
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.W. KLOP

IW 222/83

A PROCESS ALGEBRA FOR THE OPERATIONAL SEMANTICS
OF STATIC DATA FLOW NETWORKS

Preprint

~
MC

FEBRUARI ·

kruislaan 413 1098 SJ amsterdam

SIBUOTHEEK MATHEMATISCH CENTRUM
·"•· -AMSTERDAM-

Printed at the Mathe.matical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 1 Ith February 1946, i:S a non-profit institution for the
promotion of pure and applied mathematics and computer science. It is sponsored by the
Netherlands Government through the Netherlands Organization for the Advancement of
Pure Research (Z. W.O.).

1980 Mathematics subject classification: 68Bl0, 68C01, 68D25, 68F20

1982 CR. Categories: D.1.3, F.1.1, F.1.2, F.3.2

A process algebra for the operational semantics of static data flow networks*)

by

J.A. Bergstra & J.W. Klop

ABSTRACT

An algebra of communicating processes is used to provide an operational

semantics of data flow networks with a static number of nodes and channels.

A data flow network is modeled as a system of processes communicating by

hand shaking. Nodes and channels are treated on equal footing: in both cases

their semantics is derived as the solution of a fixed point equation in the

process algebra.

KEY WORDS & PHRASES: nondeterministic processes, process algebra, merge,

concUPrency, communication, synchronisation, hand

shaking, operational semantics, data flow networks

*) This report will be submitted for publication elsewhere.

1

0 . INTRODUCTION

Process algebra is a useful and mathematically elegant tool for the descrip

tion of processes. We feel that the proper semantics of computational pro

cesses (like data flow) should be given in terms of semantic objects which

ar~ richer in structure than sets of execution traces. Process algebra pro

vides these objects together with an attractive mathematical structure.

Therefore we pay attention to modeling data flow networks in terms of pro

cess algebra. To each data flow network a process can be assigned which in

our view can be taken as its operational semantics.

Of course we are aware of the defects of this model: mainly, that it

does restrict real concurrency. However, we are not aware of a more general

model that still is technically attractive. (In the discussion at the end

of the paper this issue is also considered.)

The contents of this document are as follows:

1. Alfteb11.a of- cofTIITl1.UU..catJ...n.f), p11.oce1/.JeA (AC'P)

2. Node-1 and chan.nw

2. 1. 'P11.oce1/.Jv.J :that. p11.ovide .t.he /.Jentmi:ti..Ll of- data p11.oce.1/.J.i..n.g, node-1.

2. 2. 'P11.0Cv.J;:J(Vj :that. p11.ovide .t.he ;:Jentmi:ti..Ll f.-o11. data VZ..an;:Jpo;i;t chan.nw.

3. Ne:two11.k./.J of- p;wceA/.JeA .t.hat cofTIITl1.UU..ca:te b!J; hand /.Jha.k..i..n.ft

3. 1. A doma.i..n. of- actioM.

3. 2. A cofTIITl1.UU..ca:tion µuiction.

3. 3. example.

J.4. 'P 11.OCv.J;:J /.JigliatlVl.e/.J.

J. 5. Ne:twollR. . ;:Jiglia:i:.Wl.v.J.

J.6. Ne:twollR. ab/.Jvz..action.

J. ?. 5 emmi:ti..Ll •

5. Di/.JCUA;:Jion

5. 1. Hid.i..n.g. i.Ji:te11.nal /.J:tep;:J.

5. 2. Mu.l..:tiple (;:Ji.mu,l:taneol,l,j) .i..n.pu:1:4.

