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PC-compactness, a necessary condition for the existence of sound and complete 

logics of partial correctness*) 

by 

. **) J.A. Bergstra & J. Tiuryn 

ABSTRACT 

A first order theory is called PC-compact if each asserted program 

true in all of its models is already implied by a finite subset of it. If 

a structure has a complete Hoare's Logic then its first order theory must 

be PC-compact; moreover its partial correctness theory must be decidable 

relative to this first order theory. 

This identifies two necessary conditions for Hoare's Logic (or any 

sound extension of it) to be complete on a structure. We provide an example 

of a structure that satisfies both conditions, on which Hoare's Logic is 

incomplete but which does possess a sound and complete logic of partial 

correctness. Further we study PC-compactness by analysing various example 

structures. 

KEY WORDS & PHRASES: Hoa.re's Logia, while-programs, soundness,aompZeteness, 

PC-compactness 

*) This paper is not for review, it will be submitted for publication 

elsewhere. 
**) • . . Dep~ of Mathematics, University of Warsaw, Poland. 





I. INTRODUCTION 

This paper studies general and natural necessary conditions that are 

true of structures A which happen to have a complete Hoare's Logic for their 

while-programs. Especially we consider the following conditions: 

(I) Th(A) is PC-compact 

(II) PC(A) is recursive in Th(A). 

These conditions (to be explained in detail below) are quite natural and 

interesting for themselves. 

We show that HL(A) may be incomplete even if I and 1I are satisfied 

for A. The new concept of PC-compactness is investigated by evaluating it 

on various interesting example structures where it will show an unexpectedly 

irregular behaviour. 

If HL(A) is incomplete it is conceivable that some sound proof system 

HL'(A), properly extending HL(A), can be found which is complete. If so 

then we observe that also in this more general case the conditions I and 

1I must necessarily be satisfied. (At this stage it will be essential to 

have a convincing concept of a sound proof system at hand). We infer that 

given A satisfying conditions I and 1I but having HL incomplete it is 

worthwhile to search for a sound and complete extension of HL(A). Applying 

this on the example mentioned before we succeed in finding such an exten­

sion. It is not clear whether conditions I and 1I imply the existence of 

a sound and complete logic. 

Before discussing connections with the litterature we will briefly 

consider some technical and definitional matters. Let Ebe a single or many­

sorted signature. Mod (E) denotes the class of all E-structures, L(E) the 

corresponding first order language. For A E Mod(E), Th(A) = {p E L(E) I A I= p}, 

the first order theory of A. For an asserted triple {p} S {q} over Ewe 

write T I= {p} S {q} if for all A E Mod(E), A I= T implies A F {p} S {q}. 

PC(T), the partial correctness theory of T consists of all asserted 

triples {p} R {q} with T F {p} S {q}. For A E Mod(E), PC(A) denotes 

PC(Th(A)) and coincides with the set of all asserted programs true in A. 

I.I. DEFINITION.Tis PC-compact if for all {p} S {q} E PC(T) there is a 

finite subtheory T' ,=. T with {p} S {q} E PC(T'). 
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On the syntactic side we have for each theory T ~ L(E) a proof system 

HL (T), Hoare' s Logic, proving asserted programs over E. HL is sound in the 

sense that HL(T) t- {p} S {q} implies T I= {p} S {q}, for all T and {p} S {q}. 

For a fixed structure A, HL(A) is an abbreviation of HL(Th(A)), it is 

complete if it proves all of PC(A). We summarize some facts of prime impor­

tance in a proposition. 

1.2. PROPOSITION. 

(i) If HL(A) is corrrplete then Th(A) is PC-corrrpact. 

(ii) Th(A) is PC-corrrpact if and only if for each {p} S {q} tY'Ue in A there 

is a sentence cf> E Th(A) such that cf> 1= {p} S {q}. 

(iii) If A and Bare elementary equivalent (Th(A)=Th(B)) then PC(A) = PC(B). 

(iv) If HL(A) is corrrplete then PC(A) is recursive in Th(A). 

