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Factoring multivariate polynomials over finite fields*) 
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ABSTRACT 

This paper describes an algorithm for the factorization of multivariate 

polynomials with coefficients in a finite field that is polynomial-time 

in the degrees of the polynomial to be factored. The algorithm makes use 

of a new basis reduction algorithm for lattices over lF [Y]. 
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Factoring multivariate polynomials over finite fields. 

We present an algorithm for the factorization of multivariate polynomials 

with coefficients in a finite field. Let f be a polynomial in IFq[x1 , x 2 , 

.•. , xt] of degree n. 
l. 

in X., 
l. 

where IF denotes a finite field con
q 

taining q elements, for some prime power 
m. 

q= p • To factor f, our 

algorithm needs a number of arithmetic operations in IF that is bounded 
q 

by a polynomial function of 
t 

TT. 1 n. and pm. 
l.= l. 

If the number of variables t equals two, then our algorithm is sim

ilar to the polynomial-time algorithm for the factorization of polynomials 

in one variable with rational coefficients [7]. An outline of the algorithm 

to factor f EIF [X, Y] is as follows. For a suitably chosen irreducible 
q 

polynomial F EIF [Y], and a large enough positive integer k, 
q 

we determine 

a factor h of f modulo the ideal 
k 

(F ). The irreducible factor h 0 

of f for which h divides h 0 modulo (Fk) can be regarded as an ele

ment of a certain lattice over ~[Y]. We prove that h 0 is, in a certain 

sense, the shortest element in this lattice, and we show that this enables 

us to determine h 0 by means of a new basis reduction algorithm for lat

tices over IF [Y]. 
q 

For f EIFiX1 , x 2 , ... , Xt] with t > 2, we first substitute high 

enough powers of x 2 for x 3 up to xt. We then proceed in a similar way 

as above with the resulting polynomial in ~[Xl, X2]. 

The basis reduction algorithm for lattices over IF [Y] is described 
q 

in Section 1. If we define the norm of a vector over IF [Y] 
q 

as its degree 

in Y, then this algorithm enables us to determine the successive minima 

of a lattice over IF [Y]. 
q 
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The algorithm to factor polynomials in lF[X, Y] is presented in Section 2; 
q 

the results are similar to Section 2 and 3 of [7]. In Section 3 the algo-

rithm for polynomials in more than two variables over a finite field is 

explained. 

Other recent publications on this subject are [5] and [6]. For two 

variables the algorithm from [5] is similar to ours; it only differs in 

the determination of short vectors in a lattice over lF[Y]. Also the q 

generalization to more than two variables is distinct from ours. Another 

approach is given in [6]. 
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1. The reduction algorithm. 

Let n be a positive integer, and let lF denote the finite field containing 
q 

q elements, for some prime power q. For a rational function gElF(Y) 
q 

we denote by lgl its degree in y (i.e. the degree of the numerator 

minus the degree of the denominator); we put IO I == -"°. The norm I al of 

an n-dimensional 

max{la.l: l~i~n}. 
l. 

vector is defined as 

Let b 1 , b 2 , ..• , b E lF [Y]n c lF (Y) n be linearly independent over lF [Y]; 
n q q q 

we denote by b .. ElF [Y] the 
l.J q 

j-th coordinate of b .• 
l. 

The lattice LC 

lF [Y]n of rank 
q 

n spanned by b 1 , b 2 , ••• , bn is defined as 

L=t.11JF[Y]b.={r.11r.b.: r.ElF[Y] (l~i~n)}. 
1= q l. 1= l. l. l. q 

The determinant d (L) E lF [Y] of L is defined as the determinant of the 
q 

nxn matrix B having the vectors b 1 , b 2 , ••• , bn as rows. It is well-

known that, up to units in lF ' q 
the value of d(L) does not depend on 

the choice of basis for L. The orthogonality defect· OD (b1 , b 2., ••• , bn) 

of a basis b 1 , b 2 , ••• , bn for a lattice L is defined as I:~=! I bi I - Id (L) I . 

Clearly OD(b1 ,b2 , ••• ,bn) 2::0. 

(1.1) Proposition. Let x=t.11r.b.EL. 
1= l. l. 

Then 

Ir. b. I ~ Ix I + OD (b1 , b 2 , .•. , b ) 
i l. n 

for 1 ~ i ~ n. 

Proof. The norm of the i-th column of 
-1 

B is bounded from above by 

n 
I:. 1 I b. I - I b. I - Id (L) I = OD (b1 , b 2 , .•• , b ) - I b. I by Cramer's rule. Since 

J= J i n l. 

r. 
l. 

is the inner product of X and the i-th column of 
-1 

B we have 
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that ::;; Ix I + OD (bl, b2, ... , b ) - I b. I , n · 1 

For 1 ::;; j ::;; n a j-th successive minimum 

which proves (1.1). D 

Im. I 
J 

of L is recursively 

defined as the norm of a vector of smallest norm in L that is linearly 

independent of m1 , m2 , ... , mj-l over lFq[Y]. It is well-known that I mj I 

is independent of the particular choice of m1 , m2 , ... , mj-l (cf. [8]). 