5. J. Some o.t.he11. pll.OCv.J;:J modw.

2

1. ALGEBRA OF COMMUNICATING PROCESSES (ACP)

Let A be a finite collection of atomic actions (events), oE A a distinguished
a,

symbol denoting deadlock. A denotes the set of (finite and infinite) proces-
a,

ses over A. A is structured by the operations

+

II
lL
I
0

nondeterministic choice

sequential composition

merge (cooperation)

left merge

communication

deadlock

On atomic actions a function -1. :AxA + A is given. alb is the action that

results from simultaneous execution of a and b. We say that a and b commu

nicate if alb F o.
a,

The following equational laws Al-A7,Cl-C3,CM1-CM9 hold for A. Here
a,

a,b,c range over A and x,y,z over A.

X + y = y + X

x + (y + z) = (x + y) + z

X + X = X

(x + y).z = x.z + y.z

(x.y) .z = x. (y.z)

X + 0 = X

o .x = o

alb= bla

(alb) le= al (blc)

o I a = o

Al

A2

A3

A4

AS

A6

A7

Cl

C2

C3

xllY = x[1_y + yll_x + :xly

alj_x = a.x

(ax) ll_y = a (x II y)

(x + y)[J_z = xll..z + yll_z

(ax) lb= (alb) .x

al (bx) = (alb) .x

(ax) I (by) = (alb). (x!IY)

(x + y) lz xlz + ylz

XI (y + z) XI y + XI z

CMl

CM2

CM3

CM4

CMS

CM6

CM7

CMS

CM9

3

For each H <;;;; A an operator t.H is introduced that views the a E. H as deadlock:

t.H(a) = {a if a~ H

o if a E:- H

Lil

t.2

t.3

co
t.H is a homomorphism on (A,+ , • , a) (but not w.r.t. Ill.

EXAMPLE. Let c!c = c 0 ; all other communications are a. Then Li[(ab+ ac) !led]

Mab [J_ cd + ac IL cd + cd ll_ (ab+ac) + cd I ab + cd I ac] =

t.[a(bllcd) + a(c!lcd) + c(dll (ab+ac)) + (cla) (dllb) + (c!a) (dllc)]

t.[a(bcd + c(dllb) + (blc)d) + a(ccd+c(dllc)+(clc)d) + c(dll (ab+ac)) +

+ a (dllbl + o(dll c) J

t.[a(bcd + c(dl!b)) + a(ccd + c(dllc) + c 0 d) + c(dl!(ab+ac))] =

abo + ac 0 d. (Here Li = Li {c}.)

The following method using diagrams may be helpful: (ab + ac) 11 cd is the

4

product graph

d

C

Diagrammatically, communications as clc = c 0 are 'vector sums'.

After applying 6 the remains are:

d

that is, abo +ac 0 d.

00

Remarks on previous litterature. In BERGSTRA & KLOP [7] A is defined;

essentially one views ACP as an initial algebra specification of the finite
00

processes, collected in A, and then one enriches A to A by some limit
w w

00

process. DE BAKKER & ZUCKER [4] use metric completion to obtain A

however, they deal with infinite A.

In BERGSTRA & KLOP [7] technical information about ACP is provided,

such as proofs of the commutativity and associativity of II and I.
To a large extent A00 can be considered a model of Milner's CCS (see [12]).

The communication function -I. on atoms also appears in HENNESSY [10].

New in ACP is the extensive use made of LL-
Adding the law x.(y + z) = x.y + x.z one obtains a model for trace

theory as defined in REM [16]. In this setting there are also connections

to NIVAT [13].

5

For further information we refer to the discussion at the end of this

paper.

2. NODES AND CHANNELS

This section will provide examples of processes. The subsection 2.2 is

essential for the rest of the paper.

2.1. Processes that provide the semantics for data processing nodes.

We start with a dozen of examples of some typical nodes in the data flow

networks that will be described later on.

a B a

I M V F

B y B y B

Identity Merge Nondeterministic Function-
choice application

a a B a a

/\ CPl

y y e: B B y

Pairing Switch Copy 1 Copy 2

a a a

CL E FIRST

B B y B B

Clustering Test for> P Even First

6

We will provide processes that correspond to the intended semantics of

these nodes. In all cases a,a,y denote ports. A value passing at port a

will be denoted by ad (dED, a finite set of data). If there are just

two ports a and a we can abbreviate ad to d and ad to~- The processes

are defined as the (unique) fixed points of (systems of) equations.

