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Pseudocompactness for G-spaces 

by 

J. de Vries 

ABSTRACT 

In this note we prove that if G is a locally compact group and <X,TI> 

is a Tychonov G-space, then the notions of G-pseudocompactness for <X,TI> 

and pseudocompactness for X coincide. We also discuss situations where 

pseudocompactness is implied by the equality SGX = SX. 

KEY WORDS & PHRASES: G-space3 G-compactifiaation3 pseudoeompact3 G-pseudo­

compact 



In this note we discuss the relationship between the notion of pseu­

docompactness for G-spaces and two notions of G-pseudocompactness which 

were introduced independently by S.A. ANTONYAN [I] and the author [6], re­

spectively. It turns out that if G is locally compact, then G-pseudocompact­

ness according to [6] is equivalent with pseudocompactness. The notion of 

G-pseudocompactness according to [I] is weaker, but in certain special cases 

it is also equivalent with pseudocompactness. The main result of this note 

solves several problems of [4] in a rather obvious way: this will be dis­

cussed at the end of this note. 

For a general theory of G-spaces (= topological transformation groups 

with acting group G) we refer to [4]. For the convenience of the reader we 

include here a few definitions from [4] and [6]. The symbol G stands always 

for a topological Hausdorff group (the Hausdorff property is rather ines­

sential and may without restriction of generality always by assumed as long 

as we consider actions of G on T
1
-spaces: one can always pass to G/G

0 
as the 

acting group, where G
0 

is the isotropy subgroup of G). 

AG-space is_ a pa1r <X,rr> where Xis a topological space and rr (the 

action of G on X) is a continuous mapping from G x X onto X satisfying 

the following conditions: 
' (i) rr(e,x) = x for all x EX (e is the unit element of G); 

(ii) rr(s,rr(t,x)) = rr(st,x) for all s,t E G and x EX. 

Note, that these axioms imply that for each t E G the mapping 
t rr : x» rr(t,x): X +Xis a homeomorphism. For brevity, we shall write tx for 

rr(t,x) (=rrtx), Ux for {tx: t EU}, etc .• If <X,rr> and <Y,cr> are G-spaces, 
t t then a mapping~: X + Y is called equivariant whenever ~ 0 rr = cr o~ for all 

t E G, that is, ~(tx) = t~(x) for all t E G and x EX. Every G-space <X,rr> 

has an essentially unique unique ma,ximaZ G-compactification 

~ : <X,rr> + <{3 X,rr>, <X,rr> G 

that is, an equivariant continuous mapping~ X from <X,rr> to a G-space < , rr> 
<f3GX,W> where {3GX is a compact Hausdorff space, which is characterized by 

the following property: every equivariant continuous mapping from <X,rr> to 

a compact Hausdorff G-space factorizes uniquely over~ X ; cf. 
< 'rr> 

[4; 4.J.2(vi)J. If G is locally compact, then the mapping~ X is a dense 
< ,rr> 
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equivariant embedding of X into SGX if£ the space Xis Tychonov [SJ. So 

henceforth we sha,ZZ assume tha,t G is Zoca~Zy compact and tha,t every G-space 

<X,TI> ha,s X a Tychonov space. In that case, we shall consider X just as a 

dense invariant subset of SGX, and we write 

* The members of the function space UC <X,TI> can be characterized as follows 

* [SJ: if g EC (X) (:= the space of bounded real valued functions on X) then 
* . g E UC <X,TI> 1.££ 

3U EV : jg(tx)-g(x) I < E for all (t,x) EU x X. 
e 

(Here Ve denotes the nbd filter of e in G). The set of all g E C(X) satis­

fying condition(*) will be denoted by UC<X,TI> and will be called the set 

* of TI-?A,niforrrnZy continuous functions (so the elements of UC <X,TI> are the 

bounded TI-uniformly continuous functions). 

A natural question to ask is, under which additional conditions one 

has SGX = SX, where SX denotes the ordinary Stone-Cech compactification. 

