
AFDELING INFORMATICA

stichting

mathematisch

centrum ·

(DEPARTMENT OF COMPUTER SCIENCE)

P.M.B. VITANYI

IW 225/83

AN OPTIMAL SIMULATION OF COUNTER MACHINES:
THE ACM CASE

Preprint

~
MC

MAART

kruislaan 413 1098 SJ amsterdam

fllfiUOTHfEK MATHEMA TISCH CENTHUM
. ~ ... ,._.., -AMS1 EflDAM-

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion
of pure and applied mathematics and computer science. It is sponsored. by the Netherlands
Government through the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

1980 Mathematics subject classification: 68C40, 68C25, 68C05, 94B60, 10-00

1982 CR. Categories: F.1.1, F.1.3, F.2.3, B.3.2, E.l, E.4

Copyright© 1983, Mathematisch Centrum, Amsterdam

* AN OPTIMAL SIMULATION OF COUNTER MACHINES: THE ACM CASE

Paul M.B. Vitanyi

ABSTRACT

An Augmented Counter Machine (ACM) is a multicounter machine, with initially nonzero
counters allowed, and the additional one-step instruction "set counter i to the value of counter J",
for any pair of counters i and j . Each ACM can be real-time simulated by an oblivious one-head
tape unit using th•;: information- theoretical storage optimum.

Keywords & Phrases: counter machine, multicounter machine, augmented counter machine, real-time
simulation by oblivious one-tape Turing machine, number representation, counting, coding

This report will be submitted for publication elsewhere. The report presupposes and continues [3].

1. Introduction

In the companion paper [3], a real-time implementation of multicounter machines on oblivious one­
head tape units of optimal storage efficiency was exhibited. An augmented counter machine (ACM) is a
multicounter machine, with each of its counters initialized to any integer, and with the additional
one-step operation "set counter i to the value of counter j", for any pair of counters i and j .
Several one-step operations, other than the basic ones, can be synthesized on a multicounter machine
by the use of concealed auxiliary counters (such as "test equality of a pair of counters", for any such
pair, by maintaining the differences on auxiliary counters). It is known that the above assignment
among counters can not be so synthesized. A witness for this fact is the language L •, with
L = { O" 1m I p ;;;:,, m > 0 }. Thus, in real-time, ACM's are more powerful than multicounter
machines [l]. The particular technique used in [3], to obtain an optimal simulation of counter
machines, is well suited to extend that result to the more powerful ACM's. Consequently, we shall
demonstrate:

THEOREM. Each augmented counter machine can be real-time simulated by an oblivious one­
head tape unit using the information-theoretical minimum in storage space. (Viz., for each t ;;;a.Q and n ;;;a. I,
during the processing of the (t + 1)-th through (t +n)-th input command, of the simulated ACM, the
storage head of the simulating oblivious one-head tape unit accesses but O(logn) distinct tape squares.)

In [3] the analog of the Theorem was derived for the weaker multicounter machines. The next
section, containing the demonstration of the above Theorem, continues and presupposes that paper.

Outline of the simulation. The simulation consists of the oblivious one-head tape unit constructed in
[3], equipped with some additional features. The k + I-track one-head tape unit M of [3], capable of
real-time simulation of a k-counter machine, has one tag track, which does not concern us here, and
k count tracks containing the momentary representations of the k stored integers, one per track. M
would trivially be capable of real-time simulating an ACM, if it could replace the contents of any
count track by that of any other in each single step. This is clearly impossible for a one-head tape
unit, since the significant count track contents may be arbitrary large. Yet we were able to update the
individual tracks, with respect to unit addition/subtraction, by amortizing the propagation of the car­
ries and borrows. The idea below is to do the same with respect to the replacement of one count track
contents by that of another. Thus, if at some step t the counter i is set to the value of counter j, we
start to transfer the contents of count track j to count track i, from the low order digits to the high
order digits, a few digits each step t', t' ;;;a.t. We do so by introducing a switch which, in each position
it passes, overwrites the digit on count track i by the corresponding digit on count track j. Each such
switch is introduced in the 0-th position of the representation, and is shifted through simultaneously
scanned adjacent positions to higher ones, preliminary to the propagation of carries and borrows, in
each step. The effect is, that the carry or borrow, resulting from an input at a later time than the
input which was to replace the contents of counter i by that of counter j, will always be preceded by
the replacing of the individual digits constituting the contents of count track i by their counterparts
on count track j. Since in each interval of n steps, for all n ;;;a. 1, the head visits but O (logn) distinct
tape squares, each switch eventually overtakes all earlier created switches, but never passes them. We
are thus confronted with arbitrary long queues of switches clogging at some positions on the tape. It
will be shown, however, that whenever one switch overtakes another one, we can replace the combina­
tion by a single switch. It thus suffices to equip the multicounter simulator of [3] with an extra track
on its tape, and modify the algorithm it executes in each step, to derive the desired ACM implementa­
tion.

