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A process algebra for the operational semantics of static data flow networks*) 

by 

J.A. Bergstra & J.W. Klop 

ABSTRACT 

An algebra of communicating processes is used to provide an operational 

semantics of data flow networks with a static number of nodes and channels. 

A data flow network is modeled as a system of processes communicating by 

hand shaking. Nodes and channels are treated on equal footing: in both cases 

their semantics is derived as the solution of a fixed point equation in the 

process algebra. 

KEY WORDS & PHRASES: nondeterministic processes, process algebra, merge, 

concUPrency, communication, synchronisation, hand 
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0 . INTRODUCTION 

Process algebra is a useful and mathematically elegant tool for the descrip

tion of processes. We feel that the proper semantics of computational pro

cesses (like data flow) should be given in terms of semantic objects which 

ar~ richer in structure than sets of execution traces. Process algebra pro

vides these objects together with an attractive mathematical structure. 

Therefore we pay attention to modeling data flow networks in terms of pro

cess algebra. To each data flow network a process can be assigned which in 

our view can be taken as its operational semantics. 

Of course we are aware of the defects of this model: mainly, that it 

does restrict real concurrency. However, we are not aware of a more general 

model that still is technically attractive. (In the discussion at the end 

of the paper this issue is also considered.) 

The contents of this document are as follows: 

1. Alfteb11.a of- cofTIITl1.UU..catJ...n.f), p11.oce1/.JeA ( AC'P) 

2. Node-1 and chan.nw 

2. 1. 'P11.oce1/.Jv.J :that. p11.ovide .t.he /.Jentmi:ti..Ll of- data p11.oce.1/.J.i..n.g, node-1. 

2. 2. 'P11.0Cv.J;:J(Vj :that. p11.ovide .t.he ;:Jentmi:ti..Ll f.-o11. data VZ..an;:Jpo;i;t chan.nw. 

3. Ne:two11.k./.J of- p;wceA/.JeA .t.hat cofTIITl1.UU..ca:te b!J; hand /.Jha.k..i..n.ft 

3. 1. A doma.i..n. of- actioM. 

3. 2. A cofTIITl1.UU..ca:tion µuiction. 

3. 3. example. 

J.4. 'P 11.OCv.J;:J /.JigliatlVl.e/.J. 

J. 5. Ne:twollR. . ;:Jiglia:i:.Wl.v.J. 

J.6. Ne:twollR. ab/.Jvz..action. 

J. ?. 5 emmi:ti..Ll • 

5. Di/.JCUA;:Jion 

5. 1. Hid.i..n.g. i.Ji:te11.nal /.J:tep;:J. 

5. 2. Mu.l..:tiple ( ;:Ji.mu,l:taneol,l,j ) .i..n.pu:1:4. 

5. J. Some o.t.he11. pll.OCv.J;:J modw. 
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1. ALGEBRA OF COMMUNICATING PROCESSES (ACP) 

Let A be a finite collection of atomic actions (events), oE A a distinguished 
a, 

symbol denoting deadlock. A denotes the set of (finite and infinite) proces-
a, 

ses over A. A is structured by the operations 

+ 

II 
lL 
I 
0 

nondeterministic choice 

sequential composition 

merge (cooperation) 

left merge 

communication 

deadlock 

On atomic actions a function -1. :AxA + A is given. alb is the action that 

results from simultaneous execution of a and b. We say that a and b commu

nicate if alb F o. 
a, 

The following equational laws Al-A7,Cl-C3,CM1-CM9 hold for A. Here 
a, 

a,b,c range over A and x,y,z over A. 