(By the equality SGX = SX we ~ean that there exists a homeomorphism h of 

SX onto SGX such t?at h 0 SX = <l><X,TI>; here SX is the canonical inclusion 

mapping of X into SX.) In general, one has SGX # SX (see [4;4.4.14 & 

4.4.19J), but if, for example, the action of G on Xis trivial (that is, 

tx = x for all t E G and x EX) or if G is a discrete group [4;7.3.lO(iii)J, 

then ~GX = ~X. In [IJ the following result is announced for compact groups 

and, unaware of this, I proved it in [6] for arbitrary k-groups: 

THEOREM I. If <X,TI> is a Tychonov G-space., and X is pseudocompact., then 

SGX = SX. 0 

The converse is not true: in [IJ is a simple example, and here is an­

other one: let X be an arbitrary space and let TI be the trivial action of 

G on X; then SGX = SX, but X need not be pseudocompact. Actually, this 

shows that it is improbable to find a simple condition on G or on X which, 

together with the condition SGX = SX will imply that Xis pseudocompact: 
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one needs also a certain non-triviality condition for the action. Since the 

above counterexample also works for non-trivial actions of discrete groups, 

one might also expect that a certain non-discreteness condition for G would 

help. 

The following result generalizes Theorem 4.10 of [2] (local compactness 

of G need not be assumed). 

THEOREM 2. Let <X,rr> be a G-spaee with X a T4-spaee. If SGX = SX, then for 

every net {(tA,xA)}AEA in G x X sueh that tA ""+ e in Gone has 

{xA: A EA} n {tAxA : A EA}~~-

PROOF. Suppose that two closed sets as indicated in the statement of the 

theorem are disjoint. Then they have disjoint closures in SX. By passing 

to a suitable subnet, we may assume that the net {xA}AEA converges to a 

point z in f3X. Since the action of G on X extends to a continuous action of 

G on SX(=SGX by assumption) and the net {tA}AEA converges toe in G, it 

follows that tAxA ""+ ez = z. This contradicts the disjointness of the 

closures in ex of the two sets indicated above. D 

The following corollary of this theorem may be seen as a modification of 
' Proposition 3.4 of [3] (one of the difficulties which prevent a honest 

generalization of that result to the present context is, that the mappings 

TI: t~ tx: G + X are in general not open). Recall, that if a is a cardinal 
X 

number, then a space is called a-pseudoeorrrpaet whenever every locally finite 

family of mutually disjoint, non-empty open subsets has cardinality less 

than a. The loea'l weight of G (i.e. the least cardinal mnnber of a local 

basis of G at e) will be denoted by lW(G). Finally, recall that if 

<X,TI> is a G-space, then the isotropy subgroup of x in G. is the subgroup 

G := {t G 
. 

tx = x}. If X a T
1
-space, then G always closed in G, E : 1.S 1.S 

X X 

because the mapping TI : t I+ tx: G +Xis continuous. 
X 

COROLLARY 1. Let <X,TI> be a G-spaee with X a T4-spaee sueh that SGX = ex. 
Then eitheP the set 

:= {x EX • G is open in G} 
X 
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has a non-empty interior, or Xis lw(G)-pseudocompact. 

PROOF. Suppose the contrary: there exists a dense set of points in X, each 

having non-open isotropy group, and Xis not £.w(G)-pseudocompact. Then 

there exists a locally finite, disjoint family W of non-empty open subsets 

of G with cardinality £.w(G). Let B be a local basis ate having cardinality 

lw(G), and let U i+ WU be an injective mapping from B into W. For every 

U EB there exists a point¾ in Wu with non-open isotropy group. So there 

exists~ EU such that tr.J¾ E WU and tu¾ 1 ¾· Since the family 

{WU : U EB} is locally finite, the sets{¾: U EB} and{~¾ U EB} 

are closed in X. Since they are also disjoint, this contradicts the theorem 

~o~. D 

REMARK. Observe, that in the proof of this corollary local finiteness of 

the family {WU: U EB} is not very essential. Indeed the set{¾ : U EB} 

is disjoint from the closure of{~¾: U EB}, because the neighbourhood 

WU of¾ contains only the element~¾ of the latter set; similarly, the 

other way round.-so it would be sufficient for the proof to guarantee that 

one of the sets is closed. Thus, if we define 

sG(X) := sup{card M MEX~ xO and Mis discrete and closed in X} 

then a similar proof shows that 

It is not difficult to see, that xO is an invariant subset of X (indeed, 

fort E G and x EX we have Gtx = tGt- 1). Moreover, all invariant points 

belong to x
O

• If G is connected, the only open subgroup of G is G itself, 

so in that case x
O 

equals exactly the set of all invariant points in X. 