(For an account of solving equations in process algebras see [6].)

Identity.

d d d
Merge. M = Id Ca + a > .y .M

d d d
Nondeterministic choice. v = Id a • ca + y) .v

Function application. F = ~d.f(d) .F

Pairing. /\ d e e a d"e I\ = Id (a .a + a .a) .y .
,e

Switch. Along a there are values O and 1. Switch transports the a's toy

as long as the last value observed along a was O and turns to E if a 1

is observed; after the next O the switch is back in its original position.

There are two states:

Copy 1.

Copy 2.

Clustering.

Test for P.

Even.

sw0 and

swo =

sw1 =

CPl =

CP2 =

=

CL2 =

CL3 =

Tp =

E =

sw1 •

d d
Id (a .y .swo + a0 .sw0 +

1
a .sw1 >

d d 0 1
Id (a .E .sw1 + a .swo + a .sw1 >

Idd.~-~-CPl

d d d
Ida .ca l!y).CP2

d d d d d
Ida .ca .y + y .a).CP2

Id,e d.e.~-~-CL2

Id, e, fa. e. f. ~. ~. !_. CL3

(I
d d

I
d d

a .a + a .y) .Tp
dEP d¢P

(Pc;;;;: D)

Id d. (I e.e.E)
e -

First. FIRST = Id d. ~

(Here Id stands for I .)
dED

7

1.2. Processes that provide the semantics for data transport channels.

The next processes that we consider play a key role in the data flow net

works which are treated in Section 4. In a data flow network the connections

or channels between the various nodes, as they appeared in the preceding

subsection, may be of various nature; e.g. in such a channel values may

retain their input order while being transmitted (as in a queue) or values

may overtake each other (as in a bag). It is important to realize that such

channels are processes themselves.

All channels that we discuss here have two ports. Intuitively, one of

the ports acts as an input port, the other one as an output port. This dis

tinction however plays no role in the formal theory.

We consider BAG, QUEUE, SET and STACK. (Bounded queues and stacks can

equally easy be defined, but we will not do so here.) In order to specify

QUEUE we use an operator xAa that merges~ into x, but in such a way that

~ will precede all underlined steps from x. Here the process x has action

alphabet Au!::_. The rules for A contain the auxiliary operator i::,..

xi:::,. a is likie xA a but will take its first step from x (if possible and

deadlock otherwise.)

xAa a.x + x,1;, a QMl

b£':, a = b.a QM2

b,t,a 0 QM3

bx,t,a b (xA a) QM4

bx£:; a = 0 QM5

(x + ylA~ x.::2::.a + y.t::.~ QM6

BAG, or B for short, after consuming d can produce one instance of d (that

is d at its output port). Thus after the action d, B is ill B (basically B

but with an additional option il. QUEUE, or Q for short, after input action d

is iAQ which is basically Q but such that ad is preceding all outputs.
+

S is a stack which can terminate whenever it has become empty. Sas in the

table below is the usual stack. Sing(d) is a process which represents the

singleton -[d}, i.e. an entity in which d can be stored whenever it is empty

and from which d can be fetched (d) whenever it is not empty. Finally, SET

8

is just the cooperation of all singletons. The defining equations are:

B = ~ d(~IIB) BAG l
de-D

Q = I d(~#-Q) QUEUE
dcD

+ I + + s = (d + d S) • (~ + as > TERMINATING -dED STACK

+ s = s .s STACK

Sing(d) = d.~.Sing(d) SINGLETON

SET = II Sing(d) SET
deD

A further comment on BAG: define B(d) as a bag which can contain only

occurrences of d, as follows.

B(d) = d(~IIB(d)).

