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The parametrisation of the unstable invariant manifold for a class of 

horseshoe maps 

by 

H.A. Lauwerii~r 

ABSTRACT 

A few planar maps are considered for which there exists an unstable 

invariant manifold originating from a saddle fixed point having a parametri

sation by means of easily computable analytic functions. 

KEY WORDS & PHRASES: Iterated maps., functional equations., strange attrac

tors 





I . INTRODUCTION 

Our starting-point is an iterated map of the unit interval into itself 

( 1. I) n=0,1,2, ••• 

where cj> is an analytic function with 

( I. 2) cj>i(O) = O, l<t>'(O)I > I. 

This means that y = 0 is a repelling fixed point. Poincare noted that there 

exists an analytic function F(z) such that 

(1.3) F(az) = c/> (F(z)) , 

where a= c/>'(O). 

With the initial condition 

(I. 4) F(O) = 0, F'(O) = 

F(z) is uniquely determined. If c/> is entire then also Fis an entire function. 

The iterated map (I.I) can be parametrised by 

( I • 5) 

where z0 is determined by y0 • 

The simplest non-trivial case is the map 

( I • 6) = 4y (1-y) 
n n 

for which 

(I. 7) F(z) = sin2 Ii.. 
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Similar functions for the more general case 

(1.8) 

have been considered by the author elsewhere. 

In this note we consider a family of horseshoe-type maps with (I.I) 

as its essential part. The planar map 

(I. 9) i ::::: 
with 0 < b < I clearly maps the unit square 0 ~ x, y ~ I into itself. 

There exists an invariant manifold J starting from the saddle (0,0) as an 

analytic curve 

(I. 10) x = E(t) , y = F(t). 

In this note we show how to compute these functions. Of particular interest 

is the special case where¢ is given by (1.6). For this case the unstable 

manifold J is parametrised as 

(1.11) 1 
E(t) = ~ - ¼(1-½) I 

k=O 

F (t) = sin2 /t. 

(b/4/sin zit 
-k r.sin (2 vt) 

This shows that J is like a sine curve folded up an infinite number of times 

so that it fits inside a square. It is of interest to compare a computer 

plot of the continuous J-line with the strange attractor plot of (1.9) 

with an orbit of say a thousand points. 

This simple and special case for which almost everything can be com

puted explicitly is considered in section 2. In the subsequent section we 

show that the overall picture remains the same if the special map (1.6) 

is replaced by the more general map (I. 8) or even by y • ·¢ (y) where Hy) 

is an analytic function with ¢(0) = O. The general result is that J can be 

described by 

( I • I 2) x = E(t) , y = F(t) 



where Fis determined by (1.3), (1.4) and Eby 

1 
E(az) = b E(z) 0-F(z)) + F(z) , 

(I. 13) 
E(0) = O. 
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If ~(y) is a polynomial or an entire function the functions E(z) and F(z) 

are also entire but if ~(y) has a pole or a branch-point the functions 

E(z) and F(z) have generally a finite radius of convergence at z = O. How

ever, they can s.till be computed for a substantial range of real t-values 

by using a suitable combination of the power series expansions and the 

functional equations. 

In section 4 we consider a few interesting particular cases for which 

the unstable manifold can be described by (simple) analytic functions. We 

may draw attention to the amusing map (4.1) which in spite of its simplicity 

is very interesting and illuminating. It demonstrates the presence of a 

simple invariant manifold as a space-filling Lissajous curve forming the 

background of an apparently fully chaotic map. The other examples illustrate 

the general theory. Computer plots, obtained from an HP 85 with a plotter, 

show the similarity between the line-plots of J and the point plots showing 

an orbit of some 1000 points. 

2. A SIMPLE MAP 

We consider the iterative map 

1 :::: : (2. I) 
bx (!-y ) + y , n n n 

4y (1-y ) • n n 

with O < b < I. 

As is shown in the figure la and lb the unit square is mapped into itself 

in such a way that a vertical line x = ~, 0 s y s I is transformed into a 

parabolic arc 

y = ~ ( x-b~/2) , Hx) = 4x(l-x). 
1-b~ 
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6 7 .------_;;:_----, 5 

8 1------------, 4 fig. 1 a fig. lb 
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2 1 2 3 5 6 7 

There are the two fixed points (O,O) and ( 4:b, ~) both being saddles. 

The horizontal lines y = 0 and y = 3/4 are the stable invariant manifolds. 

The unstable invariant manifold J can be determined as follows. 

