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Integration of the linear filtering problem.by means of canonical trans­

formations*) 

by 

Henryk Gzyl**) 

ABSTRACT 

In this note we dwelve some more into the formal analogy of quantum 

mechanics and filtering theory, and we integrate the DMZ-equation by trans­

forming it into a Schroedinger equation that can be integrated in the 

standard way. 
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1. INTRODUCTION AND PRELIMINARIES 

In this note we exploit the formal analogy between quantum (and clas­

sical) mechanics and filtering problems by showing how one can solve the 

DMZ (Duncan-Mortenson-Zakai) - equation. 

1.1 

where w is a real number and n should be thought of as "Stratonovitch deri­

vative" of the observation process. See Cl] or [2] for the filtering back­

ground. 

(I. 2) 

Equation (1. I) can be converted, by defining ~(x,t) = p(x,ti), into 

i~ at 

where ~(t) = - n(ti), and (1.2) can be solved using the theory of canonical 

transformatfons [3] - [4]. 

To do this it is easier to start from the classical system, seek the 

canonical transformation there and then implement it (or realize it) as a 

unitary change of representation for the quantum system described f>y (1. 2}. 

This is carried out in section 2. In section 3 we rapidly cover the many­

dimensional c.ase and in section 4 we make a few connnents on how this proce­

dure is related to the work presented in [2]. Disappointingly little seems 

to come out in this direction. 

The results of this paper "simplify" a bit some of the standard com­

putations andl allow for a general initial density. Also, they add more to 

the work of MITTER in [ 5] • 

The origin of this paper stems from a conversation with M. Hazewinkel 

to whom I mentioned that (I.I) should be integrable by means of canonical 

transformations and he told me what the real questions behind (I.I) where. 



2. SOLUTION OF 1.2 (and (I.I)). 

Consider the mechanical system described by the Hamiltonian 

(2. I) 2 2 2 
H(p,x) = HP +w x ) + ~(t)x. 

The Hamiltonian equations describing the dynamics of it are 

(2. 2) 
dp _ aH 2 
dt - - ax= - w X - ~(t) 

and the corresponding quantom evolution equation is (1.2). 

Observe now that 

(2. 3) F(x,p,t) = px + pf - xf + ~(t) 

generates the canonical transformation [3] 

(2.4) aF 
p = - = ax 

changing H(p,x) into 

(2.5) 

. 
p - f 

aF • 
Q=-=x-f 

ap 

if f and~ are chosen, satisfying zero initial conditions, such that 

u 2 
f+w f =~ 

2 

2 In integrating f + w f =~one should remember that ~(t) is a "Stratonovitch 

differential". With zero initial conditions 

t 

f = ii J sin w(t-s) ~ (s)ds. 

In the (P,Q) coordinates, equations (2.2) and (1.2) become, respectively, 



(2.6) 

(2. 7) 

dQ = P 
dt 

~ . a,,. 
1.-"'=-at 
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the integration of the first is trivial and that of the second can be found 

in any text of elementary quantum mechanics. It happens to be 

where 

and 

Note that 

e: = w (n+D , 
n 

~ ~ 
a,;::: ( 1/J , 1/J ( • , 0) ) = 
n n 

is the eigenfunction corresponding to e:0 =;, a fact that we use below. 

All that is needed now is to obtain 1/J(x,t) from $(Q,t). Well, it so 

happens (see [9]) that 

(2.8) 1/J(x,t) = f < xTQ) ~{Q,t) dQ 

where the transformation function <x!Q) can be obtained from 

<x!P) = (2,r)-½ expiF(x,P,t) 

by means of 

(2.9) <x!Q) = f <x IP)e-iPQ dP} = expi{cj,-xf) 15 (Q-x-f) 
(2,r) 

which plugged back into (2.8) gives 

(2.10) 1/J(x,t) = expi{cj,-xf) $ (x+f, t) 
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Since the initial condition was originally g~ven for 1/J(x,O), it is easy to 

see, from our choice of initial conditions for f and~, that 1/l(x,O) = ~(Q,O) 

and therefore, for arbitrary initial condition, in terms of the eigenfunction 

expansion, (2.10) reads 

1/1 (x, t) = lo: exp i U-xf) - e: t} i (x+f) 
n n n n 

from which the solution to the original equation is 

(2. 11) 
-e: t ~ ; 

P (x, t) = 1/l(t/i) = L a expi(Ht/i) - xf (t/i) )e n 1/Jn (x+f (t/i)) 
n n 

Also, when 1/J(x,O) = 1/10 (Q), the expression above reduces to the exponential 

(2.12) p(x,t) = exp{- ;t + ~(x+f(t/i)) 2 + i(H+t/i)-x.f('t/i)) 

a rather known result. 