X + y = y + X 

x + (y + z) = (x + y) + z 

X + X = X 

(x + y).z = x.z + y.z 

(x.y) .z = x. (y.z) 

X + 0 = X 

o .x = o 

alb= bla 

(alb) le= al (blc) 

o I a = o 

Al 

A2 

A3 

A4 

AS 

A6 

A7 

Cl 

C2 

C3 



xllY = x[1_y + yll_x + :xly 

alj_x = a.x 

(ax) ll_y = a (x II y) 

(x + y)[J_z = xll..z + yll_z 

(ax) lb= (alb) .x 

al (bx) = (alb) .x 

(ax) I (by) = (alb). (x!IY) 

(x + y) lz xlz + ylz 

XI (y + z) XI y + XI z 

CMl 

CM2 

CM3 

CM4 

CMS 

CM6 

CM7 

CMS 

CM9 
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For each H <;;;; A an operator t.H is introduced that views the a E. H as deadlock: 

t.H(a) = {a if a~ H 

o if a E:- H 

Lil 

t.2 

t.3 

co 
t.H is a homomorphism on (A,+ , • , a) (but not w.r.t. Ill. 

EXAMPLE. Let c!c = c 0 ; all other communications are a. Then Li[ (ab+ ac) !led] 

Mab [J_ cd + ac IL cd + cd ll_ (ab+ac) + cd I ab + cd I ac] = 

t.[a(bllcd) + a(c!lcd) + c(dll (ab+ac)) + (cla) (dllb) + (c!a) (dllc)] 

t.[a(bcd + c(dllb) + (blc)d) + a(ccd+c(dllc)+(clc)d) + c(dll (ab+ac)) + 

+ a (dllbl + o(dll c) J 

t.[a(bcd + c(dl!b)) + a(ccd + c(dllc) + c 0 d) + c(dl!(ab+ac))] = 

abo + ac 0 d. (Here Li = Li {c}.) 

The following method using diagrams may be helpful: (ab + ac) 11 cd is the 
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product graph 

d 

C 

Diagrammatically, communications as clc = c 0 are 'vector sums'. 

After applying 6 the remains are: 

d 

that is, abo +ac 0 d. 

00 

Remarks on previous litterature. In BERGSTRA & KLOP [7] A is defined; 

essentially one views ACP as an initial algebra specification of the finite 
00 

processes, collected in A, and then one enriches A to A by some limit 
w w 

00 

process. DE BAKKER & ZUCKER [4] use metric completion to obtain A 

however, they deal with infinite A. 

In BERGSTRA & KLOP [7] technical information about ACP is provided, 

such as proofs of the commutativity and associativity of II and I. 
To a large extent A00 can be considered a model of Milner's CCS (see [12]). 

The communication function -I. on atoms also appears in HENNESSY [10]. 



New in ACP is the extensive use made of LL-
Adding the law x.(y + z) = x.y + x.z one obtains a model for trace 

theory as defined in REM [16]. In this setting there are also connections 

to NIVAT [13]. 
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For further information we refer to the discussion at the end of this 

paper. 

2. NODES AND CHANNELS 

This section will provide examples of processes. The subsection 2.2 is 

essential for the rest of the paper. 

2.1. Processes that provide the semantics for data processing nodes. 

We start with a dozen of examples of some typical nodes in the data flow 

networks that will be described later on. 

a B a 

I M V F 

B y B y B 

Identity Merge Nondeterministic Function-
choice application 

a a B a a 

/\ CPl 

y y e: B B y 

Pairing Switch Copy 1 Copy 2 

a a a 

CL E FIRST 

B B y B B 

Clustering Test for> P Even First 
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We will provide processes that correspond to the intended semantics of 

these nodes. In all cases a,a,y denote ports. A value passing at port a 

will be denoted by ad (dED, a finite set of data). If there are just 

two ports a and a we can abbreviate ad to d and ad to~- The processes 

are defined as the (unique) fixed points of (systems of) equations. 

(For an account of solving equations in process algebras see [6].) 

Identity. 

d d d 
Merge. M = Id Ca + a > .y .M 

d d d 
Nondeterministic choice. v = Id a • ca + y ) .v 

Function application. F = ~d.f(d) .F 

Pairing. /\ d e e a d"e I\ = Id (a .a + a .a ) .y . 
,e 

Switch. Along a there are values O and 1. Switch transports the a's toy 

as long as the last value observed along a was O and turns to E if a 1 

is observed; after the next O the switch is back in its original position. 

There are two states: 

Copy 1. 

Copy 2. 

Clustering. 

Test for P. 

