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1 • INTRODUCTION 

Individuals of a population may be characterized by many different 

traits such as age, weight, size, sex, color, etc. In a model for the 

growth of the population one usually leaves these characteristics out of 

consideration, both because one believes that they have a minor influence 

on the reproduction process only and because inclusion would make the 

model intractable. 

A distinct exception to this rule is formed by the theory of age

dependent population growth, e.g., Lotka ( 1922) , Keyfi tz ( 1968), Rubinow 

(1978), Gurtin & MacCamy (1979), Gurney & Nisbet (1980), Pruss (1981), 

Gyllenberg (1982), Webb (to appear). An obvious reason for the exceptional 

position of age is formed by the fact that for many populations (including 

the human!) fertility depends on age in a rather prominent way. From a 

mathematical point of view too, age has a privileged position among all 

possible characteristics, since an individual's age increases linearly with 

time:~~= 1. A final property of age is that at birth it always has the 

fixed value zero. 

When reproduction occurs by fission it seems appropriate to take 

account of the "size" of individuals (by which we mean any relevant quan

tity like weight, nitrate- or phosphate-content, satisfying a physical 

conservation law) and some new features arise. Firstly, the growth rate of 

individuals has to be defined (prescribed) and this opens the way to in

corporate density dependence, like nutrient limitation, on the basis of a 

clear, well-defined biological interpretation. Secondly, the conservation 

law requires a relation between the size of the mother and the size of her 

progeny and this too makes "size" quite distinct from "age". 

In recent work building on older work of Sinko & Streifer ( 1971) and 

Bell & Anderson (1967), Diekmann et al. (in preparation) have rigorously 

shown that in an unlimited environment a population of proliferating cells 

grows exponentially, while its size-distribution becomes stationary, if a 

certain condition on the growth rate of individuals (which excludes ex

ponential growth of the individuals; see section 2 for more details) is 

satisfied. Here we shall pin-point certain assumptions which guarantee 

that the convergence of the size-distribution will "survive" density ---
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dependence (while, of course, the dynamical behaviour of the total popu

lation may differ substantially from exponential growth). Possibly, these 

assumptions do not describe the characteristics of any "real" population 

of unicellular organisms. Indeed, some of the subtle differences in the 

way growth of individuals and reproduction by fission might be combined 

become very clear in the context of our mathematical formulation and we 

hope that this will stimulate further discussion arid experiments. We wel

come all critical connnents and suggestions! 

The aim of structured population dynamics is to use (known) proper

ties of individuals to describe, understand and predict the dynamical be

haviour of the population as a whole (see, however, the discussion in 

section 6). Here we shall demonstrate a situation in which all relevant 

information concerning the individuals can be sunnnarized into a few compu

table numbers (for instance, a dominant positive eigenvalue) which enter 

into a total population model. 

2. SOME ALTERNATIVE SPECIFICATIONS 

Let the individuals of a population of cells be characterized by a 

variable x, which we shall call size. Let g=g(x) denote the rate at which 

an individual's size increases: dxindividual = g(x· d' 'd 1). (Possibly g dt in 1v1 ua 
depends on other factors, like food supply, but this is not yet expressed 

explicitly in our notation.) Let n=n(t,x) denote the (unknown) density 
x2 

function, i.e., f n(t,~)d~ is the number of cells with size between x1 
x1 

and x2 at time t. Then the effect of the growth of individuals on the 

change of this density function in time is described by the differential 

operator (see Sinko & Streifer (19,67), Streifer (1974), Vansickle (1977)) 

:x (g(x)n(t,x)). 

So, in the absence of reproduction and mortality, we have the first order 

partial differential equation (balance equation) 

(2. 1) 
an a at (t,x) + ax (g(x)n(t,x)) = O. 
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One possible description of reproduction by fission is the following. 

Suppose that each individual which reaches the size l (here the one 1.s 

just a matter of normalization of size) splits instantaneously into two 

individuals of size~- Mathematically, this amounts to adding to (2.1) the 

boundary condition 

(2.2) g(½)n(t,½) = 2g(l)n(t,l). 

Alternatively one can postulate the existence of a function b=b(x), 

which describes the rate at which cells of size x divide, and replace 

(2. l) by 

(2. 3) 
an a at (t,x) + ax (g(x)n(t,x))"' -b(x)n(t,x) + 4b(2x)n(t,2x) 

(see Sinko I~ Streifer (1971)), where the right-hand side contains a re

production-sink term with argument x and a reproduction-source term with 

argument 2x .. When multiplied with x and integrated these terms cancel, as 

they should because of mass-conservation. This little exercise also ex

plains the factor 4 (it is the product of a factor 2 for the doubling of 

numbers and a factor 2 for the doubling of intervals; those who originate 

from splitting in (2x, 2x+2dx) enter into (x, x+dx). (In the present paper 

we shall always assume that organisms split into two exactly equal parts. 