PROOF. (i) follows from the finitary nature of HL. (ii) is obvious, (iii) 

follows from the fact that {p} S {q} can be written as an infinite conjunc­

tion &1 {p} Sn {q}, where Sn denotes a program running n steps of S; 

{p} sn {q} moreover is a formula in L(E). (iv) if HL(A) is complete then 

HL(A) = PC(A); as HL(A) is recursively enumerable in Th(A) by the nature 

of a proof system, on the other hand {p} S {q} t/. PC(A) iff 3nA I= {p} Sn {q} 

iff 3n {p} Sn {q} E Th(A) which shows that PC(A) is also co-recursively 

enumerable in Th(A). Combining both facts PC(A) is recursive in Th(A). 

From this proposition we find that conditions I and lI are necessary 

for the completeness of HL(A). It can easily be seen that both conditions 

are independe~nt. For instance the structure A= (w,S,O) satisfies condition 

I but not condition lI whereas the structure [N,N] satisfies condition 

lI but not cc;ndition I (see 3.1.). Consequently the conjunction I A lI is 

a meaningful stronger necessary condition for completeness of HL(A). 

We will now briefly discuss results from previous work·connected with 

our topic. WAND [9] presents a nice example of a structure A with HL(A) 

incomplete. One can show that Wand's example violates condition IT. COOK 

[5] introduce!s the now familiar concept of expressiveness which constitutes 

a condition on a structure A sufficient for the completeness of HL(A). In 

BERGSTRA & TUCKER [3] it is shown that expressiveness is not a necessary cocdition 

however. Condition lI studied in BERGSTRA, CHMIELIENSKA & TIURYN [1]; it is 
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shown that condition II is not sufficient for completeness of HL. Using 

two-sorted structures this fact is derived more easily in BERGSTRA & TUCKER 

[2]. Essentially [1] show how to transform examples using two-sorted 

structures into similar examples using single sorted structures. We take 

that as a justification for freely using two-sorted structures in this 

paper. 

Four concrete str~ctures will be considered more ciosely. These examp-
/ 

les all are two sorted structures [M1 ,M2] resulting from combining two dis­

joint (and disconnected) single sorted structures M1 and M2 into a two­

sorted structure. 

[N,B] with N = (w,S,t,•,<,O) and 

B = ({t,f}, v,7,T,F), the booleans. 

[N,A] with A = (w,S,O), in LAMBEK [7] 

A is called Abacus arithmetic. 

[N ,AO] with AO=· (w,S ,< ,0), Abacus arithmetic with ordering. 

[N,N] two copies of N. 

The only essential point of two-sorted structures is that we may use 

separate variables for both sorts. For clarity it may be useful to have 

different names S',t',•',<',O' in connection with the second sort. 

Each of these structures satisfies condition II. This follows from 

the following simple fact that can serve as a test for condition II in most 

(practical) cases: 

1 • 3. PROPOSITION. Suppose A is aorrrputab 'le and Th (N) is PeauPsive in Th (A)., 

trzen PC(A) is reaUPsive in Th(A). 

Concerning condition I, PC-compactness,wewill prove the following 

theorem. 

1. 4. THEOREM. 

(i) Th([N,B]) is PC-aompaat. (3) 
(ii) Th([N,A]) is not PC-aompaat. (3.3) 

(iii) Th([N,AO]) is PC-aorrrpaat. (3.5) 
(iv) Th([N,N]) is not PC-aompaat. (3. 1) 
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This behaviour of PC-compactness is rather surprising and the proof of 

(iii) suggests that [N,AO], though not a pathological structure, might be 

a rather isolated example of a PC-compact structure,of such complexity. 

Relating these results to proof systems we obtain the following theorem. 

1 • 5. THEOREM. 

(i) [N,AO] satisfies both conditions I and II but HL([N,AOJ) is inaom-

pZete. (3.7) 

(ii) There exists a sound 'logia of partial ao:rrectness HL' ([N ,AO]) properly 

extending HL([N,AO]) which is complete. (3.6) 

We will conclude the paper with a listing of four open questions that 

naturally arise from our results. 