(1.2) Proposition. Let b 1 ,b2 , ... ,bn be a basis for a lattice L 

satisfying OD (b1 , b 2 , ... , bn) = 0, ordered in such a way that 

for 1 ::;; i < j ::;; n. Then lb. I 
J 

is a j-th successive minimum of L for 

1::;; j::;; n, and in particular lb1 I::;; !xi for every XE L, x;;t 0. 

Proof. Let I x I be a j-th successive minimum of L, for some j , 1 ::;; j ::;; n. 

It is sufficient to prove that I xi ~ lb. I. 
J 

Suppose that 
n 

x=L. 1 r.b .. 
1= 1 1 

Clearly there must be an index i 0 E { j, j + 1, ... , n} such that 

Proposition (1.1) yields that 

which proves (1.2). D 

We say that the basis b 1 , b 2 , ... , bn is reduced if the columns 

of B (i.e. the coordinates of the vectors b 1 , b 2 , ... , bn) can be per

muted in such a way that the rows b 1 , b 2 , ... , bn of the resulting matrix 

satisfy 

( 1. 3) lb. I ::;; lb.I for 1:c;;i<j::;;n, 
1 J 

( 1. 4) lbiil ~ lb .. I for 1:c;;i<j::;;n, 
1] 

(1.5) lb .. I> 
11 

lb .. I 
1] 

for 1:c;;j<i::;;n. 



Conditions (1.4) and (1.5) are illustrated in Figure 1; observe that 

lb. I= lb. I. 
]. ]. 

= lbl I 

< lb2I 

< lb3I 

~ I bl I 
= lb2I 

< lb3 l 

~ lbl I 

~ lb21 

= lb31 

< lb I < lb I < lb I n n n 

. ~ lbl I 
~ lb2I 

. ~ lb3I 

= lb I n 

Figure 1. The j-th position in the i-th row gives the condition that 

holds for lbijl if b 1 ,b2 , ... ,bn is a reduced basis. 

5 

(1.6) Remark. It follows from (1.4) and (1.5) that a reduced basis b 1 ,b2 , 

... , bn for a lattice L satisfies OD(b 1 , b 2 , ... , bn) = 0. Combined with 

(1. 3) and (l. 2) this implies that lb. I 
J 

is a j-th successive minimum 

of L, for 1 ~ j ~ n, and b 1 is a shortest vector in L. 

(1. 7) we now describe an algorithm that transforms a basis b 1 , b 2 , ... , bn 

for a lattice L into a reduced basis for L. In the course of this 

algorithm the coordinates of b 1 , b 2 , ... , bn will be permuted in such a 

way that at the end of the algorithm (1.3), (1.4), and (1.5) hold with 

b 1 , b 2 , ... , bn replaced by b 1 , b 2 , ... , bn; the original ordering of the 

coordinates can then be restored by applying the appropriate inverse 

permutation of the coordinates. For simplicity we take I b I = -00 • 0 

(1. 8) 

(1. 9) 

Suppose that an integer k E {O, 1, ... , n} is given such that 

lb. I 
]. 

~lb.I 
J 

~lb.I 
J 

for 

for k < j ~ n, 
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( 1. 10) I b .. I :?: I b .. I for 1 s i :;;;. k and i < j s n, 
1.1. l.J 

(1.11) lb .. I> lb .. I for 1 s j <is k. 
1.1. l.J 

( Initially these conditions are satisfied for k = 0.) In this situation 

we proceed as follows. If k = n, then the basis is reduced, and the algo

rithm terminates. Suppose that k < n. Renumber {bk+ 1 , bk+2 , ••• , b n} in 

such a way that lbk+l I =min{ lbi I: k+1 sis n}. 

ficient of YI bi I in b. . for 1 s i s k + 1 and 
l.J 

Let aij EJF'q be the coef-

1 s j s k. It follows 

from (1.10) and (1.11) that a .. ~ 0 
1.1. 

for 1 sis k, and that a .. = 0 
l.J 

for 

1:5:j<i:5:k. This implies that a solution r,EJF, 
l. q 

of the following triangular system of equations over JF exists: 
q 

(1.12) ~=l aij ri = ¾+l j for 1 s j s k. 

We put 

(1.13) b * = b _ :r.k r b y I bk+ 1 I - I bi I 
k+1 k+1 i=1 i i ' 

then and, with (1.8} and (1.9), * n 
bk+1 EJF'q[Y] . Further-

more, (1.12) implies that We distinguish 

two cases. 

If then we replace by we permute the 

coordinates of b 1 , b 2 , .•. , bn in such a way that I b I = I b I 
k+1 k+1 k+1 

(this does not affect the first k coordinates), and finally we replace 

k by k+l. 