In a forthcoming paper H. Heijmans (in preparation) will analyse splitting 

into unequal parts in a similar spirit.) 

Finally, we present a third possibility, which we shall call the 

stochastic size threshold model. Suppose, as in the first case, that each 

cell has a predestinated size at which it splits, but that these splitting

sizes may differ from one cell to another. More precisely, we postulate 

the existence of a function y=y(x) with the property that the chance of an 

arb:i,trary cell to split at a size between x1 and x2 is given by Jx2 y(Od~. 
x1 

In the experimental literature this property is usually expressed by say-

ing that si:ze has to cross a stochastic threshold for the fission to occur 

(see Figure 1). These splitting-sizes are not hereditary; rather one 

should think of differences in development caused by stochastic variations 

in the micro-environment. 
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A graphical representation of the "stochastic size threshold for division" 

model. Two different growth curves occuring under different conditions are 

shown, together with the corresponding division moments resulting from a 

particular selection of the size threshold. The figure immediately demon

strates that the distribution of the times till division will depend on 

the circumstances but the distribution of the sizes of dividing individuals 

remains constant by assumption. 

In order to calculate a differential generator for n we shall have to 

express the rate of splitting in terms of y. To this end we shall follow a 

cohort (compare Rubinow, 1978). Let a denote the infimum of the support of 

y (i.e., the size at which y starts to be different from zero). From No 

cells passing size a at t=O 

x. ( t) 
N(t) = N0(1- J1nd " y(~)d~) 

a 

"survive" th,e time-interval [O,t]. The rate of splitting N(~) :~ (t) is 

given by 

dx 
y(x) dt 

1- fx y(~)d~ x=xindft) 
a 

which we rewrite as o(x)g(x), where by definition 

(2.4) Y(x) 
,S(x) = --~---

1 - Jx y (~)d~ 
a 
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Note that exp -Jx2 cS{l;)dc; describes the chance that an arbitrary cell 
x1 

passing size x1 will reach size x2 before it splits (this property can be 

used as an alternative definition of this third model), while g determines 

how long it takes to grow from x1 to x2 . In other words, the chance is re

lated to thE~ size-interval which has to be passed, but completely indepen

dent of the time needed to realize this passage. Instead of (2.3) we now 

have 

(2.5) an a 
an (t,x) + ax (g(x)n(t,x)) = - g(x)cS{x)n(t,x) + 4g(2x)cS(2x)n(t,2x). 

If g is a function of x only, the equations (2.3) and (2.5) can be 

identified by putting b(x) = g(x)cS(x). However, if explicitly of implicit

ly g depends on time (for instance through food supply which is in some 

way coupled back to the population itself, see sections 4 and 5 for more 

details), the equations are quite different. Figure 2 illustrates the 

basic difference in analogous discrete models. In the extreme case that 

growth of individuals has stopped completely, (2. 3) implies that fission 

goes on as long as individuals of size x with b(x) > 0 are present, 

whereas (2.5) implies that fission stops at once. Probably these conse

quences are equally unrealistic and more complicated models, involving 

both size and age, may be needed to avoid them. 

division division 

Figure 2. 

A graphical representation of two discrete analogues to our second and 

third model formulation respectively. In the left hand model splitting 

occurs independent of growth. In the right hand model splitting is 

entirely dependent on the speed of growth. The two models are equivalent 

if growth stays constant over time. Otherwise they differ. 
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For the sake of exposition we have thus far neglected that cells may 

be removed from the 'system. In the rest of the paper we add a .term -Dn(t,x) 

to the right-hand side of the equation to account for mortality and dilu

tion (in a chemostat). We assume that Dis a constant. The assumption that 

D does not depend on xis essential for the approach in this paper. How

ever, most of the results can easily be generalized to the case where D 

depends on time, either explicitly or implicitly. 