2

2. An optimal simulation of ACM's

Recall that, in the proof of the optimal simulation of multicounter machines in [3], the usual assump­
tion of initially zero counters was not essential. The simulation presented there also works with each
counter initially set to any integer. To tum such a machine into an ACM, we therefore only have to
add operations which can instantly replace the contents of any counter by that of any other counter.
This amounts to an operatio~ which is slightly more general than a permutation of the momentary
contents' amongst the various counters.

Define a semipermutation a, among k objects 01,0 2 , ..• , ok , for a= i 1i 2 • • • ik
(i1 E 1,2, ... ,k for I:s;;;J:s;;;k) by

A sernipermutation is also called a permutation with repetitions. The sernigroup (not group), of which
the elements are sernipermutations of k objects, the product of two sernipermutations being the
sernipermutation resulting from applying each in succession, and the identity £ being the sernipermu­
tation which does not change anything, has kk elements and is denoted by Rk .

Define an augmented counter machine (ACM) A as a k-counter machine with each counter
i, 1 :,;;;;i :s;;;k, initialized to a value in the set of integers. Input commands to A are of the format (a,8)
with a E Rk and 8 E { -1,0, l}k. At any time, if (c i, c2, ... , cd is the integer valued k-vector
contained in A's k counters, and (a,8) is the currently polled input command, then in one step A
does all of the following:

(i) (c1,c2, ... , cd - a(c1,c2, ... , cd ;

(ii) (c1,c2, ... , ck) - (c1,c2, ... , cd + 8

(iii) OUTPUT, for all i, } ..;;i ..;;k, "counter i = 0" or "counter i =fa 0" according to the new
state of affairs.

Let M be the k -counter machine simulator as constructed in [3]. The i -th count track con­
tains the array C(i ,6: oo] , and the i -th register in the finite control contains C[i ,0:5] . The array
C[i ,0: oo] represents the integer c;, that is, the value of the i -th counter, I :,;;;;i :s;;;k, like the array
C[O:oo] represented the value c of the quintessential counter in [3]. The initial arrays
c0[i ,0: oo], I ..;;i :s;;;k , are representations of the prescribed initial integers, each representation con­
taining no digits of opposite sign, cf. the conclusion of section 2.2 in [3]. The following adaptation, of
procedure STEP in section 2.4 of (3], trivially turns M into an ACM simulator. Replace step 3 of
procedure STEP by step 31 below, turning it into a new procedure STEP 1• The resulting machine is
Mi, and the contents of the k count tracks are contained in a k X oo matrix C 1(1 :k ,0: oo], such
that C 1[i ,0: oo] denotes the contents of the i -th register in M 1 's finite control , followed by the i -th
count track on M 1 's tape, in the obvious way, I :s;;;i ..;;k.

Step 31: Let the current value of I, determined by step 2 , be { i1, i1 _ 1 , ... , i 1} with
i1>i1_ 1> · · · >i 1• READ the current command (a,8) from the input terminal. Let
8 = (81,82 , ••. , lh). Execute:

for j = 0 step I until oo
do

od;
for j =I step -1 until I

do for i = 1 step I until k
do

C 1[i, 2i1 : 2i1 + 3] - UPDATE (C 1[i, 2i1 : 2i1 + 31)
od

od;
for i = 1 step 1 until k

do

od

3

Step 31, however,contains an infinite for statement. (That statement is the only addition to the
original step 3.) Since the cardinality of / (t) happens to be at most '4, for all t, cf. [3], only a few
positions of the arrays, representing the counters, can be updated by the actual machine in each step.
Consequently, M I does not constitute an real machine, since it executes the procedure STEP 1, con­
taining an infinite for statement, that accesses all of the infinite tape (c.q., C 1[1:k,0:oo]), each single
step. We shall amortize the execution of the infinite for statements, implementing the semipermuta­
tions, by executing them in each position only when they are due.