If, on the other hand, * lbk+ll < lbk+ll, then we replace bk+l by 

* bk+l and we replace k by the largest index JI, E {O, 1, •.. , k} such that 
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We are now in the situation as described in (1.8), (1.9), (1.10), and (1.11), 

and we proceed with the algorithm from there. This finishes the description 

of Algorithm (1.7). 

We shall now analyse the running time of Algorithm (1.7). By an arith-

metic operation in JF we mean an addition, subtraction, multiplication or 
q 

division of two elements of JF. 
q 

(1.14) Proposition. Algorithm (1.7) takes 
3 

O(n B (OD(bl, b 2 , .•. , bn) + 1) 

arithmetic operations in JFq to transform a basis b 1 , b 2 , ... , bn for a 

lattice L into a reduced basis for L, 

a way that I b . I ::; B for 1 ::; i ::; n. 
l 

where B E2Z:2:2 

Proof. To prove that Algorithm (1.7) terminates, consider 

is chosen in such 

n 
S=L. 1 ib.l. 

l= l 

During one pass through the main loop of the algorithm either S remains 

unaltered (first case), or S decreases by at least one (second case). 

Since the value of k is increased by one in the first case, it follows 

that a particular value of S can occur for at most (n + 1) different 

values for k. But S can have at most OD (b1 , b 2 , ••• , bn) + 1 different 

values, so that the number of passes through the main loop is O (n (OD (b1 , 

• • • I b)+l)). 
n 

The result now follows by observing that (1.12) takes O(k2 ) and 

that (1.13) takes O(nk B) operations in JF. D 
q 

( 1. 15) Remark. With OD (bl, b 2 , •.. , bn) ::; n B it follows that Algorithm ( 1. 7) 

takes arithmetic operations in JF • 
q 

(1.16) Remark. Most of the results above can be generalized to the case 

that L is a lattice in JF [Y]n of rank smaller than n. Let m be a 
q 
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positive inte9er < n, let b 1 , b 2 , ... , bmE:lFq[Y]n be linearly independent 

over lF [Y], and let L be the lattice in lF [Y]n of rank m spanned by 
q q 

b 1 , b 2 , ••• , b : 
m 

m 
L = L. l lF [Y] b .• 

1.= q 1. 

By B we denote the mxn matrix having b 1 , b 2 , •.• , bm as rows. we define 

the norm ILi of L as the maximum of the norms of the determinants of 

the mxm submatrices of B; notice that ILi = ld(L)I if m=n. This 

enables us to define the orthogonality defect OD (b 1 , b 2 , ••. , bm) as 

r::=1 lbil -ILi. The basis b 1 ,b2 , ... ,bm is reduced if the coordinates 

of b 1 ,b2 , ••. ,bm can be permuted in such a way that (1.8), (1.10), and 

( 1. 11 ) hold with k replaced by m. For x E: L we denote by 

the vector consisting of the first m coordinates of x after application 

of the above permutation. 

If the basis b 1 , b 2 , ... , bm is reduced, then lb. I 
J 

is a j-th succes-

sive minimum of L. Namely, suppose that Ix I is a j-th successive mini-

mum of L, for some x E: L. As in ( 1. 2) we prove that I x I 2 If; . I , so 
J 

that, combined with I x I 2 Ix I and I :5. I = I b . I , we find Ix I 2 I b . I . 
J J J 

It is easily verified (cf . 
2 

(1.14)) that it takes O(m n (OD(b1 ,b2 , 

. , b ) + 1) (max: 1<. < I b. I + 1) ) operations in lFq to transform a basis b 1 , 
m -1.-m 1. 

b 2 , ... , bm into a reduced one by means of Algorithm ( 1. 7) . 

(1.17) Remark. We have given an algorithm to find successive minima in a 

lattice 
n 

L c]F [Y] , and in particular the algorithm finds a shortest vector 
q 

in L. In the sequel we will use this algorithm to decide whether L con-

tains a non-zero element x satisfying Ix I ~ SI,, for a certain small value 

of SI, 2 0. This problem, however, can also be solved in a more direct way. 
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Suppose that a basis b1 ,b2 , ••• , bn for L is given, and that OD(b1 , b2 , 

.•• , b ) is known. If an element x in L exists with Ix I ~ Jl, then 
n 

x = ~ 1 r. b. for certain polynomials r. ElF [Y], with I r 1. I ~ Jl + OD (b1 , b 2 , 
1= 1 1 1 q 

..• , b ) - I b. I (cf. ( 1. 1)) • Regarding the coefficients of r 1. for 1 ~ i ~ n 1 

n as unknowns, we can ~ee this as a system of nOD(b1 ,b2 , ••• ,bnl 

equations in unknowns over lF 
q 

(namely, for 1 ~ j ~ n, the 

j-th coordinate of x equals n 
I:, l r, b,. ElF [Y], so that the 

1= 1 1] q 
(Jl + 1 }-th 

up to the coefficient of n 
I:. l r. b .. 