Then B(d) is also a counter, counting d's. Now the following identity holds:

B = II B(d).
dED

An account of B(d) is contained in [5].

3. NE'IWORKS OF PROCESSES THAT COMMUNICATE BY HAND SHAKING

3.1. A domain of actions. At the basis of this formalism lies a fixed finite

set lP of port names, P = {a,S,y, ... }. Ports are binary connections between

processes. Port connections should be distinguished from channels which are

processes themselves; a port connection may be thought of as a coincidence

of port a in process panda in process q:

(a E lP)

9

(Though n-ary port connections, as e.g. in

just as well in the formalism of ACP,

, can be described

we will refrain from doing so since it

involves quite some detail.)

To each port a set D of data (values) is assigned. Two sets of actions
a

are associated with a:

E = {(a,d) I dED}
a a

E0 = { (a,d) 0 I d ED } •
a a

(Above, (a,d) was written as ad.) E
a

is called the set of a-communications

and E0 is called the set of a-transactions.
a
Further, u is a set of primitive atomic actions. Now let E =

E0 = U E0 • Then
aGlP a

A = E u E 0 u U v{ o } •

LJ E,
aE:lP a

We write A= A(lP,{D },U) if A is constructed in this way from P,U and the D.
a a

Summarizing in a diagram, A is partitioned as follows:

I j
(noncommunicating l
or internal actions)

E
a

EO
a

ES

EO
a

u

'

E E (communications)
y

EO E 0 (transactions)
y

u{o} (primitive events)

3.2. A communication function. Given A(lP,{D} ,U) a communication function
a

. I. is defined by

ala=a 0 foraEE.

(I.e. (a,d) I (a,d) = (a,d) 0 for a E.lP and dE:D .) All other communications
a

yield o. The basic axioms Cl-C3 are immediately satisfied by this definition.

The set I of noncommunicating actions is U u E0 u{ o} .

Thus we obtain the process algebra

co co CX)

A = A(lP,{D },u) = CA ,+,•,11,lL,l,o).
a

10

3.3. Example. Let D = Df3 = D = D and p =
a Y

(We write ad for (a,d)E E .)
a

I
dED

d d
a .a .p and q = I

dED

d d
f3 .y .q

Here p and q

A successful

d
can communicate along port f3 by both performing actions f3 •

. . di d d) b . d 1 . communication f3 f3 = (f3 ° can e viewe as a va ue passing

from p to q,

Now Pllq is the process corresponding to this small network. Taking

into account the fact that single actions f3d cannot be performed (they have

to communicate) the process

~E <Pllq)
f3

describes the process as it can be seen by an observer who can communicate

at ports a and y only. In fact:

<PII q) r with r I
d d

where ~E = = a .(f3)o.rd
dED

e d
I

e d
rd = y .r + a .y • (f3)O.r

e
eED

Here the actions (f3d) 0 are internal actions of r. Note that r is a buffer

with capacity 2.

3.4. Process signatures.

A pro~ess signature is a tuple cr

of signature cr if it is in

00

(I u E u ••• vE) •
al ak

= {a , ... ,a} of ports from lP. A process is
1 k

Typically, a process of signature cr is the possible semantics of a component

that can communicate (at most) at ports a 1 , .•• ,ak.

11

3.5. Network signatures.

A network signature Eis a family {cr1 , •.. ,crk} of process signatures subject

to the following condition: each port aElP is contained in at most two pro

cess signatures cr 1 ,cr 2 of E. Example:

E: µ £

3.6. Network abstraction.

For a network signature Ewe find a process signature cr(E) containing all

ports shared by exactly one of the process signatures in E. In the example

above:

cr(E) = {µ,)..,£}.

cr(E) is the signature that corresponds to the network E if we abstract from

the internal communication structure.