Even. 

sw0 and 

swo = 

sw1 = 

CPl = 

CP2 = 

= 

CL2 = 

CL3 = 

Tp = 

E = 

sw1 • 

d d 
Id (a .y .swo + a0 .sw0 + 

1 
a .sw1 > 

d d 0 1 
Id (a .E .sw1 + a .swo + a .sw1 > 

Idd.~-~-CPl 

d d d 
Ida .ca l!y).CP2 

d d d d d 
Ida .ca .y + y .a ).CP2 

Id,e d.e.~-~-CL2 

Id, e, fa. e. f. ~. ~. !_. CL3 

( I 
d d 

I 
d d 

a .a + a .y ) .Tp 
dEP d¢P 

(Pc;;;;: D) 

Id d. ( I e.e.E) 
e -

First. FIRST = Id d. ~ 

(Here Id stands for I . ) 
dED 
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1.2. Processes that provide the semantics for data transport channels. 

The next processes that we consider play a key role in the data flow net

works which are treated in Section 4. In a data flow network the connections 

or channels between the various nodes, as they appeared in the preceding 

subsection, may be of various nature; e.g. in such a channel values may 

retain their input order while being transmitted (as in a queue) or values 

may overtake each other (as in a bag). It is important to realize that such 

channels are processes themselves. 

All channels that we discuss here have two ports. Intuitively, one of 

the ports acts as an input port, the other one as an output port. This dis

tinction however plays no role in the formal theory. 

We consider BAG, QUEUE, SET and STACK. (Bounded queues and stacks can 

equally easy be defined, but we will not do so here.) In order to specify 

QUEUE we use an operator xAa that merges~ into x, but in such a way that 

~ will precede all underlined steps from x. Here the process x has action 

alphabet Au!::_. The rules for A contain the auxiliary operator i::,.. 

xi:::,. a is likie xA a but will take its first step from x (if possible and 

deadlock otherwise.) 

xAa a.x + x,1;, a QMl 

b£':, a = b.a QM2 

b,t,a 0 QM3 

bx,t,a b (xA a) QM4 

bx£:; a = 0 QM5 

(x + ylA~ x.::2::.a + y.t::.~ QM6 

BAG, or B for short, after consuming d can produce one instance of d (that 

is d at its output port). Thus after the action d, B is ill B (basically B 

but with an additional option il. QUEUE, or Q for short, after input action d 

is iAQ which is basically Q but such that ad is preceding all outputs. 
+ 

S is a stack which can terminate whenever it has become empty. Sas in the 

table below is the usual stack. Sing(d) is a process which represents the 

singleton -[d}, i.e. an entity in which d can be stored whenever it is empty 

and from which d can be fetched (d) whenever it is not empty. Finally, SET 
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is just the cooperation of all singletons. The defining equations are: 

B = ~ d(~IIB) BAG l 
de-D 

Q = I d(~#-Q) QUEUE 
dcD 

+ I + + s = (d + d S ) • (~ + as > TERMINATING -dED STACK 

+ s = s .s STACK 

Sing(d) = d.~.Sing(d) SINGLETON 

SET = II Sing(d) SET 
deD 

A further comment on BAG: define B(d) as a bag which can contain only 

occurrences of d, as follows. 

B(d) = d(~IIB(d)). 

Then B(d) is also a counter, counting d's. Now the following identity holds: 

B = II B(d). 
dED 

An account of B(d) is contained in [5]. 

3. NE'IWORKS OF PROCESSES THAT COMMUNICATE BY HAND SHAKING 

3.1. A domain of actions. At the basis of this formalism lies a fixed finite 

set lP of port names, P = {a,S,y, ... }. Ports are binary connections between 

processes. Port connections should be distinguished from channels which are 

processes themselves; a port connection may be thought of as a coincidence 

of port a in process panda in process q: 

(a E lP) 
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(Though n-ary port connections, as e.g. in 

just as well in the formalism of ACP, 

, can be described 

we will refrain from doing so since it 

involves quite some detail.) 