1= 1 1] 
must 

be zero). Clearly, such an element x exists if and only if this system 

of equations over lF has a solution. This results in an algorithm that 
q 

takes O (n 6 a3 ) arithmetic operations in lF . An advantage of this method 
q 

over Algorithm (1.7) is that, if we replace lF by, for instance, the set 
q 

of integers ?Z, the coefficient growth during the Gaussian elimination 

can easily be bounded using methods from [2]. If we restrict ourselves to 

lF however, then Algorithm (1.7) yields a better running time. 
q 

2. Factorization of polynomials in lF [X, Y]. 
q 

In this section we present an algorithm for the factorization of polynomials 

in two variables over a finite field that is polynomial-time in the degrees 

of the polynomial to be factored. The propositions and algorithms here are 

very similar to their counterparts in [7: Section 2, Section 3]. We there

fore omit most of the details. 

Let f ElF [X, Y] be the polynomial to be factored. Suppose that a 
q 

positive integer u, and an irreducible polynomial F E lF [Y] of degree 
q 

are given. In the sequel we will describe how u and F are chosen. We 

may assume that F has leading coefficient one. 

u 
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Let k be some positive integer. By. (Fk) we denote the ideal generated 

k . k uk-1 i 
by F . Smee JF [Y]/(F ) ~ {L O a. o, : 

q 1.= l. 
a. E JF } , where 

l. q 
k 

is a zero of F, 

a = (Y mod (Fk) ) 

JF [Y]/ (Fk) 
q 

we can represent the elements of the ring 

as polynomials in a over JF of degree 
q 

< u k. 

JF u' the finite field containing 
q 

u 
q elements. 

Notice that JF [Y]/ (F) ~ 
q 

i k 
For a polynomial g=I:. b. X ElF [X, Y], we denote by (gmodF) E 

l. l. q 
k k i 

(JF [Y]/ (F ) ) [x] the polynomial L (b. mod (F ) ) x , and by oxg and oyg 
q l. l. 

the degrees of g in X and Y respectively. 

Suppose that a polynomial h ElF [X, Y] 
q 

is given such that: 

( 2. 1) 

(2.2) 

(2. 3) 

(2. 4) 

1:'he leading coefficient with respect to X of h equals one, 

(h mod Fk) divides (f mod Fk) in (JF [Y]/ (Fk)) [X], 
q 

(h mod F) is irreducible in JF u[X], 
q 

(h mod F) 2 does not divide (f mod F) in JF u[X]. 
q 

Clearly O<c, h:-;;o £. In the sequel we will see how such a polynomial h 
X X 

can be determined. 1:'he following proposition and its proof are similar to 

[7: (2.5)]. 

(2.5) Proposition. The polynomial f has an irreducible factor 

for which (h mod F) divides (h0 mod F) 

hO ElFiX, Y] 

in JF u[X], and this factor is 
q 

unique up to units in JF • Further, if g divides f in JF [X, Y], then 
q q 

the followin9 three assertions are equivalent: 

(i) (hmodF) divides (gmodF) in lFu[X]; 
q 

(ii) (h mod Fk) divides (g mod Fk) in (JF [Y]/ (Fk)) [X]; 
q 

(iii) divides g in JF [X, Y]. 
q 

In particular 
k 

(h mod F ) di vi.des 
k 

(h0 mod F ) in (JF [Y]/ (Fk)) [X]. 0 
q 
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( 2. 6) Let m be an integer <>: cSXh. Define L as the collection of poly

k 
nomials g EJF [X, Y] with cS g:,; m and such that (h mod F ) divides 

q X 

(g mod Fk) in (JF [Y]/ (Fk)) [X]. This is a subset of the (m + 1 )-dimensional 
q 

m 
vector space JF (Y) + JF (Y) X + •.• + JF (Y) X • We identify this vector space 

q q q 

·h ()m+lb ·d ·f· ,m i ()[] 'th ( ) wit ]F Y y 1 enti ying £., oa· X EJF Y X Wl ao, al, •.. , am• 
q 1= 1 q 

As in Section 1 the norm lg! of the vector identified with the polynomial 

g EJF [X, Y] 
q 

]F , )m+l 
C \Y 

q 

is defined as The collection L is a lattice in 

and, becaus-e of (2.1), a basis for L is given by 

i - cSxh 0 ::;; i < cS h} u {h X : 
X 

cS h::;; i ::=; m}. 
X 

(2. 7) Proposition. Let b EL satisfy 

(2.8) 

JF [Y]m+l 
q 

Then b is divisible by h 0 in JF [X, Y], 
q 

where h 0 is as in (2.5), 

and in particular gcd (f, b) '7': 1. 

Proof. We give only a sketch of the proof; for the details we refer to the 

proof of [7: (2. 7) J. 

