
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

IW 224/83

J.A. BERGSTRA, A. CMIELIENSKA & J. TIURYN

ANOTHER INCOMPLETENESS THEOREM FOR HOARE'S LOGIC

Preprint

~
MC

MAART

kruislaan 413 1098 SJ amsterdam

SlW.lOTHEEK MAUIEMATISCH CENTHUM
... ,..._, -AMS'lERDAM-

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11th February 1946, is a non-profit institution for the
promotion of pure and applied mathematics and computer science. It is sponsored by the
Netherlands Government through the Netherlands Organization for the Advancement of
Pure Research (Z. W.O.).

1980 Mathematics subject classification 035D35, 03D75, 68B10

1982 CR Categories: D.2.4, F.3.1

Another incompleteness theorem for Hoare' s Logic*)

by

. . **) . ***) J.A. Bergstra, A. Cm1el1enska & J. Tiuryn

ABSTRACT

It is known that if Hoare's rules are complete for a first-order struc­

ture A then the set of partial correctness assertions true over A is recur­

sive in the first order theory of A. We show that the converse is not true.

Namely, there is a first-order structure C such that the set of partial

correctness assertions true over C is recursive in the theory of C but Hoare' s

Logic is not complete for C.

KEY WORDS & PHRASES: Hoare's Logia, while-programs~ soundness~aompleteness

*)

**)

***)

This report will be submitted for publication elsewhere.

Mathematical Institute, University of Torun, Poland.

Mathematical Institute, University of Warsaw, Poland. The third author

was partially supported by the SNF Grant No. MCS8010707, and by a

grant to the M. I. T. Laboratory for Computer Science by the LB .M.

Corporation.

INTRODUCTION

A first-order partial correctness assertion is a formula {P}a{Q}, where

P and Qare first-order formulae and a is a while-program. The assertion

{P}a{Q} means that if Pis true of some machine state, and if the programa

halts when started this state, then the formula Q will be true in the

halting state of a. Since the set of valid partial correctness assertions

is IT~, there is no finitary sound and complete axiom system for partial

correctness (see HA.REL, MEYER & PRATT [6]).

COOK [4] has shown that the axiom system composed of the rules of HOARE

[7] together with the first-order theory of a structure is complete for a

certain class of structures. More precisely, for any first-order structure

A the system HL(A) consists of Hoare's inference rules together with the

first-order theory of A. The structure A is expressive if, for any while­

program a and first-order formula P, the strongest postcondition of a with

respect to P, sp(P,a) = {1E !Alw : there exists b E !Alw such that a with
• • •

input b terminates in A with output a and A F P[b]} is first-order definable

in A. Cook's theorem states that if A is expressive, then HL(A) is complete.

In general, however, the set PC(A) of partial correctness assertions that

are valid over A is IT~, i.e. co-r.e., in the first-order theory Th(A) of

A (cf. BERGSTRA & TUCKER [1]) whereas HL(A) is r: 0 , i.e. r.e. in Th(A). Thus

HL(A) is not complete for arbitrary A.

Although expressiveness is sufficient to guarantee the completeness of

HL(A), it is not a necessary condition. For example, any nonstandard model

of the integers has a complete Hoare logic, but cannot be expressive (see

BERSTRA & TUCKER [2]). Moreover, proving properties of programs over

expressive structures may be considered a degenerate case. When expressive­

ness holds, partial correctness assertions reduce to first order formulae.

Since PC(A) is always IT~ in Th(A) and HL(A) is I:~ in Th(A), then if

HL(A) is complete the partial correctness theory PC(A) is recursive in Th(A).

This paper studies the following question: is HL(A) complete for every

structure A such that PC(A) is recursive in TH(A)? We show that it is not.

We will present a general construction of counterexamples for this situa­

tion. A corollary of our construction is that the ability to code finite

sequences cannot be removed from the hypothesis of Harel's completeness

2

theorem for arithmetical universes (HAREL [5]).

