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The generalized Cartan decomposition for a compact Lie group*) 

by 

B. Hoogenboom 

ABSTRACT 

We prove a generalized Cartan decomposition for a compact Lie group, 

namely G = KA H, where G is a compact semisimple real Lie group and Kand 
pq 

Hare the fixed points of two commuting involutions of G. We also prove 

an integral formula for this decomposition, and we give an expression for 

the radial part of the Laplace-Beltrami operator with respect to this de

composition. 

KEY WORDS & PHRASES: Corrrpaat Lie group, Cartan deaorrrposition, Generalized 

Cartan deaorrrposition, Integral formula, K,H-radial 

part of the Laplace-Beltrami operator. 

This report will be submitted for publication elsewhere. 





O. INTRODUCTION 

For a semisimple Lie group Gone has the so called Cartan deaorrrposition. 

That is, if (G,K) is a Riemannian symmetric pair of the compact or noncompact 

type, then G = KA K. Here A = exp a. , with a. a maximal abelian subalgebra 
p p ~P p 

in the -1 eigenspace p of de in g (the Lie algebra of G), where e is the 

involution of G such that (G8) 0 c Kc G8 • 

If (G,K) is of. noncompact type then the above decomposition has the 

following generalization. Let a be an (arbitrary) involution of G commuting 

withe, put H := (G0 ) 0 , and let q be the -1 eigenspace of doing. Choose 

a maximal abelian subalgebra a. in p n q, and put A := exp a. • Then pq pq pq 
G = KA H. This decomposition, which we shall refer to as the generaZized pq 
Cartan deaorrrposition, was first proved in BERGER [IJ. For a modern account 

see FLENSTED-JENSEN [2, Theorem 4.I(i)J. 

In this paper we shall prove a generalized Cartan decomposition for a 

compact Lie group. Since Flensted-Jensen's proof uses a lemma of Mostow 

(see [10]), which does not apply in the case of a compact Lie group, we have 

to follow a different, differential geometric approach. Without changes this 

proof also applies to the noncompact case. Thus, we are able to formulate 

and prove these results in a quite general way. 

We also derive an integral formula corresponding to the generalized 

Cartan decomposition of a compact Lie group. This formula is very similar 

to the analogous formula for a noncompact Lie group, see FLENSTED-JENSEN [3, 

Theorem 2.6]. Finally we derive an expression for the radial part of the 

Laplace-Beltrami operator with respect to the generalized Cartan decompo

sition. 

These results are of great importance for the analysis of the so-called 

inter-t;wining functions on G. These are left-K-, right-H-invariant functions 

on G which belong to some irreducible representation of G. Recently the 

author proved that for a compact group G the intertwining functions can 

be considered as orthogonal polynomials in several variables on a region 

in lRl (l = dim a. ) with respect to a positive weight function. Those pq 
results will be part of the author's thesis, which is planned to appear 

at the University of Leiden, see also HOOGENBOOM [7]. 
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I • NOTATION AND PRELIMINARIES 

Let G be a connected real semisimple Lie group with finite center. 

Let e,a be two connnuting involutions of G. We assume that either G is com

pact, ore is a Cartan involution of G. Put K := (G0) 0 , H := (G0 ) 0 • Let 

g be the Lie algebra of G, and, by abuse of notation, we'll also write e 

and a for the differential of e,a, respectively. Let g = k + p be the de

composition of g in.±1 eigenspaces of e, g = h + q the decomposition of g 

in ±1 eigenspaces of a. Then k,h are the Lie algebras of K,H, respectively. 

Since ae = ea we have the following direct sum decomposition: 

(I .1) g =kn h +kn q + p n h + p n q. 

Let a be a maximal abelian subalgebra in p n q, then a necessarily pq pq 
consists of semisimple elements. Put A := exp a pq pq 

2. A CARTAN DECOMPOSITION FOR H 

LEMMA 2.1. (H,(KnH) 0) is a Riemannian syrnmetria pair. 

Lemma 2.1 enables us to use differential geometric methods, cf. eg. 

HELGASON [6, ch.I], for H/(KnH) 0 • Therefore, introduce an H-invariant 

Riemannian structure on H/(KnH) 0 • 

LEMMA 2.2. H = (KnH) 0 exp(pnh). 

