where 

ij;(x) := log qi (x) 
a 

-a 
= log H(x ) 

II 

1/i (x) 
2 AB-c2 

=au+---
A2 

1 
u := -X , 

CL 
V := U , 

A (ev-1)-1 l l := --+-
V 2 

B := 2 2 2 2 2v ( V l ) - 3 a u v e e - -

2 V V -2 a(a+l)u ve (e -1) -

V V -2 u 
C := a uve (e -1) - a. -

V 

2 2 2 V ( V 0 -2 a. u v e e -

2 
a (a-1) u 

V 

It clearly suffices to show that iµ" (x) > 0 for all x E m.+ so that (since 

a> 0) we may just as well prove that 

ip" (x) = 
2 au 

I + 

2 A1B1-a.c 1 

A2 
1 

> 0 

where (u and v being defined as above) 

Al := A (as defined above), 

Bl := 2 2 2v ( V 0 -3 2 V V -2 
a. v e e - - ave (e -1) 

V V -2 a.-1 (a.+l)ve (e -1) 
V 

, 

Cl 
V V -2 

:= ve (e -1) 
V 



+ Hence, it suffices to show that for all x E lR 

Multiplying both sides of this inequality by v2 (ev-1) 4 we arrive at the 

equivalent inequality 

V V 3 2V 3 V V 
+ (v+(2-l)(e -1))(2a.v e - a.v e (e -1)-

v 3 4 2V 2 V V 2 V 4 - (a-l)(e -1)) > a(v e -2v e (e -1) + (e -1) ). 

This inequality may be written in the equivalent form 

(3. 1) 

where 

4 kv I Pk(v)e > 0 
k=O 

a.+ 1 V = --+-
2 4 ' 

= -
3a.+ 1 2 a 3 

(a.+l) + (3a.+l)v + - 2- V + 2 V , 

5+12a. 
2 V ' 

3a.+l 2 a 3 
1 + (3a+l)v - -2- V + 2 V ' 

a.+l V 
P4(v) = - -2- + 4 • 

5 

00 

Now we write the left hand side of (3.1) in the form En=O cnvn and observe 

that c = c = 0 for all a. For n ~ 2 one may verify that 
0 1 
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n! C "" n 
n 2n-l (a+l)(-1+3 -2 ) + 

+ n( l) - (i 

n{n-l) n-2 o; n-3 
+ (3a+l) 2 (l-3 ) + 2 n(n-l)(n-2) (1+3 ) = 

=: a a(n) + b(n) 

where 

a(n) := -

b(n) := -1 + 3n - 22n-l + n - 5n2n-Z + n3n-l + n4n-Z + 

It is a matter of routine to show that 

and 

a(n) = 0 for n ~ 8, 

a(n) < 0 for n ~ 9, 

b(n) = 0 for n ~ 6, 

b(n) > 0 for n ~ 7, 

b(n) b(24) 
min -a(n) = - a(24) = 2.863 921 ... , 
n~9 

from which it follows that for O <a< 2.8639 we have c = 0 for n ~ 6 and 
n 

c > 0 for n ~ 7, which proves the theorem. 
n 



. . * REMARK. It is not known to us which a 0 
-a + H(x ) is log - convex on JR for all a. 

is the largest number such that 

E (O,a.~]. Numerical computations 

7 

-3 show that H(x ) is not log- convex o.n + * all of JR so that (2.863<) a.0 < 3. 

4. FURTHER PREPARATIONS 

In order to carry our analysis somewhat further we need some auxiliary 

formulas. In (1.2) let p + 0 (keepings fixed and> O) and it follows that 

( 4. ] ) ,_L -s-1 J w dw = O, s > o. 

Another way of proving this formula is as follows. In (1.3) put n = 1 so 

that (for s>O) 

(4.2) I r (s+l) ,L ew+l w-s-ldw = 
TI (s) = 2 = 21ri J 2 

r(s+I) l + w -s-1 r(s+l) 1 + -s-ld _ = --'---,,--'-- -2 e w · dw + ____,,.......,~ - w w -
21ri 2n 2 

r(s+l) I 
= ...,_.;2_TI....,i,--'-- 2 21ri r(s+l) 1 ~I- -s-ld 

(s+l) + 21ri 2 J w w, 

and it follows again that+ w-s-ldw = 0 for s > O. 

Our next important auxiliary result is 

LEMMA 4.1. Far any positive integer N we have 

(4. 3) H(z) 
1 I l N 2N+2 

= z(----+-) = PN(z) + (-1) z ~(z) 
z l z 2 e -

where 

(4.4) 
N k ]B2kj 2k 

:= l (-1) -I "'=""'<"'"11"" z 
k=l (2k)! 

and 

CX) 

2 
:= l 2 2 2 2N • 

m=1 (z +4TI m )(21rm) 
(4.5) 
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PROOF. In order to prove this lemma we apply Taylor's formula as described 

in WHITTAKER & WATSON [6; p. 93]. We observe that (compare (1.5)) 

N 
(4.6) I 

k=l 

so that 

(4. 7) 

H(2k)(O) 
(2k) ! 

2k 
z and H(2k+l)(O) = O, 

H(w) 
( ) 2N+2 dw, 
w-z w 

where ¢ denotes counter clockwise integration along a closed contour con­

taining the points w = 0 and w = z in its interior and such that it does not 

encircle any of the points w = k.27Ti, k E 7l \ {O}. A standard application 

of the calculus of residues then yields 

(4.8) = 

1 1 1 ----+-
w l w 2 

e - dw = 
( ) 2N+ I w-z w 

I { . I + 
m=l (2rrim-z)(2rrim) 2N+l 

and the lemma follows. 