As pointed out in HA.REL ,[5], any structure A can be expanded to a

structure with a complete Hoare logic by expanding to an arithmetical uni­

verse. This expansion may increase the degree of undecidability of the first­

order theory of A. However, when m..(A) is incomplete but PC(A) is recursive

in Th(A), the structure A may be expanded in a much simpler way to obtain

a complete Hoare logic. We may consider proof systems m..(L,E) over a first

order theory E in language L. m..(A) is then identified with ID.,(L,Th(A)),

when A is an .t-structure. It follows from BERGSTRA & TUCKER [3] that A can

be expanded to an L*-structure A* with L *-L being finite, such that for some

decidable theory TS Th(A*), PC(A) S HL(L*,Th(A)uT). Thus Th(A) u T, where

Tis decidable but formulated in an extended language, contains enough

information to derive all of PC(A).

2. PRELIMINARIES

We begin by presenting a version of Hoare's inference rules that suits

our purposes. In the following rules, P, Q and R denote first-order formula~,

B denotes any quantifier-free first-order formula, ta term, and x a variable.

We use Q[t/x] to denote the formula Q with t substituted for all free occur­

rences of x. Greek letters a and S denote arbitrary while--programs.

(Assignment Rule)

(Composition Rule)

(Conditional rule)

(Iteration rule)

(Oracle axioms)

P ::> Q[t/x] ~ {P}x := t{Q}

{P}a{Q} ,{~}S{R}
{P}a;S R}

{PAB}a{Q},{PA-, B}S{Q}
{P} if B then a else S fi {Q}

P:>R, {RAB}a{R} ,RA -, B::>Q
{P} while B do a od {Q}

Every PE Th(A) is an axiom.

In the composition rule, the formula Q is called an intermediate assertion,

and in the iteration rule, R is called the loop invariant. Formally, m..(A)

denotes the set of all asserted programs {P}a{Q} provable from Th(A) using

3

the above rules.

The reader may easily verify that the Rule of Consequence,

is a derived rule of HL. Another rule that is easily derived is

{P}a.{Q} ~ {3xP}a.{3xQ},

where xis a variable that does not occur in a.. Together, these two rules

imply that superfluous free variables may be eliminated from invariants and

intermediate assertions of proofs.

LEMMA 1. Let X be the set of aU variables oceurring free in P, Q, or a.. If

HL(A) proves {P}a.{Q}, then there exists a proof of {P}a.{Q} in HL(A) using

only invariants and intermediate assertions with free variables in X.

The idea of the proof is as follows. Suppose we have a proof of {P}a.{Q}

in HL(A) and assume that xis free in P or Q but does not occur in a.. This

proof can be transformed into another proof by quantifying over x in each

formula.

We define the disjoint union A$ B of first-order structures A and B
in order to state our theorems. Let L1 and L2 be two similarity types. Let

A and B be unary predicate symbols and i a constant symbol, none of which

belong to L1 u t 2• Let A, B be L1-, t 2-structures, respectively. For any

integer i and set X let Xx i denote Xx {i}. Let L = L1 u t 2 u {A,B,i}. We

defineanL-structureAeBwith carrier IAEJBI = IAlxO u IBlxt u {<2,2>}. We

interpret A as the characteristic predicate of IAlxO, Bas the characteristic

predicate of IBlxt and i as <2,2>. We interpret the t 1 (respectively L2)

function symbols as in A (as in B, respectively), provided all arguments

are taken from IAlxO (from IBlxt, resp). O,therwise, we take the value of

a function to be i. We interpret L1 (respectively L2) predicate symbols as

in A(as in B, resp.), provided all arguments are taken from IA I xO (from

IBlxt, resp.), and set to be false elsewhere. In particular, if

R € L1 n L2, then either all arguments of R should be taken from IAlxO or

all from I BI x 1 •

4

Clearly a meaningful alternative to this definition would be to use two­

sorted structure, but the disjoint union keeps us closer to the standard

Hoare formalis:m.

We are now in position to formulate two general theorems which answer the

question posed in the introduction.