Put g=gcd(f,b), and e=oxg. The projections of the polynomials 

(2.9) 

e 
on JF [Y] X 

q 
+ JF [Y] xe+l + •.• + JF [Y] xcSxf+cSxb-e-1 form a basis for a 

q q 

(cSXf + cSXb - 2 e)-dimensional lattice M' contained in JF [Y]cSxf+cSxb- 2e. 
q 

Define the determinant d(M') EJF [Y] of M' as the determinant of the 
q 

matrix having these projections as rows, then we have 
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Combined with (2.8) we get 

(2.10) 

Let v ElF [X, Y] be some linear combination over lF [Y] of the poly-
q q 

nomials in (2.9) such that ov<e+oh. 
X X 

Assuming that (h mod F) does 

not divide (g mod F) in lF u[X], it is not difficult to prove that 
q 

(2.11) 
k 

(vmodF) =0. 

Now choose a basis for M' such that 

(which is clearly possible because lF [Y] 
q 

is euclidean). The degree with respect to Y of the leading coefficient 

with respect to X of the first oxh of these vectors bi is, according 

to ( 2. 11) , at least u k. Since d (M') equals the product of the leading 

coefficients, we find that 

which is a contradiction with (2.10). We conclude that (h mod F) divides 

(g mod F) in lFu[X], which, combined with Proposition (2.5), proves 
q 

Proposition (2.7). 0 

(2.12) Proposition. Suppose that b 1,b2 , .•. ,bm+l is a reduced basis for 

L (see (1.3), (1.4), (1.5)), and that 

(2.13) 

Let h 0 be as in (2.5). Then the following three assertions are equivalent: 

(i) oxho :s; m; 

(ii) oyb 1 ::;; oyf; 



(iii) b 1 = d h 0 for some d E lF [ X]. 
q 

Proof. Use (1.6), (2.7), and <\h0 :;:;cSYf. D 

13 

Now that we have formulated the counterparts of [7: (2.5), (2.6), (2.7), 

(2.13)] in (2.5), (2.6), (2.7), and (2.12) respectively, we are ready to 

present the algorithm for factorization in lF [X, Y]. 
q 

We may assume that 
i 

f=:E. f. X ElF [X, Y] 
1. 1. q 

is primitive, i.e. 

in lF[Y], 
q 

and that cS f > 0 
X 

and In the sequel 

'we show that F of degree u can be chosen in such a way that 

(2. 14) 

(where the constant factor involved in the O does only depend on E, and 

not on q). 

First we sketch an algorithm to determine the factor of f that has a 

prescribed factor (h mod F) in lFu[X] (cf. (2.5)); this is done in the 
q 

proof of the following proposition. 

(2.15) Proposition. Let h ElF [X, Y] 
q 

be given such that (2.1), (2.3), (2.4), 

and (2.2) with k replaced by 1, are satisfied. The polynomial h 0 , as 

defined in (2.5), can be found in O(oxho oxf5 oyf2 ) arithmetic operations 

in lF • 
q 

Proof. If cS h=o f, 
X X 

then h 0 = f. Suppose that cSxh < oxf. We take k E?l\o 

minimal such that (2.13) holds with m replaced by cS f- 1· X • 

( 2. 16) 

we modify h in such a way that (2.2) also holds for h and this value 
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of k. This can be done by means of a suitable version of Hensel's lemma 

as described for instance in [9: p79-81] (remark that Hensel's lemma can 

be applied because of (2.4)). It can easily be verified that the number of 

arithmetic operations in lF needed for this modification of h is 
q 

where we use the fact that arithmetic operations in lF u can be done in 
q 

operations in lF • Combined with (2 .14) and (2 .16) this becomes 
q 

(2.17) 

For each of the values of m = cSxh, cSXh + 1, .•• , cSXf - 1 in succession we 

apply Algorithm (1. 7) to the (m+ 1)-dimensional lattice L as defined 

in (2.6). But we stop as soon as for one of the values of m we succeed 

in determining h 0 using Proposition (2.12). If this does not occur for 

any m, then 

The norms of the initial vectors in the bases of the lattices are 

bounded by 1+ cSYf(2cSxf-1)/cSxh (cf. (2.16)). If b 1 ,b2 , ••• ,bm is a 

reduced basis then OD(b 1 , b 2 , ... , bm, bm+ 1) ~ lbm+ll. Combining these 

observations with (1.14) and (1.15), we find that the total cost of the 

lattice reductions is 

arithmetic operations in lF. This proves (2.15). D 
q 

(2.18) Theorem. Let f be a polynomial in lF [X, Y]. 
q 

Then the factorization 

of f into irreducible factors in lF [X, Y] can be determined in 
q 

6 2 3 3 m 
O(oxf cSYf +cSXfpm+cSYfpm) arithmetic operations in lFq, where q=p. 
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Proof. The factorization of the gcd of the coefficients of f with 

respect to X can be computed in 
3 

0((\f pm) arithmetic operations in lF 
q 

according to [3: Section 5]. Because the computation of this gcd also 

satisfies the estimates in (2.18), we may assume that f is primitive. We 

give an outline of the algorithm to factor f, and we analyse its running 

time. 