If x
O 

has empty interior, then we shall say that the G-space <X,~> has al­

most no open isotropy groups. 

COROLLARY 2. Let G be locally compact and let <X,~> be a G space with al­

most no open isotropy groups. If, in addition, Xis a separable metric 

space~ then the equality $GX = $X implies that Xis pseudocompact, hence 

compact. 
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PROOF. We may assume that G acts effectively on X. (Otherwise, pass to the 

corresponding effective action of G/G0 , where G0 := n {Gx: x EX}; observe, 

that G/G
0 

is locally compact, and that for given x EX the isotropy subgroup 

in G is open iff the corresponding isotropy subgroup in G/G0 is open.) Then 

lw(G) ~ W(X) [4;1.I.23], so by Corollary I, Xis pseudo-W(X)-compact. In 

our case, however, w(X) = ~0 , and pseudo~0-compactness is the same is or­

dinary pseudocompactness. 0 

REMARK. If G is locally compact, non-discreet, and G acts freely on a metric 

space X (ie. G = {e} for every x EX) then also BGX = BX implies that X 
X :, 

is (pseudo)compact.For still another case where BGX = BX implies pseudocom-

pactness of X, see Corollary 4 below. 

In [1], a Tychonov G-space <X,TT> such that BGX = BX was called G-pseu­

docompact. Unfortunately, in [6] I introduced a different notion of G-pseu­

docompactness (that it is really different follows from the examples above 

and theorem 3 below). The notion of G-pseudocompactness according to [6] is 

as follows: 

Let <X,TT> be a Tychonov G-space. A finite (resp. countably infinite) 

collection B of mutually disjoint, non-empty open subsets in Xis called a 

G-dispePsion whenever it satisfies the following condition: 

( **) 3U E v e, VB E B 3~ ;::: B : u~ ;::: B • 

The G-space <X,TT> is called G-pseudocorrrpact whenever every locally finite 

G-dispersion in Xis finite. It is obvious, that if G is discrete or if the 

action of G on Xis trivial, then G-pseudocompactness of <X,TT> is exactly 

the same as pseudocompactness of X. Moreover, if Xis pseudocompact, then 

<X,TT> clearly is G-pseudocompact, but the converse was left as an open 

problem in [6]. In [6;5.8] I conjectured that the converse is false, but 

I could find no counterexample. The following theorem shows, why I couldn't; 

the proof is quite simple, 

THEOREM 3. Let G be locally compact and let <X,TT> be a Tychonov G-space. 

Then <X, TT> is G-pseudocompact iff X is pseudocorrrpact. 

PROOF., "If": obvious (see also the remarks above). "Only if": let {W } n nE:N 
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be an infinite sequence of non-empty open subsets of X, mutually disjoint. 

Let Ube a compact synnnetric neighbourhood of e in G and let x E W for 
n n 

every n E JN. Since <X,n> is assumed to be G-pseudocompact, no sequence 

{W~}nEJN with Wk an open neighbourhood of U~ for every k E JN can be local­

ly finite (if there would be such a sequence which is locally finite, then 

there wo~ld also be such a sequence which is disjoint and locally finite, i.e. 

a locally finite G-dispersion; for the straightforward proof of this, see 

[6;2.2(40)]. In particular, the sequence {UW} JN is not locally finite: 
n nE 

there exists a point x
0 

in X such that every neighbourhood V of x
0 

inter-

sects infinitely many of the sets UWn. Let V be a neighbourhood of ux
0

• Since 

the action of G on Xis continuous as a mapping of G x X into X and U is 

compact, there exists a neighbourhood V' of x
0 

such that UV' EV. For in­

finitely many values of n E JN we have now that V' n UW #~'hence 
-1 n 

UV' n W # ~ (for U = U), and, consequently, V n W #~-If the sequence 
n n 

{W} JN were locally finite, then the compact set Ux
0 

would have a neigh­n nE 
bourhood, intersecting only finitely many of the sets W • Thus, the sequen­

n 
ce {Wn}nEJN is not locally finite. This shows, that Xis pseudocompact. D 

Using this theorem, we now reformulate some results from [6]; in doing 

so, some of the open problems'of [6] are solved. 