2. PRELIMINARIES ON LOGIC 

First of all we will need logical information about the structures 

A,AO and N. The following proposition contains all nontrivial facts that 

will play a role in the proofs of both theorems 1.4 and 1.5. 

2.1. PROPOSITION. 

(i) Th(A) has no finite a:r;iomatisation. 

(ii) Eaoh finite T .=. Th(A) has a model that contains a finite S-cycle· as 

a substructure. 

(iii) Th(AO) is finitely a:r;iomatizable. 

(iv) There is a forrrru.Za <l>(x) E L(N) such that {n IN l= <I><!!_)} is not reO'Ursively 

enumerable. 

PROOF. (i), (ii) and (iii) follow from various results in CHANG & KEISLER 

[4]; (iv) follows from the fact that all arithmetical relations are definable 

in N (see SHOENFIELD [8] for more details). 

Then we need a simple fact about two-sorted structur~s of the form 

[M,M']. 
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2.2. SEPARATION OF VARIABLES LEMMA. For each <I> E L([M,M']) there exists 

a formula ljJ equivalent to <I> which is a propositional combination of formulae 

in L(Ml) u L(M2). 

PROOF. A proof is given in [2]. Note here that L(M1) and L(M2) are supposed 

to use different variables. 
n 'i i . i 

In particular ljJ can be written in the form i~l (i/J 1 A i/J 2) w1.th i/J 1 E L(M1) 
i and ljJ 2 E L(M2). 

Thirdly we must explain what exactly will be meant by a (sound) proof 

system for partial correctness •. Given a signature La logic of partial 

correctness LL for Lis a recursively enumerable set of pairs: 

{(<j>.,{p.}S.{q.}) I iEw} 
1. l. l. l. 

with <j>. E L(L) and {p.} S. {q.} an asserted triple over L. We write for 
l. l. l. l. 

T .=_ L(L) 

LL (T) i- {p} S {q} 

if for some <I>, T i-<1> and (<j>,{p}S{q}) E LL. LL is sound if for all T and 

{p} s {q} 

LL (T) i- {p} S {q} implies T I= {p} S {q}. 

Note that soundness of LL is a notion not related to any particular 

interpretation A E Mod (L). 

We put 

Lr(A) is sound if LL is sound, and complete if LL(A) = PC(A). 

HLL can be considered as an LL as follows: Let (<j>,{p}S{q}) EL~ if 

<I> is of the form <1> OA ••• A$ 2(k _ l) with k the smallest number of applications 

of the rule of consequence necessary in a HL-proof of {p} S {q} and with 

<1> 2n, <1> 2n+l the logical information required to pass then-th application 
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of the rule of consequence in a proof of {p} S {q}. 

3. PROOFS OF THE THEOREMS 

We will prove the various parts of both theorems 1.4 and 1.5 in the 

form of a series of propositions that cover individqal parts. Th 1.4. (i), 

however, follows from the results in [2]; as a mather of fact for any finite 

structure F, [N,F] is expressive and therefore satisfies conditions I and 

II. All remaining parts require some argument and have a special proposition 

devoted to them. 

3.1. PROPOSITION. Th([N,N]) is not PC-compact. 

PROOF. We will destinguish both copies of N by writing [N,N'] and using 

the superscript prime on all symbols of its signature. 

Now let cf> (x) be a formula in L (N) such that {n I N I= cf> (n)} is not recur­

sively enumerable (see 2.1. (iv)). Let cf>'(y) be a version of cf> for L(N'), 

and let z be one more variable for N. Consider the program R: 

z := O; y := O; 

while z j x doz:= S(z); y := S'(y) od 

It is clear by inspection that 

[N,N'] I= {cf>(x)} R {cf>'(y)}. 