PROOF. By Lemma 2.1 H/(KnH) 0 is a Riemannian synnnetric space. Hence, by 

[6, Theorem VI.3.3] and [6, Theorem I.10.3] H/(KnH) 0 is a complete 

Riemannian manifold. Now identify p n h with the tangent space to H/(KnH) 0 
at o(:=e(KnH) 0), then it follows from [6, Theorem I.IO.SJ that 

Exp(pnh) = H/(KnH) 0 • 0 

REMARK 2.3. If G is noncompact, and a is not a Cartan involution of G (i.e. 

H is noncompact) then the mapping (k,X) 1+ k exp X: (KnH) 0 x exp(pnh) + H 
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is an analytic diffeomorphism. Moreover, Kn His connected. 

Let b be maximal abelian in p n h, and put B := exp b. 

LEMMA 2.4. p n h = ukE(KnH)o Ad(k). b. 

, PROOF.his a subalgebra of g, invariant under the Cartan involution e, 
hence his reductive. If his semisimple, the letmna follows by [6, Letmna 

V.6.3]. So suppose his not semisimple. Then h = [h,h] + z(h), with [h,h] 
semisimple and z(h) the center of h ([8, Proposition 19.1]). The only part 

in the proof of [6, Letmna V.6.3] in which the semisimplicity of h would be 

used is BI knhxknh is negative definite (here B denotes the IKilling form 

on h). But if his reductive we can argue: B([k0 .X,H],T) = 0 for all 

TE kn h implies [k0 .X,H] E z(h) n [h,h] = (0), hence 

[k0 .X,H] = 0 (k0EKnH,XEpnh,HEa). Thus the proof of [6, Letmna V.6.3] also 

works in the case his reductive. D 

THEOREM 2.5. H = (KnH)OB(KnH)o. 

PROOF. Leth EH. Then we can write 

(2. 1) h = l.1 exp X 

and 

(2 .2) 

because of Letmnas 2.2 and 2.4, respectively. Combination of (2.1) and (2.2) 

yields 

3. THE GENERALIZED CARTAN DECOMPOSITION FOR G 

Let g0 be the +l eigenspace of cre in g. That is g0 =kn h + p n q. 
Let G0 be the analytic subgroup of G with Lie algebra g0 • We shall need 



4 

Lemmas 2.1, 2.2, 2.4 and Theorem 2.5 in the cases where the pair (0,o) is 

replaced by the pair (e,oe). For later reference we shall state these re

sults in a lemma. Therefore remark that (KnG0) 0 = (KnH) 0 . 

LEMMA3.l. 

(1) H = exp(pnh).(KnH) 

(2) G0 = exp(pnq).(KnH) 

(3) GO= (KnH)A (KnH). pq ' 

Let Exp be the exponential mapping in the space G/K. 

LEMMA 3.2. Left muZtipZiaation with exp(pnh) Zeaves Exp(pnh) invariant. 

PROOF. exp(pnh) exp(pnh) c H = exp(pnh)(KnH), by Lemma 3.1(1). Thus 

exp(pnh) Exp(pnh) c Exp(pnh). D 

Now Lemma 3.2 has the following corollary: 

COROLLARY 3.3. Exp(pnh) is a totaZZy geod.esia suhmanifoZd of G/K. 

N_.B. Remark that Corollary 3.3 also follows from the fact that p n h is a 

Lie triple system included in p, as defined in [6, p.224], by using [6,-

Theorem IV. 7.2]. 

LEMMA 3.4. Exp(pnh) is aZosed in G/K. 

PROOF.His closed in G. Because of Lemna 3.1(1) we have Exp(pnh) = 1r(H), 

where 1r: G + G/K is the natural projection. But 1T sends closed subsets of G 

to closed subsets of G/K, because K is compact. Hence Exp(pnh) is closed in 

G/K. • 
PROPOSITION 3.5. G = K exp(pnq) exp(pnh). 

PROOF. We'll prove G/K = exp(pnh)Exp(pnq), which implies the proposition. 