In the next section we shall summarize some results from Diekmann 

et al. (in preparation) for the linear, time-invariant case of (2.3) or 

(2.5). The main result presented will concern the convergence to a stable 

stationary size distribution under the assumption 

DRIG: g(2x) < 2g(x) 

for all relevant x. Here DRIG abbreviates "Decreasing Relative Individual 

Growth" and it tells us that two daughters together gain more mass than 

the undivided mother would have done. One also obtains a stable stationary 

distribution in the IRIG case g(2x) > 2g(x), but this seems an unrealistic 

assumption. In the special case of exponential individual growth (g(x)=kx) 

~ stable stationary distribution will evolve, however. (See Diekmann 

et al. (in preparation) for the details.) So throughout the paper we make 

hypothesis DRIG. 

Subsequently, in section 4, we shall study (2.5) under the rather 

strong assumption that changes in the environment (like food supply) 

affect the growth rate through a time dependent factor B: 

SNH: g = B(t)g(x). 

Here Bis a function describing the instantaneous availability of nutrients 

and SNH is an abbreviation of "Structural Nutrient Hypothesis". This catch 

phrase stems from the fact that the assumption seems reasonable as a first 

approximation if the growth rate is limited by the uptake of structural 

nutrients, as opposed to, for example, energy uptake (the assumption ig

nores that nutrients may be excreted, or consumed in the basal metabolism). 

It will turn out that we can reduce the problem to the situation of 



section 3 by a scaling of the time axis. 

As a n,ext step, in section 5, we shall relate B to the growing 

population itself by adding a balance equation for the substrate concen

tration. We shall present two examples and show that the asymptotic 

behaviour is completely determined by a system of ordinary differential 

equations (o.d.e.'s), a total population model. 

In section 6 we shall sunnnarize our main conclusions. 

3. THE STABLE SIZE DISTRIBUTION 

In this section we consider the equation 

(3. 1) 
an a at (t,x) + ax (g(x)n(t,x)) = - Dn(t,x) - g(x)o(x)n(t,x) 
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+ 4g(2x)o(2x)n(t,2x). 

where Dis a nonnegative constant and o, g are given functions which 

satisfy, for some number a E (0,1): 

H : g 

o is a continuous function which vanishes for x E [O,a] and 

which is positive for x E (a,1). Moreover, 

X 

lim J o(~)d~ = +«> • 
xt 1 

a 

g is a strictly positive continuous function defined on 

[½a, 1]. 

So we assume that cells cannot divide before they have reached a minimal 

size a> O. In order to express that cells with size less than ½a cannot 

exist, we supplement (3. 1) with the boundary condition 

(3. 2) n(t,½a) = 0 . 

Moreover, we assume that cells have to divide before they reach a maximal 

size, which we have normalized to be 1, and we let the domain of x be the 

interval [½a,1]. In equation (3. 1) one should read 
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(3.3) 4g(2x)o(2x)n(t,2x) = 0 for X > ½ • 

Finally, we supplement (3.1) and (3.2) with the initial condition 

(3.4) n(O,x) = <P(x) ½a. < X < 1. 

We shall call~ compatible if and only if the function 

X 

~(x) exp J o(~)d~ 

a. 

is bounded and continuous (note that the former effectively is a condition 

on the rate at which~ should go to zero when x tends to one). 

We can rewrite (3.1)-(3.2) abstractly as 

(3.5) 
dn 
dt = An - Dn, 

where A is an unbounded linear operator acting on functions of x (see 

Heijmans (preprint, 1982) or Diekmann et al. (in preparation) for a pre

cise description of the space and the domain of definition of A). For the 

study of this evolution equation the eigenvalue problem 

(3.6) An = All 

is of great importance. Heijmans (preprint, 1982) has proved the following 

result. 

THEOREM 3. 1 

(i) A has a positive, algebraically simple, eigenvalue 1 with a 

corresponding eigenfunction~ which is positive on (½a.,1]. 

(ii),All other eigenvalues of A have real part less than 1. 

We shall call 1 the dominant eigenvalue. Heijmans (preprint, 1982) also 

shows that whenever a. > ½, the number 1 is the unique rea1 root of the 

aharaateristia equation 
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(3. 7) 

~ 

1 - J 
2 J o (~) e ½~ 

A 
(o(n) + g(n) )dn 

d~ = 1. 

a. 

The evolution problem (3.5) with n(0) =~compatible, has been 

studied by Diekmann et al. (in preparation). They show that a solution (in 

an appropriate "mild" sense) exists and is unique. Moreover, concerning 

the asymptotic behaviour fort+ +co the following result was derived 

THEOREM 3.2. Assime DRIG: g(2x)<2g(x) for x E (½a.,½]. 

Then n(t,x) = e(A-D)t(C~(x) + o(l) ) , fort+ +co, 

where C is a constant depending on~ only. 