The substitution 

12b x 0 = b - (2-b) u 
(2.2) n 

2y = - V n n 

changes (2. 1) into 

1 u -
½b ( 1 +u ) v 

' (2.3) 
n+l - n n 

2 
V = 2v - 2. n+l n 

A simple calculation shows that 

The sequence v can be parametrised by 
n 

(2. 5) n 
V = COS (2 z), 

n 

We note that 

(2. 6) 



Thus (2.4) can be written as 

(2. 7) u = n 

n 

r 
k=I 

(b/4)ksin(2nz) 
+ n-k sin (2 z) sinz 

This shows that the unstable invariant manifold J can be described ex

plicitly as 

(2.8) 
ex, 

u = I 
k=I 

(b/4)ksin t 

sin (2-kt) ' 
V = COS t. 
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This special case gives a means to study the phenomena attached to invariant 

manifolds and strange attractors in a very explicit way. This may be help

ful for understanding the situation in a general case where such a parame

trisation is not possible or not elementary. 

Formula (2.5) shows that the sequence v strongly depends on the starting 
n 

value v0 but (2.7) shows that un for n + 00 is independent of u0 • 

It is of some interest to consider the turning points of J, i.e. those points 

for which v = I. In the original x,y plane they correspond to the points 

where J meets the line y = 0. 

They are produced by the values t = t with 
m 

(2.9) t = 21Tlll, m = 2q,p 
m 

where m > O, p > 0 and q ~ 0 are integers with p odd. A simple calculation 

shows that 

2k for 0 ~ k ~ q, 

sin t 
- 2q+l m for k = q +I' = -k sin(2 t ) 

m 

0 for k>q+I. 

Substitution in (2.8) gives 

u ( t ) = b / 2 + (b / 2) 2 + • • • + (b / 2) q - (b / 2) q + I • 
m 
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For the x,y - plane this gives 

(2. 10) x(t ) = (I-.!:_) (E_)q 
m 4 2 

y(t) = o. 
m 

This shows that the points determined by t = t are. the turning points each 
m 

of an infinity of folds of the attractor J. 

3. THE GENERAL MAP 

For th1~ slightly more general map 

(3. 1) 1 X = 
n+l 

Yn+l = 

with I <a~ 4 the situation is not much different. Again there are two 

fixed points. The origin is a saddle with multipliers a and b/2. The other 

fixed point 

(3. 2) 
a-1 

X = --.----ab/ 2 + a-b ' 

has the multipliers 2-a and b(l-a/2) /a. It is an attractor for I < a < 3 

and a saddle for 3 <a~ 4. 

The substitution (2.2) changes (3.1) into 

(3. 3) 
( I +u ) v , 

n n 

v2 - (a-2). 
n 

Let F(z) be the Poincare function satisfying the multiplication rule 

(3.4) 
j F ( az) = aF ( z) ( 1 -F ( z)) , 

jF(O) = 0, F'(O) = 1. 

It is known [I] that F(z) is an entire function 

(3.5) F(z) 
2 2z3 

= z - _z_ + ------=---
a- l (a- I) (a 2 - I) 

4 (a+5)z 
2 3 

( a-1) ( a - I) ( a - I ) 
+ e • • 



They may serve as an analytical parametrisation of the sequence v 
n 

(3.6) V 
:n 

Again we may use the expression (2.4) and make similar conclusions as in 

the special case a= 4. However, there is no elementary analogue of (2.6) 

and (2. 7). 

The unstable manifold J can be described as 

b u=-
a 

(3. 7) 
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wh~re \ = a(a-2)/4 and w = av/2. In (3.7) any root may take both signs. If 

w = a/2 and all roots are taken with the plus-sign we obtain 

u = b/2 + (b/'2/ + (b/2) 3 + ••. = b/(2-b). 

This shows that J passes through the fixed point at the origin. If w = l-a/2 

and all roots are taken with the minus sign we find for u a value which 

shows that J also passes through the second fixed point. 

Of course the expression (3.7) is not very helpful for the actual computation 

of J. However, it is possible even for more general maps to derive a para

metrisation of the kind (2.8). 

We may replace (3.1) by the more general map 

(3.8) t:::: 
where ¢(y) is an analytic function holomorphic for JyJ < I with ¢(0) = 0 

and J¢'(O)j >I. Of course ¢(y) should map the real interval [0,1] into it

self. According to POINCARE [2] the sequence y can be parametrised by an 
n 

analytic function F(z) satisfying the multiplication rule 

(3.9) F(az) = ¢(F(z)) 
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where a= $'(0). 

With the initial condition 

F(O) = 0, F'(O) = 

F(z) is uniquely determined. F(z) is holomorphic in some neighbourhood of 

z = O. The functional equation (3.9) gives an analytic continuation. The 

first few coefficients of the power series expansion 

(3.10) F(z) + ••• 

can be determined from (3.9) in a straightforward way. The combined use of 

(3.9) and (3.10) permit the computation of F(z) for arbitrary real values 

of z. 

