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A note on T'A-regular graphs

by

A.E. Brouwer & P.J. Hoogendoorn

dedicated to M. Voorhoeve & R. Tijdeman

ABSTRACT

A TA-regular graph is a nonregular graph such that for each vertex x
the graphs induced on its neighbours and on its nonneighbours are both
regular. We show that if G is 'A-regular, G and G are connected, and

diam G = 3 then G is one of two graphs on 4 resp. 8 vertices.



GODSIL & MCKAY [1] introduced the concept of a T'A~regular graph (al-
though they called it differently - we adopt Van Lint's terminology) - see

the abstract. For the case we are interested in: G and G are connected,
they proved the following.

\

Let n be the number of vertices, )\ the valency of I'(x) in G and X the
valency of f(x) in G.

(1) In G there occur exactly two valencies, k

(2) k1 + k2 =5%n + 2\ + 1

(3) A+ X =%n - 2

1 and k2, where k1 < k

5"
Let M, = {x | x has valency ki} (i =1,2). Write m, := IMil.
i

(4) Each Mi (viewed as induced subgraph of G) is regular with valency

oy i=1,2), oy + a, = 5n - 1, (2a1—m1+1)(k1—k2) = (A+1) (n~-1)- k1k2.

5) L Vd . = _

(5) Let X, 7 %, Then IF(xl) n P(xz)l A+ 1+ e(k1 k2), where
e =0 if x1 € Ml' x2 € M2
e =1 4if xl,x2 € Ml'
e = -1 1if xl,x2 € M2.

(6) diam G =< 3.

Now suppose G has diameter 3, and let dist(xl,xz) = 3. Then P(xl) n P(x2)==¢
so that by (5) X, 1%, € M1 and k2 - k1 = X + 1. Again by (5) points in M1 do

not have distance two, so that M1 is a disjoint union of cliques ('sun's).

Also, no point of M, is adjacent to points of different suns but each point

2

of M2 is adjacent to some point in M1 (in fact to k2 -, such points;

k2 - %, O since G is connected), so that the partition of M1 into suns

induces a partition of M2 into 'corona's. From (2) and k2 - k1 =X+ 1 we

find n = 4k1 — 2X. On the other hand, choosing one vertex in each sun we

find n 2 (k1+1). # of suns. Consequently the number of suns N is less than

four (and larger than one since diam G = 3), i.e. two or three.



&)

corona

Fix a point x, € M, and count edges between P(xo) and A(xo). One finds

0] 1

al(kl—k—1)+(k1-a1)(kz—A—l) = (n-k —1—(N—1)(a1+1))(k2—k1)

1
(for: |F(x0)l = kl' IA(xo)l =n - k1 -1, |sun| = a, + 1, etc.), i.e.,
ki - al(A+1) = (3kl—2k—1—(N—1)(a1+1))(k+1),
or
ki - 3()\+1)k1 + (k+1)(2A+2+(N—2)(a1+1)) = 0.
Distinguish cases:
A. If N = 2 this factors as (kl—(A+1))(k1—2(A+1)) = 0.
Al. N = 2 and k1 =X + 1.
Now k2 =2\ + 2, n=2x+ 4, i.e. |sun| =1, |coronal = X + 1.
Considering two adjacent points in different coronas we find that they
have 2\ common neighbours. Hence A = 2, i.e. A = 0, n = 4 and G looks
like I l.
A2. N = 2 and k1 = 2(A+1).
Now k2 =32+ 3, n=6x+ 8, |sun| = ay + 1, |coronal = 3\ + 3 - a,.
Count edges between sun and corona: (a1+1)(k1—a1) = (3A+3—a1)(k2—a2),

but k2 -0, = 2 0 + 2 - k1 + a, = oy (using (2) and (4)), so that



A . L
o = 1 + VSRR Since a, is integral this implies A = 0, n = 8 and G
looks 1like

B. If N = 3 then |sun + coronal

1]
Wi

2 1
k=3 A=1+k + 3 (k1-2>\—3).

As before it follows that k1 2 2X + 3, contradicting the equation

ki - 3(A+1)k1+(k+1)(2k+a1+3) = 0.

This ends the proof.
Egeldonk, 80 09 25
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