3.7. Semantics.

Let E = (cr1 , ... ,crk) be a network signature. Let for each cri~ Ea process

pi of signature cri be given. We construct a process p = E(p1 , ••• ,pk) of

signature cr(E) that corresponds to the network E with the p. substituted
l.

for the cr.-parameters. The process pis denoted by:
l.

where

H = LJ{E I a is a port occurring in two process signatures of E}.
a

H contains the communications that should have succeeded within E(p1 , ••. ,pk),

and~ eliminates the communication actions that failed. H .

12

4. DATA FLOW NETWORKS

As an application of communication networks we now turn to pure data flow.

Consider a network like:

Here the p. denote nodes (subprocesses) of the data flow network; the a.
l l

are ports of the nodes.

An important observation is that e.g. a2 and a3 denote different ports,

since, although passing the value a at a2 will eventually invoke that a is

passed at a3 as well, there may be a long temporal interval in between.

In fact, the semantics of "a2 a3" is not obvious. Two possibilities

arise naturally: "---" denotes a queue or a bag (in the latter case

values can overtake each other). Let us say that a2--)~aJ and also the

other connections a4---j'-a5, etc., denote unbounded queues. In the diagram

below these processes are drawn as

a2--l~ __ _.Q.._ ___ ~l-o,3

etc. Here the semantics of Q is given by

' l
a2 ,a3

a. (~AQ)
aE:A

where A is as defined in Section 1.2, 'a' denotes passing a value at port a2,

and 'a' denotes passing a value at port a.3.

(To be more precise: A

{ (a.3,d) I d E Da. 3}. Here Da. 2

Ea, 2 = { (a.2,d) d E Da. 2} and A = Ea. 3

Da. 3 , and if a= (a.2,d), then~= (a.3,d) .)

13

In this way the data flow network is turned into a communication net

work with bi.nary communications:

The semantics of this network has been described in the previous section.

Thus, if P1 , ... ,P5 are processes that describe the nodes p 1 , ... ,p5 , then

describes the process that corresponds to the data flow network.

We may now view the network as a process with ports a.l,a.6,a.11 and with

internal actions

05

i=ll(Pi) u i~ E~i where J = {1, ... ,13} - {1,6,11}.

That process is described by

t-H (P), with H .u E .•
l.EJ al.

The external actions of this process are Eal u Ea.6 u Ea.ll.

14

5. DISCUSSION

5.1. Hiding internal steps.

One may wish to forget entirely the internal actions of the data flow network.

This may not be possible while staying in the realm of processes. The follo

wing however is easy:
00

Let p be a process in A. The set vz.ace(p) of traces in pis defined

as in [5] (essentially by vz.ace(LX.) = L (vz.ace(x.)), vz.ace(a) = {a},
l l

;f:_11.ace (o) =).. , vz.ace (ax) = a• vz.ace (x) .) Let I be a subset of A that we want to

hide, i.e. we are interested in p's actions outside I. Let ~I be the homo

morphism

~I(a) = {a if a~ I

).. otherwise.

Then~ (vz.ace(x)) gives information about the behaviour of x, not taking
I

into account I.

5.2. Multiple (simultaneous) inputs.

Suppose we have a data flow node as in

0
y

where f: DxD+D and Pf describes f. We want, intuitively, that Pf returns

the value f(a,b) at port y after obtaining inputs a,b at ports a ands.

In most cases the proper semantics Pf of this situation is found by

taking Pf as a process with internal states:

I
d d

I
d d

pf a .P + s .PS
dED

a dED

d
I

e f(d,e) p s .y .Pf a
eE:D

d
I

e f(d,e)
PS a .y .Pf.

eED

However,, if one really means that inputs d and e must be passed simul-

15

taneously to@, then ternary commun1cations have to be used. Let us assume

that the channels to be connected at a.,13 act like bags, since for queues

there is no real objection against the previous solution. So let us take

into account the channels that connect to@ at ports a.,13:

>..

y

In Section 1.2 it was explained that these input channels are specified by

the equations

BKO. l K d. (a. d 11 BKO.)

dE:D

I d d >..13
>.. .(13 11B).

dE:D

In order to describe the desired behaviour, we replace this subnetwork by:

y
A AKµ

where a ternary port connectionµ is used and where the variants Pf, B ,

BA>..µ are · b given y:

BKµ I
d . (I

d11e 11 i{\J l K µ
dED ee-:D

A},µ
I

e . (I
d/\e

IIB"µl B >.. µ
ee-:D dED

pf I
dAe f(d,e) A

= µ .y .Pf
d,eeDxD

Here dAe is a coding of the pair (d,e), and D11D is the port alphabet ofµ.