We will then show that there is no sentence e true of [N,N'] such that 

e I= {cf>(x)} R {cf>' (y)}. Indeed suppose such a 0 exists. Using the separation 

of variables lemma e can equivalently be written as follow: 

I- e +-+ .t 1 ( e. A e ! ) with e. E L (N) , e ! E L (N) • · 
1= 1 1 1 1 

Because [N ,N'] I= e we may choose an i such that [N ,N'] I= e. A e ! . Clearly 
1 1 

e. A e ! I= {cf>(x)} R {cf>' (y)}. We will derive a contradiction from this fact. 
1 1 



Let Q = Q, n + 1 = S (n) _, Q' = Q', n + 1' = S' (n') and write 

A= {n E wlN I= qi(n)} 

lB = {n E wl8! l=Hn')} 
1 -

B is recursiiirely enumerable (by construction) and due to the choice of cp, 

A is not recursively enumerable so A# B. Taking into account that NI= 8! 
1 

we see that A => B. So we may choose n E A- B. Then by the completeness 
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theorem ther1e is a model N" of 8 i in which N" I= 7qi (E,') • On the other hand 

[N,N"] If {cp(x)} R {cp' (y)} which follows by giving x the initial value n. 

Indeed because n E A, [N ,N"] I= cp (n) but after termination of: S, y equals n' 

and [N ,N"] i;: cp' (n'). This gives the required contradiction. 

3. 2. PROPOSITION. If [M1 ,M2 J satisfies condition I then so do M1 and M2 • 

PROOF. Supppose M1 I= {p} S {q}, then [M1 ,M2 ] I= {p} S {q}. Choose 

8 E L([Ml ,Mz]) such that 8 I= {p} S {q}. Write 8 +-+ .;1 (8 ! A 0f) with 
. 1 2 1 11 

8~ E L(M.). Choose i such that [M1 ,M2 ] I= 8. A 8.; then 8. A 0? I= {p} R {q} 
1 J 1 1 1 1 1 

and obviously 8 i I= {p} R {q} which state of affairs we were looking for. 

3.3. PROPOSITION. [N,A] does not satisfy condition I. 

PROOF. In view of the previous proposition it suffices to show that Th(A) 

is not PC-crnnpact. To see this consider the asserted program 

{true} R {false} 

with R: z := S(x) 

while z "'f x doz := S(z) od 

Clearly A I= { true} R {false}; assume that A I= cp and qi I= { true} R {false}. 

Using 2.1. (ii) qi has a model A* in which a finite S-cycle exists. Choosing 

as an initial value of x some element in such a cycle one finds that 

A' If {true} R {false} thus contradicting the assumption on qi. It follows 

that A and [N ,A] do not meet condition I. 
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3.4. PROPOSITION. If Tis finiteiy a.:x:ioma.tizabie then Tis PC-aompaat. 

PROOF. Obvious • 

3.5. PROPOSITION. Th([N,AO]) is PC-aompaat. 

PROOF. From proposition 2.1. (iii) we obtain a sentence~€ L(AO) which 

finitely axiomatizes Th(AO) i.e. for each 1/J € L(AO), 1/J € Th(AO) -. ~ ~ 1/J. 

So Th(AO) is PC-_compact, a promising fact in view of 3. 2. We will now use 

the rather accidental fact that there is an easy interpretation of L(AO) 

in L(N). Let L(N) = (S,+, •,<,O) and L(AO) = (S',<',O') and use variables 

x. for N and x! for AO. Omitting the superscripts yields a mapping 
1 1 

8: L(AO) ~ L(N). Now suppose that [N,AO] F {p} R {q}; in several steps a 

will be constructed such that [N ,AO] Fa and a F {p} R {q}. 

Step 1. Transform the asserted program {p} R {q} to an equivalent one, 

{p*} R* {q*} by changing the free and bound variables in such a way that 

variables x. ranging over N have even indices and variables x! ranging over 
1 1 

AO will have odd indices. Observe: 

and even 

Step 2. The interpretation 8 can be extended to asserted programs. Write 

8 ({p*} R* {q*}) for {8(p*)} 8 (R*) {8(q*)}; this is an asserted triple 

over E(N) true in N. Because N is expressive, HL(N) is complete and N is 

PC-compact; so choose 1/J. € Th(N) with 'i' F8({p*}R*{q*}) and put 

a::: ijJ AM~) A ~ (here ~ is the sentence that axiomatises Th(AO)). 