First we calculate the resultant R(f, fr) ElF [Y] of f and its 
q 

derivative f' with respect to X, using the algorithm from [4]. This 

computation takes O(oXf5oyf2 ) arithmetic operations in lF • We assume 
q 

that R(f, f') ;t O; it is well-known how to deal with the case R(f, f') = 0 

(cf. [7: (3.5)]). Notice that, if both 
c}f 
ax and 

c}f 

c}y 
are zero, then f(X, Y) 

= g (Xp, yP) = (h (X, Y) ) p, for polynomials g, h in lF[X,Y]. 
q 

Next we determine a positive integer u and an irreducible polynomial 

FE lF [Y] of degree u in such a way that R (f, f') ¢ 0 modulo F. This can 
q 

be done as follows. If q > c5YR = oYR ( f, f' ) , then we choose an element 

s ElFq such that (Y - s) does not divide R(f, f'), and we put F = Y - s 

and u= 1. This can be done in operations in lF ; if we use the 
q 

parallel evaluation scheme as described in [1: Corollary 2, p294] this can 

be improved to o ( oYR 1 +e:) for every e: > 0 • 

Otherwise, if we take u E ?Z>O minimal such that 

We determine an irreducible polynomial G ElF [Y] of 
q 

degree u with leading coefficient one. Since we can restrict ourselves 

during this search for G to polynomials having O or 1 as coefficient 

for 
u-1 y and because an irreducibility test for a polynomial of degree 

u in 
-2 -3 

lF [Y] takes O (u log q + u ) operations in lF , 
q q 

the determination 

of G 
u-1 -2 -3 

can be done in O (q (u log q + u ) ) , that is 0( 1:YRl+e:) . u operations 



16 

in F. 
q 

(Namely, G of degree u without multiple factors is irreducible 

if and only if the uxu matrix with 
iq i 

(X - X ) modulo G for 0 :a;; i < u as 

columns, has co-rank one.) We put Fu =F [Y]/(G). Since q q there 

is an element S EF- such that R(f, f') ¢ 0 modulo (Y - S). Such an element qU 

S can be found in O(i\Rl+q) operations in JFqu by evaluating R(f, f') 

in oYR + 1 distinct points of F - by means of the parallel evaluation qU 

scheme from [1]. Arithmetic operations in Fu 
q 

take 

arithmetic operations in F , so the determination of 
q 

-2 e:2 
0 (u ) = O(o R ) y 

s can be done in 

0(1\Rl+e:) operations in F , for every e: > 0. Finally, we compute F EF [Y] 
q q 

of degree u:';'.; u as the minimal polynomial of s, by looking for a linear 

dependence relation among 
0 1 u -2 

S , S , ••• , S ; this takes O (u u) operations 

in F. Clearly, F satisfies R(f, f') moduloF~0. 
q 

We conclude that in both cases F and u can be found in O(oYRl+e:) 

arithmetic operations in F , 
q 

for every e: > 0. Since 

this satisfies the estimates in (2.18). Notice that (2.14) is satisfied. 

We now apply Berlekamp's algorithm [3: Section 5] to compute the 

irreducible factorization of (f mod F) in F u[X]. We may assume that the 
q 

factors have leading coefficient one. This computation takes 
3 

O(l\f pmu)· 

arithmetic operations in F • This becomes O ( o f 4+e: o fl+e:) if u ~ 1, 
q X y 

because this only occurs in the case that 
m 

p :a;; oyR ( f, f I ) , so that p mu = 

O(o fl+e: o fl+e:). Since (2.4) is satisfied for all irreducible factors 
X y 

(h mod F) of (f mod F) in F u[X], due to the choice of F and u, the 
q 

complete factorization of f can be found by repeated application of 

Proposition (2.15). This takes o(oxi oyf2 ) 

proves (2.18). D 

operations in F. 
q 

This 
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3. Factorization of polynomials in JFiX1L-2£2 , ••• , Xt-J.• 

In this section we describe an algorithm to factor polynomials in more than 

two variables with coefficients in a finite field. The algorithm that we 

will present here makes use of the algorithm from the previous section. At 

the end of this section we briefly explain an alternative version of our 

algorithm that doesn't depend on the algorithm from Section 2. 

Let be the multivariate polynomial to be fac-

tored, with th~ number of variables t ~ 3. By o. f = n. we denote the 

degree of f in X.; 
J. 