To each port a set D of data (values) is assigned. Two sets of actions 
a 

are associated with a: 

E = {(a,d) I dED} 
a a 

E0 = { (a,d) 0 I d ED } • 
a a 

(Above, (a,d) was written as ad.) E 
a 

is called the set of a-communications 

and E0 is called the set of a-transactions. 
a 
Further, u is a set of primitive atomic actions. Now let E = 

E0 = U E0 • Then 
aGlP a 

A = E u E 0 u U v{ o } • 

LJ E, 
aE:lP a 

We write A= A(lP,{D },U) if A is constructed in this way from P,U and the D. 
a a 

Summarizing in a diagram, A is partitioned as follows: 

I j 
(noncommunicating l 
or internal actions) 

E 
a 

EO 
a 

ES 

EO 
a 

u 

' 

E .... E (communications) 
y 

EO .... E 0 (transactions) 
y 

u{o} (primitive events) 

3.2. A communication function. Given A(lP,{D} ,U) a communication function 
a 

. I. is defined by 

ala=a 0 foraEE. 

(I.e. (a,d) I (a,d) = (a,d) 0 for a E.lP and dE:D .) All other communications 
a 

yield o. The basic axioms Cl-C3 are immediately satisfied by this definition. 

The set I of noncommunicating actions is U u E0 u{ o} . 

Thus we obtain the process algebra 

co co CX) 

A = A(lP,{D },u) = CA ,+,•,11,lL,l,o). 
a 
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3.3. Example. Let D = Df3 = D = D and p = 
a Y 

(We write ad for (a,d)E E .) 
a 

I 
dED 

d d 
a .a .p and q = I 

dED 

d d 
f3 .y .q 

Here p and q 

A successful 

d 
can communicate along port f3 by both performing actions f3 • 

. . di d d) b . d 1 . communication f3 f3 = (f3 ° can e viewe as a va ue passing 

from p to q, 

Now Pllq is the process corresponding to this small network. Taking 

into account the fact that single actions f3d cannot be performed (they have 

to communicate) the process 

~E <Pllq) 
f3 

describes the process as it can be seen by an observer who can communicate 

at ports a and y only. In fact: 

<PII q) r with r I 
d d 

where ~E = = a .(f3 )o.rd 
dED 

e d 
I 

e d 
rd = y .r + a .y • (f3 )O.r 

e 
eED 

Here the actions (f3d) 0 are internal actions of r. Note that r is a buffer 

with capacity 2. 

3.4. Process signatures. 

A pro~ess signature is a tuple cr 

of signature cr if it is in 

00 

( I u E u ••• vE ) • 
al ak 

= {a , ... ,a} of ports from lP. A process is 
1 k 

Typically, a process of signature cr is the possible semantics of a component 

that can communicate (at most) at ports a 1 , .•• ,ak. 
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3.5. Network signatures. 

A network signature Eis a family {cr1 , •.. ,crk} of process signatures subject 

to the following condition: each port aElP is contained in at most two pro

cess signatures cr 1 ,cr 2 of E. Example: 

E: µ £ 

3.6. Network abstraction. 

For a network signature Ewe find a process signature cr(E) containing all 

ports shared by exactly one of the process signatures in E. In the example 

above: 

cr(E) = {µ,)..,£}. 

cr(E) is the signature that corresponds to the network E if we abstract from 

the internal communication structure. 

3.7. Semantics. 

Let E = (cr1 , ... ,crk) be a network signature. Let for each cri~ Ea process 

pi of signature cri be given. We construct a process p = E(p1 , ••• ,pk) of 

signature cr(E) that corresponds to the network E with the p. substituted 
l. 

for the cr.-parameters. The process pis denoted by: 
l. 

where 

H = LJ{E I a is a port occurring in two process signatures of E}. 
a 

H contains the communications that should have succeeded within E(p1 , ••. ,pk), 

and~ eliminates the communication actions that failed. H . 
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4. DATA FLOW NETWORKS 

As an application of communication networks we now turn to pure data flow. 

Consider a network like: 

Here the p. denote nodes (subprocesses) of the data flow network; the a. 
l l 

are ports of the nodes. 

An important observation is that e.g. a2 and a3 denote different ports, 

since, although passing the value a at a2 will eventually invoke that a is 

passed at a3 as well, there may be a long temporal interval in between. 