THEOREM 1 • For• every A there is a structure B such that PC (AeB) is recursive

in Th(Ae~3).

THEOREM 2. For• every two structures A a-nd B if HL(A) is incorrrp"lete, then so

is HL(AeB).

The following corollary, stated as a claim in the introduction, follows

innnediately from these theorems.

COROLLARY. There is a structure C such that PC(C) is recursive in Th(C) a-nd

HL(C) is inconrplete.

PROOF. Take Abo be any structure for which HL(A) is incomplete (cf. [1,8]

for examples). Then, according to Theorem I, exists B such that PC(AeB) is

recursive in Th(AeB). Moreover, according to Theorem 2, HL(AeB) is incom­

plete. Thus we can put C = AeB.

This corollary states a result about the actual formal system HL that aims

at proving partial correctness facts true in all generality.

In the s einse of BERGSTRA & TUCKER [1] (Thm. 2. 3) it certainly is con­

ceivable that a special purpose logic of partial correctness can be devised

for some given structure a which is complete even if HL(a) is incomplete.

Indeed that can be done as soon as PC(a) is recursive in Th(a). But the

artificial logics thus obtained may well be quite unsatisfactory.

Theorem 1 also gives us some insight into Harel's theorem on arithmetical

universes (cf.. [5]). Let N stand for the standard model of arithmatic. By

Theorem 2 we know that for any A with HL(A) incomplete, HL(AeN) is incom­

plete. Harel's theorem says that if Bis a structure which contains the

standard model of arithmetic (as a first order definable part of B) and if

B has the ability to code finite sequences of elements from !B1, then the

5

first order language is expressive for while-programs over B, and therefore

HL(B) is complete. Since obviously N is first order definable part of AeH,
but HL(AsNJ is not complete, Harel's encoding assumption is necessary to

ensure the completeness of his axioms.

We prove Theorem 1 in Section 3 and Theorem 2 in Section 4.

3. ADDING AN EXPRESSIVE STRUCTURE

This section shows that for any structure A, there is a structure B

such that PC(AeB) is recursive in Th(AeB). If the domain of A is finite,

then B may be chosen to be any finite structure. Then AeB is finite and

PC(AeB) is recursive in Th(AeB). When A is infinite, we will define B to be

a copy of A which also has the standard arithmetic operations defined on

the elements of its domain. By construction, the first-order theorey of B

will contain both the first-order theory of A and the first-order theory

of arithmetic. As a consequence, PC(AeB) will be recursive in Th(AeB).

However, the structure AeB need not be expressive since there may not be

any way to code pairs of elements of IAl in Th(AeB).

Assume now that A is finite and its similarity type is L1• We construct

B so that PC(AeB) is recursive in Th(AeB) as follows. First, we expand A

to an arithmetic universe in the sense of [5]. To do this, we add a defin­

ing predicate for "non negative integers" N, arithmetic operations, constants

0 and 1, and in addition, we add a pairing function. The resulting structure,

B, has the same domain as A but has a richer similarity type which we

denote by L.2• For technical reasons we assume that L1 and L2 are disjoint.

It is clear that Th(B) is recursive in Th(AeB). This follows innnedi­

ately from the definition of thee-construction. Because 8 is expressive

(being an arithmetical universe), HL(B) is complete. Therefore PC(B) is

recursive in Th(B). Thus, it remains to be shown that PC(AeB) is many-one

reducible to PC(B).

We will outline the reduction of PC(AeB) to PC(B) by showing an effec­

tive simulation of computations on AeB by those on B.

In order to describe a smooth translation of assertions and programs,

we introduce an infinite family of new variables: y0 ,y1, •••• The transla­

tion will take a formula with variables x0 ,x1, ••• to a formula with

6

'
variables x0 ,y0 ,x1,y1, ••• with double the number of quantifiers.