16

AKµ
The channel B reacts on an input d at K by introducing the potential

communication dAe atµ. At portµ, communication works as follows:

(µ dAe I µ dAe I µ d/\e) = (µ d11e) 0

and this completes the description of the desired simultaneous input behavi

our.

It requires an essentially straightforward, but notationally quite

nontrivial expose to discuss n-ary ports in full generality.

5.3. Some other process models.

We will make a few remarks about the process models described in BROCK&

ACKERMAN [9], PRATT (15], PARK (14] and BACK & MANNILA [2].

As demonstrated in [9], there is no straightforward generalization of

"Kahn's principle" (see KAHN (11]), as it is called in PARK (14], to the

case of nondeterministic data flow networks. That is, a semantics for such

networks in terms of histor-y relations (as a generalization of Kahn's his

tory functions for deterministic networks) turns out not to be adequate

(i.e. 'abstract'), by lack of sufficient information of causality (or better,

precedence) relations between the events occurring in a network.

This extra information is supplied by PARK (14] by the artificial device

of inserting 'hiatons' (silent moves) into the traces of events .in order

to bring out the necessary precedence relations between events.

BROCK & ACKERMAN [9] use scenario 's instead: these are, as in PRATT [.15] ,

partially ordered multisets of events. (Scenario's in [9] are more restricted

than in (15]: e.g. in a scenario as in [9] no precedence relations occur

between events at different input ports of the same node.) In compositions of

processes the restrictions in the scenario's have to be respected. A process

is now a set of scenario's. A scenario can be best understood as a generali

zation of a linear tr-ace of events. In fact, as BACK & MANNILA (2] show,

trac·e sets are already an abstract semantics for processes; the extra non

determinism embodied by the partial order in a scenario is not necessary to

ensure abstractness. But it may be necessary, as PRATT (15] points out, to

describe processes where some events cannot be temporarily related, e.g. in

a situation where parts of the processes involved have their own 'local'

17

time and where a global time is lacking. Or, there may be situations in

which events have some duration in time and overlap each other. In this

respect scenario's can describe processes which the process model which

we use cannot: events for us are points in a global time. However, the

processes above are not simply sets of traces: they contain moreover the

information of the nondeterministic choices which are made by the process.

E.g. the processes a(b + c) and ab+ ac have the same trace sets but are

unequal since they differ in the timing of their choices. This difference

cannot be overlooked since it results in a different deadlock behaviour

when embedded in a context. The processes above may be infinite, other

than in PRM~T [15] who considers only finite scenario's, or in BACK &

MANNILA [2] where prefix closed sets of finite traces are used. As Back

and Mannila remark, their model of processes therefore does not describe

deadlock behaviour and termination behaviour.

The di~;tinctive feature between the approaches considered above and

our approach is the possibility of algebraically manipulating and speci

fying processes and networks. This algebraization of process theory starts,

of course, with MILNER (12].

Another point is that we have not distinguished between input and

output ports in processes and networks of processes, in contrast with e.g.

PRATT (15] and in accordance with BACK & MANNILA [2]. Indeed, it turns out

that there is a pleasing symmetry between the supposed input and output

behaviour of a network: the distinction between input and output ports

is one of view, and not inherent to the network. In the model of data flow

above the flow of data can just as well be seen to be in the 'reverse'

direction; in fact, the intuition of 'flow' is rather deceptive and a more

apt intuition would be that of a cellular automaton.