We observe the notational conventions from [3], concerning superscripts on arrays. Thus, an
array B, connected with a machine M;, i = 1,2, can be viewed as a variable or as an actual value. In
the first case we do not use a superscript. In the latter case a superscript t is used to indicate the
value of B, subsequent to the execution by M; of the t-th step (i.e., procedure STEP;), for a given
input command sequence (01,81),(<l,82), ... , (o-1 ,81), • • • • That is, B's value just before M;
processes the (t + 1)-th input command (o1 + 1 ,81 + 1).

We associate, with each position j ~0. a queue QU] of semipermutations. If
Q U] = om om - I · · · o1 then the constituent semi permutations 01, o-2, ... , om have been executed, in
that order, on all positions J 1, 0~j 1 ~j, but none of them has as yet been executed on any position
Ji, Ji> j. For each j ~0. the initial contents of QI/] is€, that is, the empty queue. For each particu­
lar input command sequence, for each time t ~O , we denote, for all J ~O, the queue in position j at
time t by Q'I/]. Thus, Q 0UJ = € for all j~0. For any input sequence
(o1 ,81), (o-2,82), ... , (o1 ,81), • • • , with o1 E Rk and 81 E { - 1,0, 1 }k, for all t ~ l, we preserve the
following invariant:

(E) Vt [Q 1[0]Q1 [1] · · · Q'U']Q'U+l] · · · = o'o'- 1 • • • o1 & Vi [Q1[2i] = €]] . , .. o ;;;,Q

(Recall that, in [3], invariants (A)-(D) pertain to the representation C[i , 0: oo] of the contents of the
i-th simulated counter, for each i, 0~i~k.) If QI/]= omom-l · · · o-1 then by application of QI/]
to a k-vector v = (v 1, v2, ... , vk), denoted as

(v1,V2, ... , vk)- QU](v1,V2, ... , vk) ,

we mean the assignment embodied in the execution of:

for J = 1 step 1 until m
do

od

Note, that we can concatenate queues of semipermutations to a single queue. That is, if
QUil = apop-1 · · · o-1 and Ql/2] = PqPq-l · · · v1 then by definition:

QUilQU2l = O'pO'p-1 ... O'JPqPq-1 ... P1.

4

Now replace the third step of procedure STEP by step Ji , so as to obtain a new procedure
STEP 2. The corresponding machine is M 2 and, for any input sequence
(o-1,81),(o-2,82), ... , (cr,81), • • • , with 0-1 ERk and 81 E {-1,0,It, the matrix C2[1:k,0:oo] con-
tains the contents of the k count tracks and k count registers of M 2 in the obvious way.

Step Ji: Let the current value of I, determined in step 2, be {i1,i1_ 1, ... , ii} with
i1>i1-1> · · · >i 1• READ the current command (a,8) from the input terminal. Let
8 = (81, 82 , ... , 8k). Execute:

for j =l step -1 until I
do

od;

C2[1:k ,2i1 +2:2i1 +3] - Q[2i1 + I] C2[1:k ,2i1 +2:2i1 +3];

Q[2i1 +3] - Q[2i1 + I] Q[2i1 + 3) ;

Q[2i1 + I] - t: ;

for i = I step I until k
do

od

C2[1:k ,0:1) - o-C2[l:k ,0:1];

Q[l] - o-Q[l];

for i = I step I until k
do

od

Obviously, (E) is preserved by step 3i for each input sequence.

LEMMA 1. For each input sequence it holds that for all t ;;;..o and all i, I ~i ~k, we have:

cw ,0) = o iff q[i ,0) = 0.

Proof. Define a third k X oo matrix C 3, which normalizes C 2, at any instant of time t, by exe­
cuting the backlog of semipermutations which by that time have accumulated (in the queues for) the
consecutive positions j, with respect to the k-vectors q [I :k ,)]. By definition then, for all t ;;;..o and
all j ;;;..o:

qp:k ,)] = (Q1[0]Q 1[I] ... Q1 U-I])CHI:k ,j].