Because the structure B contains in its language names for 0,1 and 2

(since it contains the language of arithmetic) it is natural to identify the

elements of IBI which correspond to these names with the actual numbers

0,1,2. By means of this identification, we can view

IAEtBI = IAI x {0} u IBI x {l} u {<2,2>}

as a subset of IBI x IBI (recall that IAl=IBI). In what follows we use the

projection functions on the coordinates, ~1 and ~2 on elements of !Bl x !Bf.
We show an effective translation Tr of first order formulae over the

language of A Et B to first order formulae over L2• The translation will

have the property that for every P(x1, ••• ,xn) over the language of A Et B,
and for all c 1, ••• ,cn E IAEtBI,

iff

Because the formal definition of Tr is slightly cwnbersome we present its

details. We first introduce some notations. For a term t we define L 1(t) to

be true if tis a term over language L1 and false otherwise.

We define Tr inductively. Suppose P is an equation t = t'., where t

contains the variables X = {x.: i E J}, and t' contains the variables
l.

X' = {x.: i E J'}. Then we want Tr(P) to be true iff
l.

(a) both t and t' have values in IAI X 0 and t = t',
(b) both t and t' have values in IBI X 1 and t = t' ,
(c) both t and t' yield .l.

or

or

Formulae (a) - (c) can be written formally as follows:

(a')

(b') • JA J, (y. =I) A t = t'
l.€ u l.

7

(c') [.VJ(y.,'O) v-,L1(t)]A [.VJ(y.,'l)]A ie i iE i

[. VJ' (y.;'O) v-,Ll (t') J A [.vJ, (y.,'1)]. iE i iE i

Suppose P is an atomic formula R(t 1, ... , tn) with R E L1 and let X = {xi: i E J}

be the set of variables that occur in P. Then Tr(P) is:

n {[./\J· (y.=O) A .t-.1 L,1(t.)]v .AJ (y.=l)}AR(t1, ••• ,t). iE i J= J iE i n

If Pis A(t), then Tr(P) is:

.AJ(y.=O) A L1 (t). ie i

The cases for P of the form B(t) or R(t1, ••• tn) with RE L2-L1 are simpler

and we omit them.

If Pis Pl v P2, then Tr(P) is Tr(P 1) v Tr(P2).

If P has free variables X = {x.: i E J}, then Tr(-, P) is
i

.AJ(y.=O v y.=1 v y.=2) A -iTr(P).
iE i i i

Finally, Tr(3x.P) is
i

3x. 3y.((y.=Ovy.=1 vy.=2) ATr(P)).
i i i i i

This concludes the inductive definition of Tr for formulae.

The next step is to extend Tr to programs a over the language of

AeB so that for all first order formulae P, Q over the language of AeB

(*) AeB =- {P}a{Q} iff B == {Tr (P)} Tr (a){Tr(Q)}.

Let a be a program and let {xO, ••• ,xn-l} contain all variables occur­

ring in a. The translation Tr(a) will use variables xO, Yo,' ••• , xn-l, Yn-l

in such a way that the following diagram commutes:

8

I A e BI n _____ ___..;,._ ______ •

I B ! 2n ______ T_r_(_a_) ______ • IBl 2n

We first show how to define Tr for assignment statements. Let x. := t be
1

an assignment statement, where tis a term over the language of AeB. Let

X = {x.: j E J} be the set of all variables which occur in t.
J

If t is a variable, say x.,
J

tis over L1 and not a variable,

then Tr(x. := t)
1

then Tr (x. := t)
1

is x. :=
1

is:

x.;
J

if ./\J y. = 0 then x. := t; y. := 0 else x. := 2; y. := 2 fi.
- JE 1 -- 1 1 -- 1 1

If t is over L2 and not a variable, then Tr(xi := t) is

if ./\J y. = I then x. := t; y. := else x. := 2; y. := 2 fi.
- JE 1 -- 1 1 -- 1 1

In all remaining cases TR(x. := t) is x. := 2; y. := 2.
1 1 1

y. : = y.. If
1 J

Tr(a) is a program in which every assignment statement x. := t 1n a
1

is replaced by TR(x. := t), and every test P in a is replaced by Tr (P).
1

It follows from(*) that Tr is many-one reduction of PC(AeB) to PC(B).