I\, 
In other words, A-Dis the Malthusian parameter (intrinsic rate of natural 

increase) and~ the stable size distribution. The proof of this theorem is 

based on the decomposition of the space of functions of x into a one 

dimensional subspace Xd (d=dominant) spanned by~ and a complementary sub

space X (n=negligible) which are both invariant under the solution 
n 

operator of equation (3.5). The fact that the component in X is asymptoti-n 
cally negligible indeed, is due to the estimate in Theorem 3.1 (ii). We 

refer to Thieme (preprints, 1982) for a general approach to the problem of 

stable distributions. 

4. A CHANGING ENVIRONMENT 

As a next step we assume 

SNH: gindividual = B(t)g(x), 

where g(x) satisfies DRIG:g(2x) < 2g(x). Introducing 

(4. 1) k(t,x) = e Dt n(t,x) 

we find 

(4.2) dk 
dt = 6(t)Ak. 
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In terms of the new time variable 

(4. 3) 

and 

(4.4) 

T = f e(cr)dcr 

0 

m(T) = k(t(T)) 

we have the time-invariant problem 

(4.5) dm 
dT = Am • 

Consequently the results of the foregoing section yield the existence and 

the uniqueness of a solution as well as the asymptotic behaviour 

'\, 

m(T ,x) AT '\, = e (Cn(x) + o(I)) , '[++co. 

Hence t 

~ J B(o)do 

(4.6) n(t,x) -Dt 0 '\, = e e ( Cri (x) + o ( 1)) , t + +co, 

provided J~ b(o)do ++coast+ ,+co. We conclude that, essentially, the 

time-dependent factor B causes a deformation of the time axis only. 

There is a more complicated way to arrive at this result which, how

ever, gives additional insight. Substituting 

(4. 7) 
'\, 

n(t,x) = p(t) n(x) + r(t,x), 

with r(t,·) an element of Xn, into 

dn 
dt = S(t)An - Dn 

we find 

'\, "' dr (p'(t)-XB(t)p(t) +Dp(t))n(x) = - [dt - B(t)Ar+Dr]. 
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The left-hand side belongs to Xd and the right-hand side to Xn (note that 

A maps X into itself). Since the intersection of these subspaces is {O}, n 
both sides are zero. Consequently, p satisfies the o.d.e. 

(4 .8) "' p'(t) = A8(t)p(t) - Dp(t), 

and therefore 

p (t) 

t - Dt + J0 8(o)do 
= p(O) e 

On the other hand, time scaling and Theorem 3.l(ii) imply that 

t - Dt + J0 B(a)da 
r(t,x) = o (e ) t + +co, 

and we can write 

n(t,x) = p(t) {~(x) + o(l)} t + +co. 

Note that r(t,x) = 0 for all t whenever r(O,x) = 0. In other words, if the 

initial condition is of the special form n(O,x) = p(O)~(x) then 

n(t,x) = p(t)~(x) with p the solution of the o.d.e. (4.8). 

5. FEEDBACK: TWO CONCRETE EXAMPLES 

When the growing population itself causes changes in the environment, 

the function 8 is not explicitly given, but instead we might have a 

(differential) equation for 8 in which a functional of n(t,·) appears. In 

general, the procedure of section 4 still works. For special initial con

ditions n(O,x) = p(O)~(x) we find an autonomous system of ordinary 

dif(erential equations. For general initial conditions we can use the 

(unknown) time variable T (see (4.3)) to solve the partial differential 

equation and subsequently find 8 (and hence T) from a (non-autonomous) 

system of ordinary differential equations. The asymptotic formula (4.6) 

can then be used to show that the ordinary differential system is 

asymptotically autonomous and this yields, finally, that the phase portrait 
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of the autonomous problem gives complete information about the asymptotic 

behaviour. W1e shall now make this procedure precise, but rather than doing 

it in general we shall treat two special examples from microbial ecology. 

A standard laboratory device that is of great use for experimental 

investigations in microbial ecology and for the development of theory as 

well, is the continuous culture or chemostat. The archetype model for the 

chemostat is (Herbert et al., 1956) 

(5. I) 

(5. 2) 

where 

= p(S)W - DW 

= - ap(S)W + D(Sr-S), 

W(t) = concentration of biomass of the organism, 

S(t) = substrate or nutrient concentration, 

p(S) = population growth rate as a function of substrate 

concentration, 

D = dilution rate, an adjustable constant, 

Sr = input substrate concentration, 

a = amount of nutrient per unit biomass (constant). 

dZ r One easily verifies that Z :=. aw + S satisfies dt = D(S -Z), and conse-

quently Z(t) + Sr as t ++=.Therefore, as far as the asymptotic behaviour 

is concerned, we might as well replace the differential equation (5.2) for 

S by the algebraic equation 

(5. 3) S(t) = Sr - aW(t). 