The following Claim encapsules the essence of the amortization-of-execution-of-semipermutations
argument.

aaim. For any particular input sequence (o-1,81),(o-2,82), •.. , (o-1 ,81), • • • ,

'r/ t 'r/ i 3 c [CW ,0:oo] E code (c) iff C~ [i ,0:oo] E code (c)·] ,
1;;.0 J.,;;.;;k cEZ

5

where Z is the set of integers.

Proof of Oaim. By induction on the number of steps t, for any particular input sequence
(o1,81),(o2,82), ••• , (o' ,81), · • • •

Base case: t = 0. Since Q 0U] = t:, for all positions j ~0. and C P and Cf both represent the
same k-vector of prescribed integers according to the code function, cf. [3], the Claim holds initially.

Induction: t~0. Assume the Claim holds for all s.,;;,.t. Let /(t+l) = {i1,i1_ 1, ••• , ii}, with
i1 > i1 _ 1 > · · · > i 1• By assumption, for each i, I .,;;,.i ,;;;;,_k, and for alls, 0.,;;,.s .,;;,.1, there is an integer cl
such that CW ,0:oo], q [i ,0:oo] E code(cl), since M 1 obviously simulates an ACM A just like M
in [3] simulates multicounter machines. During step t + 1, the running variable j assumes the succes­
sive values /, / - 1, ... , l in step ~ of procedure STEP 2. For each such j, the piece of code

(1) C2[1:k,2i1 +2:2i1 +3] - Q[2i1 +I]C2[1:k,2i1 +2:2i1 +3];

Q[2i1 + 3) +- Q[2i1 + 1) Q[2i1 + 3);

Q[2i1 + 1) +- t:

in step ~ does not change the normalized matrix C 3[1 :k , 0: oo] at all. The execution of (1) also
preserves (E), viz., in particular Q[i] = t:, for all even i. Now consider the next piece of step ~:

(2) for i = 1 step 1 until k
do

od

Just before the execution of this for -statement, the matrix C 3[1:k ,0:oo] consisted of three subma­
trices:

C3[l:k ,0:2i1 -I],

C 3[1 :k , 2i1 :2i1 + 3) , and

C 3[1:k ,2i1 +4:oo].

Since Q [2i1] = Q [2i1 + 2) = t:, by invariant (E), and Q [2i1 + 1] has just been set to t: by the preceding
subprogram (1), it follows from the definition of C 3 that, just before execution of (2):

Only C 2[l :k , 2i1 :2i1 + 3) is accessed and changed (row-by-row) according to UP DATE in (2). There­
fore, by equality (3), the effect on the normalized matrix C 3[1 :k , 0: oo], of executing the piece of code
(2) on C2[1:k ,0:oo], is the same as the effect of executing:

for i = l step 1 until k
do

od

6

By Propositions 1-4 in [3], therefore, if C 3[i ,0:oo] E code(ci), for some integer ci, before the execu­
tion of (2), then C 3[i , 0: oo] E code (ci) after the execution of (2) too , for each i, I ,;;;;;j ...;;k. Subse­
quent to the last execution of the subprogram (1);(2) in the t + I-th step (viz. the execution with j = I
, and thus by [3] with ij =0), we have Q[l] = £ while Q[0] = £ by (E). Hence, by definition,
C 3[1 :k , 0: 1] now equals C 2[1 :k , 0: 1], while, by the inductive assumption and the above reasoning,
still C 3[i , 0: oo] E code (cf), for all i, 1 ,;;;;; ...;;k. In this situation

(4) C2[l:k ,0:1] - 0C2[l:k ,0:1];

Q[l] - oQ[l]

is executed. Thus, the array C3[1:k ,0:oo], derivable from the new values of C2[1:k ,0:oo] and
Q[0:oo], yields, for o = j 1h · · · A, that C 3[i , 0:oo] E code (c}.), for I os;;;i os;;;k, while Q[0] = £. Conse­
quently, under the inductive assumption, after the execution of (4) in the t + I-th step, we have
C 3[i ,0:oo] E code(cj,) , just as we trivially have C 1[i ,0:oo] E code (cj,) , subsequent to the execu­
tion of

(5) for j = 1 step 1 until oo
do

od

in the t + 1-th step of M 1 (using STEP I containing step 31). Meanwhile, we still have
C 3[1:k ,0:1] = C 2[1:k ,0:1], since Q[0] =£.Consequently, subsequent to the final piece