By construction [N ,AO] Fa. In order to prove a F {p} R {q} it suffices 
* * * - -to show a F {p } R {q }. Suppose [N,AO] is some model of a, then 

N p=ijl A 8(~) and AO p=~. Let Ebe the signature of AO_and·denote with NE 
- L *** - *** the E-reduct of N. Because ij, r- 8({p }R {q }) , N F 8({p }R {q }) and thus 

[N,NE] F {p*} R* {q*} (this uses the fact that 8 will map AO-variables in 

{p*} R* {q*} to variables different from the N-variables occurring in it). 
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Because N F A(q,), NE F <j> and consequently NE and AO are elementary equiva­

lent. Using the separation of variables letmlla also [N,NE] and [N,AO] are 

elementary equivalent. Consequently PC([N,NEJ) = PC([N,AO]) and a fortiori 

{p*} R* {q*} E PC([N,AO]) which had to be shown. 

3.6. PROPOSITION. There is a sound logic LE., with E.the signature of [N,AO]., 

such that LE([N,AO]) proves aU asserted programs true in [N,AO]. (I.e. 

LE([N,AO]) iH complete). 

PROOF. Using definitions and notations from the preceding proof we can 

explicitly define LE as follow: 

I * * * LE= {(t/JACl{<j>) A<j>,{p}R{q}) HLE(t/J) !-L\({p }R {q })}. 

The completeness as well as soundness are now an itmllediate corollary to the 

previous proClf. 

3.7. PROPOSITION. HL([N,AO]) is incomplete. 

PROOF. Let n = Sn(_Q_), !!. = S'n(Q') where again we use superscripts to distin­

guish the symbols of E(AO) from those in E(N). The diagonal of [N,AO] is 

the set { (!!_,!!_ 11 ) I n E w}. Using the separation of variables letmlla one finds 

that the diagonal is not definable in [N,AO]. 

Let x 1, x2 be variables for N and y 1 , Yz be variables for AO. Consider 

the following programs R1 and R2 • 

RI: X2 := 

y 1 := 

Yz := 

while 

~io x2 

Yz 
od 

:icl := 

0 

O' 

0 

X2 

:= 

:= 

0 

:f, XI 

S(x2) 

s I (y 2) 

x 2 := 0 

y 1 := 0 

while Yz # y 1 

do y l := S' (y l) 

x 1 := S(x1) 

od 
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It follows that [N,AO] I= {true}Ri;R2{x1 =x2 Ay 1 =y2}. In order to prove 

this fact in HL([N,AO]) we need an intermediate assertion between R1 and R2 
equivalent to the predicate 

x 1 = 0 A y = 0 A 3n(x =n A y =-=n'). 
1 2 - 2 -

Definability of this predicate entails definability of the diagonal in 

[N,AO] thus leading to a contradiction. 

4. CONCLUDING REMARKS AND OPEN QUESTIONS 

We have shown that for some fixed datatype A, HL(A) is incomplete but 

nevertheless a sound and complete proof system LE(A) can b~ found. Searching 

for a complete special purpose logic in this fashion competes with more 

rigorous options like adding extra functions or relations in order to 

obtain an expressive structure, or with adding second order features to 

assertion language or proof system, 

Various problems remains unsettled, we mention four of these: 

(i) Let PR.A= (w,S,+,O). Is Th([N,PRA]) PC-compact? 

(ii) If A satisfies conditions I and IT, does there exists a sound logic 

LE with LE(A) complete? 

(iii) If A is computable and HL(A) is complete, must A be expressive? 

(iv) Let K be the class of all E-structures A for which there exists a 

sound and complete LE(A). Can one find a single logic LE which is 

unifonnly complete for all A EK? (If so this would be the logic of 

partial correctness for E). 
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