J. J. 

for simplicity we often use n instead of We 

may assume that for 1::;;;i<j::;;;t, and that n 1 ~ 2 • We put N.= 
J 

t 
TT. . (n. + 1). We say that f is primitive if the gcd of the coefficients 

J.=J J. 

of f with respect to x1 equals one (i.e. is a unit in JF). 
q 

Let k 3,k4 , ••• ,kt be a (t-2)-tuple of integers. For gc:~[x1,x2 , 

••• , Xt J we denote by g,ElF[Xl,x2,x. 1,x. 2' ••• ,Xt] J q J+ ]+ 
the polynomial 

k· for 2::;;; j::;;; t; i.e. gj is g with X J. 
2 

::;;; j. Notice that g2 = g. we put g= g • t 

Suppose that an irreducible factor 

that 

( 3. 1) does not divide f in 

k• 
(X. - x2J)) , J. 

substituted for 

h ElFq[Xl, X2] of f 

and 

As in (2.5) we define as the irreducible factor of f 

unique up to units in ]F • 
q 

x., for 3::;;; i 
J. 

is given such 

in 
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-( 3. 2) Let m be an integer with o 1 h ::;; m < n. We define L as the collec-

tion of polynomials g in JFq[x1 , x2 , ••• , Xt] such that: 

(i) o,g::;; n. 
l. l. 

for 3::;; i::;; t, 

(ii) h divides g in ~[x1 , x 2 J. 

This is a subset of the (m+ l)N3-dimensional vector space ~(x2 ) +JFq(X2 )xt 

( ) m n3 nt ( 1) + •.• + JFq x 2 x1 x 3 ••• Xt • We put M = m + N3 • we identify this vector 

M m n3 nt i j k 
space with ~ (x2 ) by identifying :ti=O :tj=O ••• Ii=o aij ••• k x 1 x 3 ••• xt 

with (aoo O, a , ••• , a ) • 
••• 00 ••• 1 mn3 ••• nt 

As in 

Section 1 the norm lgl of the vector associated with the polynomial gE 

JFq[x 1 , x 2 , .•• , xt] is defined as o2g. The collection L is a lattice 

in JFq[x2JMc~(x2 )M of rank M-o/i (cf. (1.16)), and a basis for L 

over ~[x2J is given by 

O::;;i,::;;n, 
J J 

for 3 ::;; j ::;; t, and 

(3.3) Proposition. Suppose that f does not contain multiple factors. If 

(3.4) 
j-1 

k.>:t. 2 k. (2nn.-n.) 
J J.= l. l. l. 

for 3::;; j::;; t, where k 2 = 1, and if b is a non-zero element of L with 

lb I ::;; n 2 , then h 0 divides b in ~[x1 , x2 , ••• , Xt], and in particular 

gcd ( f, b) T" 1. 

Proo£. First we prove that gcd(f, b) T" 1. Suppose that gcd(f, b) = 1. This 

implies that the resultant R=R(f,b) EJFq[x2 ,x3 , ..• ,Xt] of f and b 

(with respect to the variable x1) is unequal to zero. Since h divides 
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both f and :6 ((3.2) (ii)), and because R=R(f,b), we also have R=O. 

This implies that there is an index j with 3 :-:;; j :-:;; t such that 

( 3. 5) R. = o. 
J 

Because of (3.2) (i) and we have that o .b :-:;; n. 
J J 

for 2 :-:;; j :-:;; t. 

Therefore o .Rs m n. + n n. s 2 n n. - n., and also 
J J J J J 

o . R . 1 s 2 n n . - n . , for 
J J- J J 

3 s j st. 
~ ~ k. 

Because R. = R. 1 mod (X. - x2J) we get 
J J- :J 

o2RJ. :-:;; o2R. 1 + k. o. R. 1 s 
J- J J J-

o2R. 1 +k.(2nn.-n.), 
J- J . J J 

so that, with 

(3.6) 
~ j o2R. :-:;I:, 2 k. (2nn. -n.) 

J 1= 1 1 1 

k = 1 
2 

and R2 = R, 

for 2 :-:;; j st. According to (3.5) there must be an index j with 3 s j st 

such that 
~ divides R. 1 , which implies that 
J-

k. s o2R. 1 • 
J J-

Combined with (3.4) and (3.6) this is a contradiction, so that gcd(f, b) ~ 1. 

Suppose that h 0 does not divide b 

does not divide r = gcd(f, b), so that h divides f/r in ~[x1 , x2 J. 