(6) for i = I step 1 until k
do

od

of step 31, yielding the new values of C 2 and C3, viz., c~+J and q+ 1 , we still have
q + 1 [i , 0: I] = C~ + 1 [i , 0: I], for all i, } ...;;i os;;;k. Moreover, by the properties of INPUT in [3] we also
have q + 1 [i, 0:oo] E code (cj, +8i), for all i, 1 ,;;;;i os;;;k. Trivially, in view of [3], for all i (1 os;;;i ...;;k), it
holds that C\ + 1 [i , 0: oo] E code (c}. + 8i). This concludes the induction, and therefore the proof of the
Claim. DD

Since invariant (E) is preserved by step ~. and therefore Q [0] = £, we have by definition that
C 3[1 :k , 0: 1] = C 2[1 :k , 0: 1]. In [3, Proposition 2] it was shown that the lowest order digit of a
representation in code(c) equals O iff c equals 0. Together with the Claim, these two observations
imply the Lemma. •

Since it is trivial that M I real-time simulates the required ACM, by Lemma I it follows from [3]
that, if the machine M 2 can be realized, the Theorem holds.

LEMMA 2. M 2 can be constructed as a machine satisfying the specifications in the Theorem.

Proof. The only difficulty with M 2. concerns the storage, execution, transport and concatenation

7

of arbitrary large queues of semipermutations. Since the semipermutations form the semigroup Rk
under concatenation, no queue QU], j ;;;;,,o, ever needs to contain more than a single element from Rk.
Since every QU], j ;;;a,,O, initially contains the unity element £, each subsequent execution of step 3i
can compute the single semipermutation which represents the current contents of QU] in Rk> for any
such QU] involved. Storing QU] in the cell containing C[l:k ,}], for allj;;;a,,O, so in the finite control
of M 2 for O:,;;;;,j :,;;;;,5 and on its tape for j ;;;a,,6, shows that M 2 has the same specifications as the mul­
ticounter simulator M in [3]. Hence the Lemma. •

The Theorem follows from Propositions 1-4 in [3] and Lemma's 1,2 above, combined with the
observation that M I trivially real-time simulates any ACM. ·

3. Final remarks
Optimality. Since the ACM implementation, constructed above, has the same complexity, with respect
to the measures concerned, as does the multicounter machine implementation in [3], it is a fortiori also
optimal in all commonly considered complexity measures at once.

On the required number of bits. There are kk semipermutations in Rk. To denote each of them, it
suffices to use k logi k bits. Similar to [3], we note that, under the scheme outlined in section 2, it
suffices to use (4k + k log2 k + 2) login bits to represent k counts, of absolute value not greater than
n, in the ACM simulator. Using a redundant symmetric r-ary representation [3], based on the digits
-r, -r+l, ... , 0, 1, ... , r-1,r ,we can bring the bit count down to to below
(1 + (4 + log2 k) / logi r) k login bits, and therefore arbitrary close to the information theoretical
minimum, to the detriment of the implicit constant delay, as in [3].

Simulations of A CM's on other devices. In [2] we gave optimal simulations of multicounter machines
on RAM's, combinational logic networks, cyclic logic networks and VLSI. The method used above,of
amortizing execution of semipermutations to extend the simulation of multicounter machines by tape
units to a simulation of ACM's by the same, can also be used to extend the optimal simulations of
multicounter machines, by the above devices as in [2], to optimal simulations of ACM's by these dev­
ices. As here, the complexity of the simulations of the ACM's, by these devices, is none other than the
complexity of the corresponding simulations of multicounter machines.

REFERENCES

I. Fischer, P.C., A.R. Meyer & A.L. Rosenberg, Counter machines and counter languages, Math. Systems
Theory 2 (1968), 265-283.

2. Vitanyi, P.M.B., Efficient simulations of multicounter machines. Proc. 9-th Int. Coll. on Automata, Languages
and Programming, Lecture Notes in Computer Science 140, Springer Verlag, Berlin, 1982, 546-560.

3. Vitanyi, P.M.B., An optimal simulation of counter machines. Tech. Rept. IW 216, Mathematisch Centrum,
Amsterdam, Dec. 1982. (Submitted to this Journal.)