Frequently, the function pis modelled as a hyperbola 

p(S) = as 
k + S 

''Monod" 

but especially with toxic substances more complicated functions may arise. 
r Apart from the wash-out state S = S , W = O, steady states are found from 
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p(S) = D 

aW + S = Sr, 

and their stability is determined by the sign of:~. Multi-species exten

sions of one-substrate systems are discussed by, e.g., Powell (1958), Hsu 

et al. (1977) and Aldenberg (1981). The latter paper also contains an 

analysis .of systems with several potentially limiting nutrients. 

The previous description is typical for early work in chemostat 

models. Williams (1971) is one of the first to make a plea for combining 

lumped population variables, like total biomass, numbers and nutrient 

concentration, with distributions of certain properties like age or size 

within the population. A recent reference showing what information can be 

gleaned from such more detailed modelling efforts is Voorn (1983). 

So let us now study a continuous culture of cells which grow and re

produce according to the model discussed above: 

(5. 4) 
dn B(S)An - Dn -= dt 

1 

(5.5) s (t) = Sr - f a,;n ( t, ,;) d,; 

la 
Let m = m(.,x;~) denote the solution of the initial value problem 

dm Am 
dT = m(O) = ~-

Then, exactly as in section 4, we find 

(5 .6) 

wher.e 

(5. 7) 

-Dt n(t,x) = e m(T,x;~), 

t 

T = .(t) = f B(S(cr))dcr 

0 

is still to be determined (since S(t) is not known). Differentiating (5.7) 

and using (5.6) and (5.5) we find 
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(5. 8) 

1 

dT = B (Sr_ ae -Dt J 
,it 

~a 

Under appropriate assumptions on 8, equation (5.8) and the initial con

dition T(O) == 0 define a unique solution T. If we take for Tin (5.6) this 

solution we have come full circle and we have obtained the solution of the 

initial value problem. Since ddT > O, T approaches a limit as t -+ -too. If we 
t -

assume that this limit is finite, (5. 8) leads to a contradiction (due to 
·-Dt the factor e ) and we conclude that T-+ -too. So the known asymptotic 

behaviour of m implies that 

(5. 9) n.(t,x) 
'\, 

= p(t) {n(x) + o(l)} t + +oo, 

where the remainder term belongs to X. As before we deduce that p satis
n 

fies the o.d.e. 

(5. 10) 

where 

(5. 11) 

with 

(5. 1 2) 

dp = (lB(S)-D)p' 
~dt 

S(t) = Sr - ip - o(l) 

1 

a = a J '\, 

E;n(E;)dE; . 

!a 

t + +oo, 

Therefore (5.10) is asymptotically autonomous and the asymptotic behaviour 

is completely described by a total population model of exactly the type 

(5.1),(5.3). The underlying structured model manifests itself only through 

the numbers l and J ~ E;il(Odt; which can be computed once g(x) and o (x) are 
2a 

specified. 

In precisely the same way one can reduce structured multi-species 

multi-substrates systems to total population models. Moreover, one can in

corporate refinements as in Droop's (1970) theory. 

As a second example let us look at the growth of bacteria which 
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produce toxic metabolic substances (see, e.g. the papers by Volterra and 

Kostitzin reproduced in the book (pp. 47-56) by Scudo & Ziegler (1978)). 

Let q denote the concentration of the toxic chemical and let B(q) describe 

the reduction of the individuals growth rate as a function of q. Let h(O 

denote the rate at which a cell of size~ produces the chemical and 1et cr 

denote the rate at which the chemical disappears spontaneously by dilution 

or desintegration. Then 

dn 
B(q) An - Dn dt = 

(5. 13) I 
dq 

= J h(~)n(t,~)d~ - crq • dt 
½a. 

Reasoning exactly as before we find that the asymptotic behaviour is 

described by the o.d.e. system 

(5. I 4) 

with 

{
:~ = 

dq = 
dt 

l 

'1, 
(XB(q) - D)p 

Cp - crq 

c = ( h(~)~(~)d'. 
J 
½ a. 