For an operational semantics of nondeterministic data flow networks

involving nodes (with internal states) that are given by sets of •reduction

rules', see ARNOLD [l]. The reduction rules specify from what subset of the

set of input ports of a node, values are simultaneously taken to be processed

and how these input values are processed. It seems essential in this model

that the channels are unbounded queues. Using multiple inputs, as in Section

5.2, the Arnold model can be modeled in terms of ACF (although it would be

notationally tedious to do so).

18

Finally, for a denotational semantics of dynamic data flow networks,

where nodes can be created (in contrast with our static networks), see

BOHM & DE BRUIN [8].

REFERENCES

[1] ARNOLD, A. ,
Semantique des processus communicants,
R.A.I.R.O. Inforrnatique theorique/Theoretical Informatics, Vol.15,
No.2, p.103-139 (1981).

[2] BACK, R.J.R. & H. MANNILA,
A ref~ of Kahn's semntics to handle non:-determmism ard carrrunwati.on,
Extended abstract, Preprint University of Helsinki, 1982.

[3] DE BAKKER, J.W. & J.I. ZUCKER,
Denotational semantics of concurrency,
Proc. 14th ACM Syrnp. on Theory of Computing, pp.153-158, 1982.

[4] DE BAKKER, J.W. & J.I. ZUCKER,
Processes and the denotational semantics of concurrency,
Department of Computer Science Technical Report IW 209/82,
Mathematisch centrurn, Amsterdam 1982.

[5] DE BAKKER, J.W., J.A. BERGSTRA, J.W. KLOP & J.-J.CH. MEYER,
Linear time and branching time semantics for recursion with merge,
Department of Computer Science Technical Report IW 211/82,
Mathematisch Centrurn, Amsterdam 1982.

[6] BERGSTRA, J.A. & J.W. KLOP,
Fixed point semantics in process.algebras,
Department of Computer Science Technical Report IW 206/82,
Mathematisch Centrurn, Amsterdam 1982.

[7] BERGSTRA, J.A. & J.W. KLOP,
Process algebra for communication and mutual exclusion,
Department of Computer Science Technical Report IW 218/83,
Mathematisch Centrurn, Amsterdam 1983.

[8] BOHM, A.P.W. & A. DE BRUIN,
Dynamic networks of parallel processes,
Department of Computer Science Technical Report IW 192/82,
Mathematisch centrurn, Amsterdam 1982.

[9] BROCK, J.D. & W.B. ACKERMAN,
Scenarios: a model of non-determinate computation,
Proc. Formalization of Programming concepts (J. Diaz & I.
Ramos, eds.), p.252-259, Springer LNCS 107, 1981.

[10] HENNESSY, M.,
A term model for synchronous processes,
Information and Control 51, p.58-75 (1981).

[11] KAHN, G.,
The semantics of a simple Language for parallel programming,
Proc. IFIP 74, North-Holland, 1974.

[12] MILNER, R.,
A Calculus for Communicating Systems,
Springer LNCS 92, 1980.

[13] NIVAT, M.,
Infinite words, infinite trees, infinite computations,
Foundations of Computer Science III.2 (J.W. de Bakker & J.van
Leeuwen, eds.) pp.3-52, Mathematical Centre Tracts 109, Mathe
matisch Centrum, Amsterdam 1979.

[14] PARK, D.,
Nondeterministic networks: notes on some anomalies,
To appear in the Proc. of the 4th Advanced Course on Foundations
of Computer Science, Amsterdam, June 1982.

[15] PRATT, V.R.,
On the composition of processes,
Proc. 9th ACM Syrop. on Principles of Programming Languages,
p.213-223, 1982.

[16] REM, M.,

19

Partially ordered computations, with applications to VLSI design,
To appear in the Proc. of the 4th Advanced Course on Foundations
of Computer Science, Amsterdam, June 1982.