This completes the proof of Theorem I.

4. HOARE'S LOGIC OVER DIRECT SUMS

In this section we will show that incompleteness of HL(A) implies

incompleteness of HL(AeB).

Let P be a first order formula over the language of AeB. We define

PA, a relativisation of P to IAI, inductively as follows.

(i) if P is atomic, then PA is P

(ii) (---.P) A is -. (PA)

(iii) (P V Q) A is PA v QA

(iv) (3x P) A is 3x(A(x)APA).

If X is a finite set of variables, then A(X) denotes ,L A(x). We define xEX
PB and B(X) similarly.

Using relativised formulae, we can interpret PC(A) in PC(AeB).

LEMMA 2. Let P, Q be first order fornrulae over L1, a:nd let a be a while­

program over L1• Let X be the set of aZZ variables oc<JUrring free in P or

Q or a. Then

9

Furthemore, if HL(AeB) proves {A(X) A PA}a {A(x) A QA} using only invariants

a:nd intemediate assertions with free variables in X a:nd of the fom

A(X) A RA, then HL(A) proves {P} a {Q}.

The proof of this Lemma is straightforward and is omitted. To finish

the proof of Theorem 2, we need the following position.

PROPOSITION 3. Let P be a first order formula over the language of AeB
a:nd let X be the set of all variables ocaurring free in P. Then there

exists a first order formula Q over L1 such that

AeB t= (A(X) AP) = (A(X) A QA).

Before we prove Proposition 3, we show how it yields the proof of Theorem 2.

PROOF OF THEOREM 2. Assume that HL(A) is incomplete and HL(AeB) complete.

Choose {P}a{Q} true in A but not derivable in HL(A). Let X be the set of

all variables occurring free in P, Q, or a. By Lemma 2, {A(X) A PA} a

{A(X) A QA} is true in AeB, and therefore HL(AeB) I- {A(X) A PA} a

{A(X) A QA}.

We derive a contradiction by constructing a proof of {P}a{Q} in HL(A). By

Lennna 1, there is a proof of {A(X) AP} a {A(X) A Q} in which all intermedi­

ate assertions and invariants have their free variables in X. In addition,

each {R}a{S} in the proof may be replaced by {A(X) AR} a {A(X) AS} to

yield another valid proof. Then, according to Proposition 3, all invariants

and intermediate assertions can be written in the form

10

{A(X) A Rl} a {A(X) A Sl} with R' and S' are first order formulae over L1•

By Lennna 2, HL(A) proves {P}a{Q} in contrast to our assumptions. O

The proof of Proposition 3 uses Lennnas 4-6 stated below.

LEMMA 4. (1.-eUrrz-?nation) For every first order formula P over L1 u {A,B,l.}
l. there is a fo1>mu,la P over L1 u {A,B} such that

(i} A+B I= P = Pl.

(ii) A+B I= (P'1) A = (PA) l..

PROOF. It suffices to notice that we can define the constant l. using the

unary relations A and B: x = l. iff---, A(x) A--, B(x). 0

We say that a formula P of the language of AeB is normalised iff there is a
I n I n number n, formulae F , ..• ,F over L1 u {A,B} and formulae G , ••• ,G over

L2 u {A,B} such that P is of the form i~! (F! v G!).
LEMMA 5. Let P be a formula. over: L2 u {A, B}. There exists a nomialised

formula Q of t;he _fomi i~7<F1 v G~) such that AeB F A(x) ::, (PB=Q) and x

is not free in G~, i = I , ••• n. Moreover aU variables free in Q are free

in P.

PROOF. Let us consider first the case when formula PB is atomic. If PB is

over L1 u {A,B} then Q can be PB v false. If x does not occur in PB as free

variable, then Q can be false v PB. If PB is not over L1 u {A,B}, contains

x as a free variable and is of the form R(t 1, •••) then A(x) implies PB=

false. The remaining subcase is a formula of the form t 1 = t 2 , not over L1 u {A,B},

and containing x as a free variable. Then A(x) implies PB= t 1 = t 2 = l.,
which means that PB is equivalent to a propositional combination of clauses

of the form A(y) and B(y).