Under appropriate assumptions on B, (q,p) = (B- 1 (£), ~ s- 1 (~)) is a stable 
A C A 

steady state. The corresponding eigenvalues are complex conjugated when-

ever cr 2 + 4 ts 1 (q)pc < 0. So one can have an oscillatory approach towards 

the carrying capacity as is frequently observed (see the papers by Vol terr a 

and Kostitzin mentioned before). 

We close by referring to Gyllenberg (1982) and Nisbet & Gurney (pre

print, 1982) for work which is similar in spirit though different in many 

details. 
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6. CONCLUSIONS 

There are several ways to model the growth of populations of uni

cellular organisms reproducing by fission, which live under changing con

ditions. We have listed several alternatives and we found that in one 

specific casie the dynamics are asymptotically described by o.d.e. total 

population models, while the size distribution becomes stationary. This 

case is characterized by the assumption that growth of individuals and 

reproduction scale with the same factor when conditions change. As a re

markable consequence, the stable size distribution is independent of 

parameters like the dilution rate and the substrate concentration. It 

seems likely that other model specifications lead to stable stationary 

distributions too, but these will certainly depend on such parameters. 

This may therefore provide an experimental test of the correctness of the 

stochastic size threshold assumption and the structural nutrient hypo

thesis. 

In this paper asymptotic stability of steady states is determined in 

two steps: (1) convergence of the size distribution, (2) convergence of 

total population variables. The time scales of these processes are deter

mined by the roots of characteristic equations (the transcendental equa

tion (3. 7) for ( 1) and a polynomial equation corresponding to the lineari

zation around the steady state for (2)). So, in principle, one can esti

mate these time scales. But to really carry this out requires a further 

specification of the model and numerical computations. 

Our results rigorously show that the implicit assumption of a stable 

population structure, which underlies all total population models, is 

justified in a special class of models for populations which reproduce by 

fission, at least as far as the asymptotic behaviour is concerned. The 

transient behaviour also will effectively be determined by the o.d.e. for 

the total population variables if at least one of the following three 

conditions holds: (1) the size distribution of the inoculum is sufficient

ly near the stationary one, (2) the inoculum is sufficiently small so that 

the stationary size distribution is reached before the total population 

has grown to an appreciable size, (3) the two time scales discussed above 

for the convergence to the stable size distribution and the equilibrating 
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of the total population are sufficiently different, the first being the 

faster process. It is only when none of these three conditions is fulfilled 

that the size structure may affect the transient behaviour significantly. 

As stated our results enable us to deduce parameters of total popula

tion models from properties of individuals. So in the ideal case where we 

can measure the growth rate of individuals as a function of substrate con

centration and, in addition, the fission rate, these could be used to cal

culate the growth of the total population. Subsequently the model could 

then be tested by comparing the predicted total population level with the 

one that is experimentally observed, in accordance with established scien

tific procedure. Unfortunately, this dream probably will never come true: 

for micro-organisms, as opposed to, e.g., mannnals, dynamic observations 

are almost always made at the population and not at the individual level. 

Therefore our main interest should be in the inverse problem. We have seen 

already how for the chemostat we could test the stochastic size threshold 

assumption and the structural nutrient hypothesis. When these are confirmed 

we may use formula (5.10) to deduce that at the steady state 

x'B(S) = D. 

So we can determine 3:e(S) as a function of S by systematically varying D 

and plotting it against the resulting steady state substrate concentration. 

(Ast enters the subsequent calculations as a scaling parameter only we 

could without loss of generality set 3: = 1, i.e. B(S) = D.) As a next step 

we have to relate the individual growth rate, the division rate and the 

stable size distribution. To this end we write the growth rate at a par

ticular substrate concentration Sas g(x) = B(S)g(x). In this notation, on 

multiplying the left and right hand sides with B(S), the eigenvalue equa

tion (3.6) can be written as 

-I\, 

d (gn) - "' - "' I\, - "' "' dx (x) - g(x)o(x)n(x) + 4g(2x)o(2x)n(2x) = XS(S)n(x) = Dti(x). 

If we know how to measure~ this equation can be used to calculate g given 

o or o given g. Alternatively, and perhaps more relevantly, we can relate 

the moments of the stationary size distribution and the division size 
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distribution for some simple growth functions in the manner of Voorn 

(1983). The reason that this is possible at all stems from the fact that 

for the stochastic size threshold model under the structural nutrient hypo

thesis the technically more attractive chemostat experiment is essential

ly equivalent to the mathematically more tractable case of unrestricted 

population growth. 

AaknowZedgment. We like to thank H. Thieme for some useful suggestions. 
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