REMARKS. 

1) We note that Lemma 4.1 also holds true for N = O. In this case we have 

the well-known formula 

H(z) 
cn 2z2 

- I 2 2 2 · 
m= 1 z +4rr m 

2) As an immediate consequence of Lemma 4.1 we have for any fixed N > O 



-2 
µN (x) = 0 (x ) , 

3) ~(z) is regular at z = O. 

9 

X -+ co. 

1 -2N-2 + 
LEMMA 4.2. For any fixed N > O the funation µN(x)x is Zag- convex on lR • 

PROOF. In order to see this we write 

00 

= 2 I 1 
m=J (J+4~2m2x2)(Z111llX)2N 

and observe that every term of this series is log - convex on E. + • Indeed, 
1 

for any (fixed) a> 8 the function 

4> (x) 
a 

2 
= - log(l+x) - 2a log x 

+ is convex on ll • 

5. THE CASE 2 < s < 3 

From 

T () 1 r(s+I) + ew-1 H(w) -s-ld s =--+-....... ~ -- -w w 
· n s+ J 21r1. w n 

we obtain by meana of the results of the previous section (for 2<s<3) 

T (s) 
n 

l =--+ s+J 
r(s+J) i eww-1 (H('!)-Pl('!))w-s-ldw + 

21r1. J n n 

+ r(s+l) ~f ew-1 p ('!)w-s-ldw • 
21r1. T w In 
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2 
Since P 1(z) = ~2 we thus find that 

= _l_ + r(s+l) i eww-1 (~)4(-l) Iµ w -s-1 
Tn (s) s+I 21Tl. J n I (n)w dw + 

CX) 

I s r (s+ I) . ( 3 ) f = -- + -- - ----- s1.n s- 1T 
s+l 12n2 1T 

0 

-t 
1-e (!)4 (!)t-s-ldt. 

t n µI n 

-4 -1 + 
In Section 4 it was shown that x µ 1 (x ) is log - convex on lR so that 

for any t >. O, (~) 4 µ 1 (~) is log- convex as a function of n e: ]N. Since 

{ 1 s }"" • sin(s-3)1r < O for 2 < s < 3 it follows that T - -- - ~ 1.s log-
n s+l 12n...:i n=I 

convex (inn) for any fixed s € (2,3), a result which is even stronger than 

the previously announced log - convexity of {Tn}n=I. 

6. SOME REMARKS ON THE GENERAL CASE: 2N < s < 2(N+l) 

Similarly as before we have 

T (s) = _1_ + r(s+I) 
n s+ 1 21ri + w 

e -IP (w) -s-Id -- -w w+ 
w N n 

+ (-I)N r(s_:.!l ~[_ ew-1(~)2N+2 (w) -s-1 
2iri J w n µN n w dw = 

According to the preliminaries in Section 4 we have 

() r(s+_l) Jf ew-1( W (-I)k-1 
I I n = 2n J w k~ I 

N 
= I 

k=l 

(-l l-1 I B2kj f(s+ I) 1 
(2k)! f(s-2k+2) 2k' 

n 



and, similarly as before, 

= (-Il rcs+l)sin(s-2N-l)'lf 
1T 

1 I 

the last integral being convergent at t = 0 since (2N+2) -·s - 1 · > - 1 and at 

t = 00 since - I + (2N+2) - 2 - s - I < - 1 • We now observe that 

N even and 2N + < s < 2N + 2 .,. (-l)Nsin(s-2N-l)rr > O, 

N even and 2N < s < 2N + .. II < o, 
N odd and 2N < s < 2N + .. II > o, 
N odd and 2N + 1 < s < 2N + 2 .. II < o. 

Hence, whenever we can show that { 1 2 (n) } := 1 is log - convex then 
00 

{Tn}n= I is 

log-convex if (-I/sin(s-2N-l)rr > O. It follows that our approach can only 

be successful if 2N +I < s < 2N + 3, where N is even. 

0 2 3 4 5 6 7 8 9 10 I 1 

7. THE CASE 5 < s < 7 

We first assume 5 < s < 6 so that 

r1, (s) I s s(s-I)(s-2) + 1 (1."n n). 
J. - -- = -- - og- convex 
n s+l 12n2 720n4 

• { 1 }00 • Hence, in order to show the log - convexity of Tn - s+ 1 n= 1 1.t suffices to 
h h 1 . f { s s(s-l)(s-2)}00 8 . 5 6 . . 

s ow t e og- convexity o 12n 2 720n 4 n=l. 1.nce < s < 1.t 1.s 

easily seen that this in its turn is a consequence of the log- convexity of 

{-1- - 1 }00 the verification of which is a matter of routine. Now let 
n2 3n4 n=l' 

6 < s < 7,, so that by the results of Section 6 it suffices to show the log -

convexity of 
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{ __ s __ s(s-l)(s-2) 

12n2 720n 4 

s(s-l)(s-2)(s-3)(s-4) }~ 
+ 6 , 

42 720n n=l 

which, using the assumption 6 < s < 7, is an easy consequence of the log­

convexity of{~ - l;n4 + S:n6}:.1, a (though tedious) matter of routine. 

REMARK. For 9 < s < 10 we would have to verify the log- convexity of 

{ s s(s-l)(s-2) 
12n2 - 720n4 

s(s-l) ••• (s-4) + ________ ..,,._. ___ 

42 720n6 
s(s-l) ••• (s;6) }~ 

1 209 600 n n==l 

whereas for still larger values of sit seems practically unfeasible (if 

true) to prove the log- convexity (in n) of forms of such a complexity. 
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