If PB is not atomic, then we transform it to the desired form in four

steps. Steps 2 and 3 should be skipped in case when PB is quantifier free.

STEP I. Replace all atomic subformulae of PB containing x as a free variable

and not over t 1 u {A,B} by false or by a combination of clauses of the

form A(x) and B(x), according to the previous reasoning.

11

STEP 2. Replace each atomic subformula containing both x as a free variable

and at least one occurrence of a bound variable. Since every bound variable

y of PB is assumed to fulfill B(y), we again can replace such subformula by

false if it is a relation, and by a combination of A and B clauses if it is

term equality.

STEP 3. Transform PB in such a way, that no subformula containing x as a

free variable is in the range of any quantifier, and the set of all

subformulae is unchanged (we can do it, because due to step 2 no such atomic

subformula of contains any bound variable).

STEP 4. Use the laws of distributivity and the de Morgan's rule to transform
n i i

PB to the form i~l (F v GB) such that F's are created from exactly these

atomic subformulae in which x occurs as a free variable.

Due to the steps 1, 2 and 3 formulae F's are over L1 u {A}, moreover they

are quantifier free (this is what assures that Fis equal to FA). Since all

atomic subformulae introduced in the transformation are of the form A(y) or

B(x), the new PB is still over L2 u {A,B}. Moreover, no new variable has

been introduced. Thus the new PB is of the desired form. D

We observe that due to the symmetry of the construction of A9B, Lennnas 4

and 5 are true when L1 is interchanged with L2 and A with B.

LEMMA 6. For every fomru.Za P of the language of A9B there is a normalised

fomru.Za Q such that A9B ·t= P = Q.

PROOF. The proof is by induction on P. In the basis case, if Pis over

L1 u {A,B} (resp. L2 u {A,B}) then Q can be P v false (resp. false v P). In

the remaining case if Pis of the form R(t 1, •••) then it is equivalent in

A9B to false, and if it is of the form t 1 = t 2 then it is equivalent to

t 1 = t 2 = i. The latter is equivalent in A9B to a formula over {A,B}.

The only nontrivial case in the inductive step is for P of the form

Vx Q. We assume inductively, that over AeB the formula Q is equivalent to
n i i a normalised Q' , where Q' is of the form i~ 1 (FA v GB) •

Since

12

\../ i i it is enough to show a transformation of every formula vx(F Av GB) for

i = 1, ••• , n into a formula of the desired form. First we observe that such

a formula is equivalent over AeB to the conjunction of the formulae

(aa) F~ (J./x) V G!) (J./x)

(bb) Vx[A(x) =>
i i

(FA V GB)]

(cc) Vx[B(x) =>
i i

(FA V GB)].

Using Lennna 4 we convert the (aa) into an equivalent formula of the desired

form. The transformations of (bb) and (cc) are similar and we present here

only a transformation of (bb).

(bb ')

i Using Lemma 5, we can replace GB in (bb):

i m j j
Vx[A(x) => (FA V j~l (HA V JB))] •

Since x does not occur free in J~, j = t, ••• ,n, (bb') is equivalent over

AeB to

(bb')

Because we assumed that F's and H's are over L1 u {A,B} and J's are over

Lz u {A,B}, that last formula is normalised. This completes the proof of

the 1 ermna. 0

We can now prove Proposition 3.

PROOF OF PROPOSITION 3. Let P be a first order formula over the language

of AeB. By Lennna 6 it is equivalent over AeB to i~~(F~vG!), where Fi's

are over L1 u {A,B} and Gi's are over L2 u {A,B}.

Let X be the set of all variables which occur free in P. Using Lennna

5 repeatedly for every variable from X we can get a normalised formula
m i i

Q" of the form i~l (KA V LB) such that

AeB F A(X) " P - A(X) " Q"

and in L! no free occur. Let Ei be true if AeB p= A(X) AL!, and false

otherwise.