Actually, the solution of (2.7) can be written as 

where 

K ( Q t Q t ) = ( mw ) ¼ { im w 2 2 
' ; O' 0 2'1l'in Sin w(t-t0) . exp 2n Sin w(t-t0 ) [ (Q +QO) cos w(t-t0)-2QQO] 

a result which can be found in [6]. Changing t + t/i and multiplying by e-t/2 

one obtains the transition kernel for the oscillator process [7]. In any case 

p(x,t) can be obtained as follows, first put w{Q,t/i) = p(Q,t) where. 

(2.13) 

where G(Q,t;Q0) = K(Q,t/i;Q0). From this one obtains 

(2.14) p(x,t) = expi(Ht/i)-xf (t/i)) p(x+f(t/i),t) 

and these last two identities express the solution to (1.1) in terms of the 
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initial conditions in a nicer way than (2. I I.), but part of the comments above 

were easier verifiable with it. 

3. THE MANY-DIMENSIONAL CASE 

Consider the filtering problem ( see [ I J or [ 21) 

dx. = la. .. dw. 
]. l.J ]. 

dy. = I, c .. x. d t + dv. 
]. ]. l.J J ]. 

for which the DMZ - equation is 

2 ap 
(3. I) -- = {½ I a.ika.jt 

_a ___ 1 l ck ck . x . x . } p + L l; • x . p a1: ax. ax. 2 

w,k .. k t J i J i i 
]. J 1.J 

where 
dyk dyk 

~i = Ek cik dt' and again dt l.S 

"Stratonovitch derivative". 

If we dE?fine the matrices µ and Q by 

+ 
µ = a.a + 

Q = C C 

to be understood formaly as a 

we could consider, in analogy with section 2, the mechanical system with 

Hamiltonian 

(3.2) Hi(p,x) + + + 
= ½ ( p µp + X Qx) + ~ X 

+ where vectors are supposed to be column vectors and of course denotes the 

transpose. 

To (3.2) one has associated the classical Hamiltonian equations 

(3.3) dx 
d1: = µp 

dp -dt - - Qx + ~ 

and the Schroedinger equation (obtainable from (3. I) by putting 

$(x,t) = p(x,t.)) . 1. 

(3.4) i at= 
at - ½ I µ .• 

. • 1.J 
1.J ax.ax. 

1. J 



Note first, that the canonical transformatiqn, generated by 

(3.5) 

and 

(3.6) 

where 

F = l + -1 
(3.3) (a ) .. P.x. transforms 

ij l.J l. J 

dQ = dP ~ Q - ~ p -= - Q dt dt 

. aip 1 t a2 ~ 1 CQ+ n Q) :,: 1 + Q :;: 1.- = - l! L-- + 2 ~6 .,, + ., .,, 
at · aQ2 

~ ~ .iJJ=iJJ(Q,t), ~ + 
Q = a Q a ~ = 

+ 
a E 

and (3.4) into 

and the associated Hamiltonian is 

(3. 7) 
+ +·~ I\+ 

H = HP p + Q Q Q} + E Q. 

Let now D be an orthogonal matrix bringing n to diagonal form, i.e. 
+~ 

(D Q D) •• = 
l.J 

w~ o. . . Let us now consider the canonical transformation 
l. l.J 

generated by F' = ED •• P. Q~. With this transformation (3. 7) is transformed 
J l. l J 

into 

(3.8) 

where 

H = l H. 
i l. 

'2 2 2 " = l !(P .+w.(Q!) ) + E;! Q. 
i 1.1.l. 1.1. 

/\ 1 /\ 

E1- = }: D .• t. , Q ! = }'. D .. Q. , etc. • 
Jl. J l. Jl. l. 

What we have done, is to separate variables in (3.4), preserving the 

Hamiltonian structure, i.e. (3.4) becomes 

. "''', "2,,,, w2 2 
l. _o.,,_ = I {- ½ _o_.,,_1 + -. (Q!) iJJ' + E;! Q! iJJ!} 

at i aQi 21 1 1 1 

6 



Now proceeding like in section 2, we see that 

with all of the simbols having the same meaning as in section 2 and 

= I n 
TI tjJk ( Q ! ) tjJ I ( Q '1 , ••• , Q' , 0) dQ I • 
1 i 1 n n 

We have leave for the interested reader to supply in the transformation of 

variables expressing tjJ(x,t) in terms of t)J'(Q't) and then making t • t/i to 

obtain p(x,t). 

4. CONCLUDING COMMENTS 

7 

There does not seem to exist an obvious connection between this method 

and the standard formulation. This is due to 
. atjJ a2tjJ x2t)J 

the fact that the equation 
2 2 

1 - = - ~ -- + -- or 
at ax2 2 

its "associated" difusion equation aap = 4 - x2p 
t ax' . 

does not seem to relate to a filtering problem. 

This is rather unfortunate, because all the algebraic structure asso­

ciated to filtering problems, discussed in [2] for example is lost. 
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