COROLLARY 3. Let G,and <X,n> be as in the theorem above. Consider the foZ­

Zowing properties: 

(i) Every f E uc*<X,n> has a maximum and a minimum on X; 

(ii) Xis pseudocompact 

(iii) Every n-unifomZy continuous function on Xis bounded. 

Then (i) <=>(ii)~ (iii) and (iii) ,=f> (ii). 

PROOF. For (i) ~(ii)~ (iii) and (iii):=/> (ii), see [6;2.5]. The implication 

(ii)~ (i) is trivial. D 

REMARK. In [6; Remark 5.11] the implication <X,n> is G-pseudocompact ~ (i) 

was left open. A problem which was not considered in [6] is, under which ad­

ditional conditions one has (iii)~ (ii) in the above corollary. Here is a 

partial solution: 

COROLLARY 4. Let G be a ZocaZZy compact metrizabZe topoZogicaZ group, and 

Zet <X,n> be a nomaZ Hausdorff G-space. Assume that there are almost no 



open isotropy suhgroups. Then the following conditions are equivalent: 

{i) Xis pseudocompact; 

(ii) Every rr-unifoY'mly continuous function on Xis bounded and BGX = BX. 

PROOF. For (i) ~ (ii), see Corollary 3 together with Theorem 1. For 

(ii)~ (i), suppose f is an unbounded rr-continuous function. Without re­

striction of generality we may suppose that f ~ 0. Let {x'} ]N be a se-
n nE 

quence in X such that f(x~+l) > f(x~)+l for all n, and let 
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W := {x EX: lf(x)-f(x') I < 1/3}. Since <X,rr> has almost no open isotropy 
n n 

groups, for every n E ]N there is a point x 
n 

group GXn is not open in G. Now the sequence 

subset, and (as G is metrizable) we can find 

E W such that the isotropy 
n 

{x } ]N is a discrete, closed n nE 
a sequence { t } ]N in G such n nE 

that t x f x, t x E W for all n, and t r.--+ e for nn n nn n n n + 00 (cf. the proof 

of Corollary I). As in the proof of Corollary I (see also the Remark after 

that proof), this contradicts Theorem 2. D 

REMARKS I. Problem 5.3 of [4] remains open. 

2. The general question for necessary and sufficient conditions for the 

equality 8GX = BX is still open. The problem whether G-speudocompactness 

is sufficient (cf. [6;5.10] is solved by Theorems 1 and 3 above: the answer 

is "yes11
• In this con text, see also Theorem 6 in [ 1 J. 

REFERENCES 

[1] ANTONYAN, S.A., G-pseudocompact and G-Hewitt spaces, Uspehi Mat. Nauk 

35 (1980), 151-152 (Russian); English translation in: Russian 

Math. Surveys 35 (1980), 81-82. 

[2] CARLSON, D.H., Extensions of dynamical systems via prolongations, 

Funkcial. Ekvac. ~ (1971), 35-46. 

[3] COMFORT, W.W. & A.W. HAGER, Unifoy,rrz continuity in topological groups, 

Symposia Mathematica, Vol. XVI, pp. 269-290. 



8 

[4] VRIES, J. DE, Topological transformation groups 1, Mathematisch Centrum, 

Amsterdam, 1975. 

[5] , Equivariant embeddings of G-spaces, in: J. NOVAK (ed.), ------
Proc. 4th Prague Topological Symposium 1976, Part B, Prague, 1977, 

pp. 485-493. 

[6] ______ , On the G-eorrrpactification of products to appear in 

Pac. J. Math. 