Clearly

m i
AeB F A (X) A P = A (X) A . 61 (KA v E .) •

1.- 1.

13

m i
Let the formula i~l (KA v Ei) be called Q' and let Q ·be obtained from Q' by

replacing.subformulae of the form A(t) by true, and subformulae of the

form B(t) by false. It is easy to check that such a Q fulfills our require­

ments. D

CONCLUDING REMARKS.

Because HL is a very natural system, classifying the structures for which

HL is complete and for which it is incomplete is an interesting issue.

Previous examples of structures with an incomplete HL such as in BERGSTRA

& TUCKER [1 J and WAND [8] share the property that Pc(a) is not recursive

in Th(a) (from which incompleteness of HL(a) immediately follows). Our

corollary yields a different example. Further it is worthwhile to find

generalized logics of partial correctness even for the simple case of while­

programs.

We would like to state some question based on the following simple

definitions.

DEFINITION 1. a is PC-compact if for each asserted program {p}S{q} true

in a there is a sentence $ E U.a) such that Mod($) t= {p}S{q}.

2. A logic of partial correctness LPC(a) for a is an r.e. set of pairs

< $., {p. }S.{q.} > wiht $. E L(a) and {p. }S.{q.} an asserted program over
1. 1. 1. 1. 1. 1. 1. 1.

L(a). LPC(a) is sound if for all < $, {p}S{q} > E LPC(a), Mod($) I= {p}S{q}.

LPC(a) is aompl,ete if whenever a I= {p}S{q} there is $ E Th(a) such

that < $, {p}S{q} > E LPC (a).

3. a is PC-complete if there exists a sound and complete logic LPC(a) for

a.
It is easily seen that if HL(a) is complete a is PC-complete, and

that PC-completeness implies PC-compactness. Moreover, if a is PC-complete

Pc(a) is recursive in Th(a).

14

QUESTIONS

(i) If cl is computable and HL(cl) is complete must cl be expressive?

(ii) If PC(cl) is recursive in cl and cl is PC-compact must HL(OI) be complete?

(iii) If the answer in (ii) is negative , must cl be PC-complete?

(iv) Is there a sound LPC which is complete for all PC-complete structures

of a given signature?

ACKNOWLEDGEMENT

We thank Piotr Berman and an anonymous referee for criticism and suggestions

concerning this paper.

REFERENCES

[1] BERGSTRA, J.A. & J.V. TUCKER, Some Natural Structures Which Fail To

Possess a Sound and Decidable Hoare-Zike Logic for their While­

PJ.nograms. Theoret. Comp. Sci. 17,3 (March 1982), pp. 235-350.

[2] BERGSTRA, J.A. & J.V. TUCKER, Expressiveness and the completeness of

Hoare's logic: To appear in J.C.S.S.

[3] BERGSTRA, J.A. & J.V. TUCKER, TuJo Theorems on the Completeness of Hoare's

Logic: To appear in Inf. Proc. Letters.

[4] COOK, S .A., Soundness and Completeness of an Axiom System for Program

verification: SIAM J. Computing 7 (1978), pp. 129-147.

[SJ HAREL, D., First-OY'der Dynamic Logic. Springer LNCS 68, 1979.

[6] HAREL, D. , A. R. MEYER & V. PRATT, Computabi Zi ty and Completeness in

Logics of Programs: Preliminary Report. 9-th ACM Symposium on

Theory of Computing, Boulder, Colorado, May, 1977, pp. 261-268.

Ri~vised version, M. I. T. Lab. for Computer Science TM-.97,

(Feb. 1978) 16 pp.

[7 J HOARE, C. A. R. , An Axiomatic Basis for Computer Programming, CACM 1 2,

10 (1969), pp. 576-580.

[8] WAND, M., A new Incompleteness Result for Hoare's System, J. ACM 25,

(Jan. 1978), pp. 168-175.