Because o. (f/r) Sn. for 1 :-:;; i St, the same reasoning as above yields 
1 1 

that gcd(f/r, b) ~ 1. This is a contradiction with r=gcd(f,b) because 

f does not contain multiple factors. D 

(3.7) Suppose that f does not contain multiple factors and that f is 

primitive. Let 

(3.8) 
j-1 

k.=TT. 2 (2nn.-1) 
J 1= 1 

for 3 s j st, and let h be chosen such that (3.1) is satisfied. Notice 

that (3.8) implies that (3.4) holds. The divisor h O of f can be deter

mined in the following way. 
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For each of the values of m = 8 1 h, 8 /i + 1, ... , n - 1 in succession we apply 

Algorithm (1.7) to the lattice L as defined in (3.2) (cf. (1.16)). But 

we stop as soon as for one of the values of m we succeed in finding a 

vector b 1 in L with lb 1 I :s; n 2 (cf. (1.6)). Then b 1 = c h 0 for some 

c EJFq[x3 , x 4 , ••. , Xt] (cf. (3.3)), which enables us to compute h 0 • (Notice 

that we can even get c EJF if we increase the rank of L by one at each 
q 

step.) 

If we didn't find a short enough vector in any of the lattices, then 

8 1 h 0 > n - 1 , so that hO = f. 

(3.9) Proposition. Assume that the conditions in (3.7) are satisfied. The 

(8 h 22t-4 2t-1 2 4) th . polynomial 110 can be computed in O 1 0 n N2 N3 ari metic 

operations in ]F • 
q 

Proof. We derive an upper bound B for the norm of the vectors in the 

initial basis for L. From (3.8) we have 

~ t j-1 o2f:s;L 2 n. TT. 2 (2nn. -1) 
J= J l.= l. 

so that 

(3.10) 
t-2 t 

82 f:s;(2n) TT. 2 n .. 
i= l. 

Because E divides in JFiX1 , x 2 J, 

With (3.2) it follows that 

f this bound also holds for 

t-2 
B=O((2n) N2 ). 

From (1.16) we now find that the applications of Algorithm (1.7) together 

can be done in 

operations in 

4 2 81ho 3 
O((o1h0N3) B +Li=81fi+l(o1hON3) B(N3B) 

]F • 
q 

arithmetic 



The final 9cd computations in JFq[x 3 , x 4 , ... , Xt] can be performed in 

operations in ]F , 
q 

according to [4]. D 

( 3. 11) We d,escribe an algorithm to compute the irreducible factorization 

of a primitive polynomial f in JFix1 , x 2 , ... , Xt J. 

We assume that f does not contain multiple factors. This implies 
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that the resultant R=R(f, f') E JFq[x2 , x 3 , ... , Xt] of f and its deriva

tive f' with respect to x 1 is unequal to zero. We take k 3 ,k4 , ••• ,kt 

as in ( 3. 8) . It follows from the reasoning in the proof of (3. 3) that R :;! 0 

for this choice of k 3 , k 4 , ••• , kt, so that f does not contain nultiple 

factors. By means of the algorithm from Section 2 we compute the irreducible 

factors fi of r of degree > 0 in x 1 . Because ( 3 .1) holds for all fac

tors fi of f thus found, we can compute the irreducible factors of f 

by repeated application of the algorithm described in (3.7). 

It is well-known how to deal with the case that f contains multiple 

factors; notice that special attention has to be paid to the case that 

for 1 :S: i :S: t. 

JFq[xl, x2, ... , xt], 

o.f=n. and n. :s:n. for 1:S:i<j:S:t. The factorization of f into 
i i i J 

(3.12) Theorem. Let f be a polynomial in with 

irreducible factors in JFq[x 1 , x 2 , ... , Xt] can be determined in 

2t 2 4 3t-6 3 
O((2n 1) N2 N3 + (2n 1) N2 pm) arithmetic operations in JFq, where 

m t 
q = p , and N. =TT. . (n. + 1) . 

J i=J i 

Proof. First assume that f is primitive. We apply (3.11). From (3.10) 

and (2.18) it follows that the factors of f of degree > 0 in x 1 can 

be found in operations in JF . Repeated 
q 
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application of (3.7) takes operations in lF according 
q 

to (3.9). If f contains multiple factors, the gcd g of f and f' 

can be computed in 
3t-1 2 

0 (n 1 N2) operations in lF (cf. [4]), and the same 
q 

estimates as above are valid for the factorization of f/g because 

o. (f/g) s o.f. It follows that a primitive polynomial can be factored in 
l l 

arithmetic operations in lF. 
q 

Now consider the case that f is not primitive. The computation of 

the gcd cont(f) of the coefficients in lFq[x2 , x 3 , ••• , Xt] of f takes 

operations in lF. Because o. f = o. (cont (f)) + o. (f/cont (f)), 
q l l l 

the proof follows by repeated application of the above reasoning. D 

(3.13) Remark. ;rt is possible to replace the factor h of f in the above 

algorithm by a factor 
~ k 

(h mod F ) of 
~ k 

(fmodF), for a suitably chosen 

irreducible polynomial F ElFq[x2 J and a positive integer k. The presenta-

tion of the resulting algorithm becomes somewhat more complicated in that 

case, but the ideas remain basically the same. An advantage of the alterna

tive formulation is that the algorithm doesn't depend on Theorem (2.18), 

and that the algorithm can be regarded as a direct generalization of the 

algorithm from Section 2. 
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