In fact, the semantics of "a2 a3" is not obvious. Two possibilities 

arise naturally: "---" denotes a queue or a bag (in the latter case 

values can overtake each other). Let us say that a2--)~aJ and also the 

other connections a4---j'-a5, etc., denote unbounded queues. In the diagram 

below these processes are drawn as 

a2--l~ __ _.Q.._ ___ ~l-o,3 

etc. Here the semantics of Q is given by 

' l 
a2 ,a3 

a. (~AQ ) 
aE:A 

where A is as defined in Section 1.2, 'a' denotes passing a value at port a2, 



and 'a' denotes passing a value at port a.3. 

(To be more precise: A 

{ (a.3,d) I d E Da. 3}. Here Da. 2 

Ea, 2 = { (a.2,d) d E Da. 2} and A = Ea. 3 

Da. 3 , and if a= (a.2,d), then~= (a.3,d) .) 

13 

In this way the data flow network is turned into a communication net

work with bi.nary communications: 

The semantics of this network has been described in the previous section. 

Thus, if P1 , ... ,P5 are processes that describe the nodes p 1 , ... ,p5 , then 

describes the process that corresponds to the data flow network. 

We may now view the network as a process with ports a.l,a.6,a.11 and with 

internal actions 

05 

i=ll(Pi) u i~ E~i where J = {1, ... ,13} - {1,6,11}. 

That process is described by 

t-H (P), with H .u E .• 
l.EJ al. 

The external actions of this process are Eal u Ea.6 u Ea.ll. 



14 

5. DISCUSSION 

5.1. Hiding internal steps. 

One may wish to forget entirely the internal actions of the data flow network. 

This may not be possible while staying in the realm of processes. The follo

wing however is easy: 
00 

Let p be a process in A. The set vz.ace(p) of traces in pis defined 

as in [5] (essentially by vz.ace(LX.) = L (vz.ace(x.)), vz.ace(a) = {a}, 
l l 

;f:_11.ace ( o) = ).. , vz.ace (ax) = a• vz.ace (x) . ) Let I be a subset of A that we want to 

hide, i.e. we are interested in p's actions outside I. Let ~I be the homo

morphism 

~I(a) = {a if a~ I 

).. otherwise. 

Then~ (vz.ace(x)) gives information about the behaviour of x, not taking 
I 

into account I. 

5.2. Multiple (simultaneous) inputs. 

Suppose we have a data flow node as in 

0 
y 

where f: DxD+D and Pf describes f. We want, intuitively, that Pf returns 

the value f(a,b) at port y after obtaining inputs a,b at ports a ands. 

In most cases the proper semantics Pf of this situation is found by 

taking Pf as a process with internal states: 

I 
d d 

I 
d d 

pf a .P + s .PS 
dED 

a dED 

d 
I 

e f(d,e) p s .y .Pf a 
eE:D 

d 
I 

e f(d,e) 
PS a .y .Pf. 

eED 

However,, if one really means that inputs d and e must be passed simul-
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taneously to@, then ternary commun1cations have to be used. Let us assume 

that the channels to be connected at a.,13 act like bags, since for queues 

there is no real objection against the previous solution. So let us take 

into account the channels that connect to@ at ports a.,13: 

>.. 

y 

In Section 1.2 it was explained that these input channels are specified by 

the equations 

BKO. l K d. (a. d 11 BKO.) 

dE:D 

I d d >..13 
>.. .(13 11B ). 

dE:D 

In order to describe the desired behaviour, we replace this subnetwork by: 

y 
A AKµ 

where a ternary port connectionµ is used and where the variants Pf, B , 

BA>..µ are · b given y: 

BKµ I 
d . ( I 

d11e 11 i{\J l K µ 
dED ee-:D 

A},µ 
I 

e . ( I 
d/\e 

IIB"µl B >.. µ 
ee-:D dED 

pf I 
dAe f(d,e) A 

= µ .y .Pf 
d,eeDxD 

Here dAe is a coding of the pair (d,e), and D11D is the port alphabet ofµ. 
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AKµ 
The channel B reacts on an input d at K by introducing the potential 

communication dAe atµ. At portµ, communication works as follows: 

(µ dAe I µ dAe I µ d/\e) = (µ d11e) 0 

and this completes the description of the desired simultaneous input behavi

our. 