Next we introduce the analytic function K(z) by 

(3. I I) K(z) 
oo k 

= k~l (1-2 F(z/a )) 

We note that K(O) =I.A simple calculation shows that K' (O) = - 2/(a-1). 

From (3.11) we obtain the functional equation 

(3. 12) I - 2 F(z) K(az) 
= -K....,(-z~) • 

We note that F(z) and K(z) are entire functions if $(z) is entire. 

The one-dimensional map yn+I = $(yn) can be parametrised as 

(3.13) n y = F(a z). 
n 

The substitution (2,2) shows that 

(3.14) V n 

n+I K(a z) = --'---'-
K(an z) 

Therefore the general expression (2.7) takes the form 



(3. 15) u 
n 

n 
= I 

k=l K(z) 

obviously a ~;eneralisation of (2. 7). Accordingly the invariant manifold J 

can be described as 

(3.16) 

Examples 

j X = 

1 y = 

1 ~ (b/2l 
½ - (- - ½) K( t) l 

b k=l K(t/ak) 
F(t/a). 
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a. For cp(z) -- 4z(l-z) we have F(z) = sin21z and K(z) = sin 2/z /(2/z) ac

cording to the results in section 2. 

b. For <P(z) == 2z (1-z) we have F(z) = (l-exp(-2z))/2 and K(z) = exp(-2z). 

The invariant manifold is a curve connecting the fixed points (O,O) and 

(½, ½) determined by 

00 

x=½-<¾-o I 
k=l 

For the actual computation of the invariant manifold for a given map 

y • ~(y) it is not necessary to compute the auxiliary function K(z). Instead 

we may write (3.16) as 

(3.17) x = E(t/a) , y = .F(t/a) 

and determine the analytic function E(z) by usirtg a single iteration step 

of (3.8) 

j x' = bx (½-y) + y = 

ly' = <P(F(t/a).). 

bE(t/a)(½-F(t/a)) + F(t/a), 

Of course we should obtain 

x' = E (t) , y'=F(t). 

In this way we obtain the functional equation 

(3.18) E(az) - ½b E(z) = F(z) - b E(z) F(z). 
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Setting 

(3.19) 
00 

E(z) = l ek zk 
k=I 

00 

F(z) = l ckzk with c 1 = 
k=I 

we obtain by comparing equal powers of z 

(3.20) (an-b/2) e 
n = C - b n 

Again the actual computation of E(z) is relatively easy. Using (3.20) we 

may find a few coefficients of the power series expansion. Together with 

(3.18) in the form 

(3.21) E(z) = O-F(z/a)) E(z/a) + F(z/a) 

we may cover a substantial range of z values. 

4. EXAMPLES 

In this section we consider a few particular cases for which an ana

lytical description of the non-trivial invariant manifold is available. For 

each case we present the line-map of the invariant manifold as a continuous 

curve and the corresponding point-map showing an orbit with a starting point 

on the invariant line. We note that the latter picture is almost indistin

guishable from that of an orbit with an arbitrary initial position. Not all 

cases considered here are covered by the general theory considered here but 

they all have in connnon the existence of an unstable invariant manifold to 

which most orbits are attracted. 

a. 

(4. I) ·1 xn+I = Yn 
y = 4x n+I n (1-x ) • 

n 

This rather amusing example combines an apparently chaotic point-map with a 

simple line~-map of the attracting invariant manifold J 

(4. 2) 
. 2 

x = sin t, 



This is a Lissajous curve filling the unit square in an everywhere dense 

way. The manifold intersects itself infinitely often at the (homoclinic) 

points 

t = Hm/v'2 + n) ,r 
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where m and n are integers. The map (4.1) may be described as a two-dimen

sional interpolation of a one-dimensional map x' = 4x(l-x). It is clearly a 

special case of another interesting class of two-dimensional maps. Figure 

2 gives an impression of the first few folds of J. Figure 3 gives the cor

responding point-map showing a thousand points. 

b. 

(4.3) 
bx ( ½-y ) + y , n · n n 

ay (1-y ) • n n 

This is the map (3.1). For the illustrations we take b = 2/3 with a= 3, 

3.9 and 4. The invariant manifold J is described by (3.17) with F(z) being 

given by (3.5). In our computer program only six coefficients are used. 

The first few coefficients of E(z) are determined by the computer using 

(3.20). The case a= 3 is illustrated in figure 4. J connects the fixed 

point (0,0) with the attracti~g fixed point (3/5,2/3) which it approaches 

in a spiralling way. Figure 5 shows an enlargement near the latter fixed 

point. The corresponding point-plot is of no interest here. 