It requires an essentially straightforward, but notationally quite 

nontrivial expose to discuss n-ary ports in full generality. 

5.3. Some other process models. 

We will make a few remarks about the process models described in BROCK& 

ACKERMAN [9], PRATT (15], PARK (14] and BACK & MANNILA [2]. 

As demonstrated in [9], there is no straightforward generalization of 

"Kahn's principle" (see KAHN (11]), as it is called in PARK (14], to the 

case of nondeterministic data flow networks. That is, a semantics for such 

networks in terms of histor-y relations (as a generalization of Kahn's his

tory functions for deterministic networks) turns out not to be adequate 

(i.e. 'abstract'), by lack of sufficient information of causality (or better, 

precedence) relations between the events occurring in a network. 

This extra information is supplied by PARK (14] by the artificial device 

of inserting 'hiatons' (silent moves) into the traces of events .in order 

to bring out the necessary precedence relations between events. 

BROCK & ACKERMAN [ 9] use scenario 's instead: these are, as in PRATT [.15] , 

partially ordered multisets of events. (Scenario's in [9] are more restricted 

than in (15]: e.g. in a scenario as in [9] no precedence relations occur 

between events at different input ports of the same node.) In compositions of 

processes the restrictions in the scenario's have to be respected. A process 

is now a set of scenario's. A scenario can be best understood as a generali

zation of a linear tr-ace of events. In fact, as BACK & MANNILA (2] show, 

trac·e sets are already an abstract semantics for processes; the extra non

determinism embodied by the partial order in a scenario is not necessary to 

ensure abstractness. But it may be necessary, as PRATT (15] points out, to 

describe processes where some events cannot be temporarily related, e.g. in 

a situation where parts of the processes involved have their own 'local' 
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time and where a global time is lacking. Or, there may be situations in 

which events have some duration in time and overlap each other. In this 

respect scenario's can describe processes which the process model which 

we use cannot: events for us are points in a global time. However, the 

processes above are not simply sets of traces: they contain moreover the 

information of the nondeterministic choices which are made by the process. 

E.g. the processes a(b + c) and ab+ ac have the same trace sets but are 

unequal since they differ in the timing of their choices. This difference 

cannot be overlooked since it results in a different deadlock behaviour 

when embedded in a context. The processes above may be infinite, other 

than in PRM~T [ 15] who considers only finite scenario's, or in BACK & 

MANNILA [2] where prefix closed sets of finite traces are used. As Back 

and Mannila remark, their model of processes therefore does not describe 

deadlock behaviour and termination behaviour. 

The di~;tinctive feature between the approaches considered above and 

our approach is the possibility of algebraically manipulating and speci

fying processes and networks. This algebraization of process theory starts, 

of course, with MILNER (12]. 

Another point is that we have not distinguished between input and 

output ports in processes and networks of processes, in contrast with e.g. 

PRATT (15] and in accordance with BACK & MANNILA [2]. Indeed, it turns out 

that there is a pleasing symmetry between the supposed input and output 

behaviour of a network: the distinction between input and output ports 

is one of view, and not inherent to the network. In the model of data flow 

above the flow of data can just as well be seen to be in the 'reverse' 

direction; in fact, the intuition of 'flow' is rather deceptive and a more 

apt intuition would be that of a cellular automaton. 

For an operational semantics of nondeterministic data flow networks 

involving nodes (with internal states) that are given by sets of •reduction 

rules', see ARNOLD [l]. The reduction rules specify from what subset of the 

set of input ports of a node, values are simultaneously taken to be processed 

and how these input values are processed. It seems essential in this model 

that the channels are unbounded queues. Using multiple inputs, as in Section 

5.2, the Arnold model can be modeled in terms of ACF (although it would be 

notationally tedious to do so). 
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Finally, for a denotational semantics of dynamic data flow networks, 

where nodes can be created (in contrast with our static networks), see 

BOHM & DE BRUIN [8]. 
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