The cases a= 3.9 and a= 4 are very similar. In both cases we show the 

line-plots of J and corresponding point-plots (cf. figs. 6,7,8,9). 

4. 

(4.4) ix + l = bx ( ½-y ) + y , n n n n 
2 

Yn+l = Yn (3- 4yn) • 

This case is covered by the theory presented for the map (3.8). The origin 

is a saddle with the multiplier a= 9. The one-dimensional y-map can be 

parametrised by the entire function 

F (z) = sin21z = (I-cos 2vz) /2 = 

I 2 2 3 I 4 
= z - 3 z + 45 z - 315 z + •••• 

(4.5) 
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There are two other fixed points O, 0 and (2/ (2+b), 1) both saddles. 

The unstable invariant curve J is described by (3.17). Fort= 0, J starts 

from the fixed point at the origin. We note that fort= n 2/J6 

for k = 0,1,2, ••• 

and next from (3.18) 

for k = 1,2, •••• 

This means that J passes through (½, ½) an infinite number of times 

which means that J forms loops at that point. 
k 2 

For tk = 9 n /4, k = 0,1,2 ••• , we have F(tk) = I and next from (3.18) 

This shows that fork+~ the upper points of J converge to the fixed point 

(2/(2+b),1). Computer plots with b = 2/3 are given in fig. 10 and 11. 

~ xn+l = bxn(½-yJ + Yn, 

y = ay v'i"=y.-n+J n n 

d. 

(4. 6) 

This case is of the form (3.8) but ~(y) is only holomorphic for !YI < I. 

The one-dimensional map 

(4. 7) 

is of some interest in itself. Since 

0 ~ y ✓1-y ~ 2/ill for O ~ y ~ 

only the interval 

0 <a~¾ ✓3 = 2.598 ••• 

is of interest. 



2 There are the two fixed points y = 0 with the multiplier a and y = 1-1/a 
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with the multiplier (3-a2)/2. The first point is attracting for 0 <as 1, 

the second point is attracting for 1 s as rs. At a= rs= 2.236000 there 

starts a Feigenbaum sequence and eventually a stable 3-cycle at a= 2.557. 

The map (4.7) can be parametrised by the function F(z) determined by 

.~
F(az) = a F(z) (1-F(z)i 

(4.8) 
F(0) = 0 , F' (0) = I. 

The first few terms of its power series expansion are 

(4. 9) 
2 

F(z) = z- _z __ 
2 (a- 1) 

+ 
3 (5-a)z 
2 8(a-1) (a -1) 

This function is no longer entire but for all positive real zit is defined 

by (4.8) and (4.9). Computer plots with a= 2.598, b = 2/3 are given in 

fig. 11 and 12. 

~- r•I = bx (½-.y) + y ' n n n 

(4. 10) 
2 4y (1-y )(1-k y) n n n 0 s k s 1. Yn+l = 

(l-k2y2)2 
, 

n 

This case is of the form (3.8) but again ~(y) is only holomorphic for 

!YI < k- 1. The one-dimensional y-map is a generalisation of the elementary 

logistic map (2.1) that is obtained fork= O. In fact, it is obtained from 

the following multiplication rule for elliptic functions 

(4.11) sn. 2z = 2 sn z en z dn z 

1-k2sn4z 

where k is the elliptic modulus. This means that the functional equation 

( 4. 12) F(4z) 4 F(z)(l-F(z))(t-k2F(z)) 
= ----'-----'---,,.......,......-----------------

( 1 - k 2 F 2 ( z)) 2 

is solved by 

(4.13) F(z) 2 
= sn Ii. . 
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This function has a double periodic set of poles Ii= 2mK+ (2n+l)K' in the 

usual notation. Thus the power series expansion 

(4. 14) 

2 l+k2 2 2+13k 2 + 2k4 3 sn Ii = z - - 3-, z + 45 z 

1+30k2+30k4+k6 

315 
4 z + ••• 

converges for lzl < K' 2 where 

1r /2 

K' = J (4.15) da 

0 
/c 2 kz . 2 cos a+ sin a 

We note the special cases 

k 0 F(z) sin 2 Ii. K' = = = 00 

2 K' k = F(z) = tanh Ii. = Tr /2 0 

A simple calculation shows that the oae-dimensional y-map has the trivial 

fixed pointy= 0 and another real fixed point in (O,l). It seems that for 

0 ~ k < 1 the map is always chaotic. The special case k = l on the other 

hand has the secondary fixed pointy= l with the multiplier -1 and which 

is globally attracting. 

In fig. 13 and 14 computer plots are given for k2 = 0.5. 
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