Let PE G/K. Let XE p n h be such that Exp Xis an element of Exp(pnh) 

with minimal distance to P (such an X exists because of Lemma 3.4). Let 

o := 1r(e), and put Q := exp(-X)P. Tb,en it follows from Lemna 3.2 that o is 

an element of Exp(pnh) with minimal distance to Q. Let y(t) = Exp tY (YEp) 



be a geodesic which realizes the minimal distance between o and Q (such a 

y exists bec:ause of [6, Theorem I.1O.4], G/K being a complete Riemannian 

manifold (cf. Proof of Lemma 2.2)). We shall now prove that YE p n q, 

hence P = (exp X) Q = exp X Exp t 0Y E exp(pnh) Exp(pnq) (t0 EJR.). 
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Let W be an open ball around o in ip of sufficient small radius such 

that Exp: W + V = Exp Wis a diffeomorphism and, for any Q1,Q 2 EV, Q1 and 

Q2 can be joined by precisely one geodesic of minimal length, which lies 

entirely in V, cf. [6, Theorem I.9.9]. 

Let Q' be an element of y lying in V between o and Q. Suppose Q' has 

a shorter distance to Exp(pnh) than d(Q' ,o) (d denoting the Riemannian 

metric in G/K), say to Exp Z (ZE(pnh)). Then: 

d(Q,ExpZ) ~ d(Q,Q') + d(Q',ExpZ) < d(Q,Q') + d(Q' ,o) = d(Q,o), 

a contradiction, since o was the element of Exp(pnh) with minimal distance 

to Q. So we may assume Q EV. 

Vis a ball around o, hence Vis a-invariant, hence crQ EV. Now, let 

S be the unique geodesic in V which joins Q and crQ. Since S is unique, we have 

S = crS~ We claim o Es. Namely, suppose o i S. Since S = crS there exists a 

Q" e: S such that crQ" = Q", hence S n Exp(pnh) 3 Q". Now Q' =I- o, since o i s. 
Let dS be the distance between points along S, dy distance along y. S mini

malizes the distance between Q and crQ, and d(Q,o) = d(crQ,o). Hence 

da(Q,Q") = l\da(Q,crQ) < Hd (Q,o)+d (o,crQ)) = d (Q,o), 
µ µ Y cry Y 

a contradiction. Hence o e: S, hence S = y. 

Now remember that Y E p is such that y(t) = Exp tY. Since S = y, 

cry(t) = y(-t), hence crY = -Y, ie. YE p n q, which proves the proposition 

by the abovei remarks. D 

THEOREM 3.6 (Generalized Carron decomposition) 

G = KA H. pq 

PROOF. Let g E G. Then by Proposition 3.5 there exists an XE p n q such 

that 

(3. I) g; E K exp X exp (pnh) • 
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By Lemma 3.1(3) there exists an a EA such that: pq 

(3. 2) exp XE (KnH)a(KnH). 

Combination of (3.1) and (3.2) gives g E KaH. D 

REMARK 3.7. If G is noncompact, then Theorem 3.6 can be refined such that 

the a in g = kah (aEA ,gEG,kEK,hEH) becomes unique. Therefore, let r0 be pq 
the set of roots of the pair (g0 ,ap4), and let w0 be the Weyl group of r0 . 
Ch .. 1 +. d + + oose a positive Wey chamber a in a , an put A := exp a • Then 

-+ pq pq pq -+pq 
G = KA· H, such that for all g E G there exists a unique a E A such that 

M M 
g E KaH, see FLENSTED-JENSEN [2, Theorem 4.l(i)J. 

4. AN INTEGRAL FORMULA FOR THE GENERALIZED CARTAN DECOMPOSITION 

In the case G is noncompact, FLENSTED-JENSEN [3] gives an integral 
' formula for the generalized Cartan decomposition. Although the integral 

formula for G compact is very similar to the noncompact case, the proof is 

more involved, just as for the integral formula for the Cartan decomposi

tion, cf. HELGASON [4, Ch.X]. Therefore, we shall treat the compact case 

here, and sunnnarize the results from [3, section 2] only. 

Let E be the set of roots of the pair (g , (a ) ) • Then E satisfies pq C pq C pq 
the axioms of a root system, cf. ROSSMANN [ 11, Theorem 5 J. For a. E E , let pq 
g be the root space of a., and let p := dim(g n(knh+pnq) ), 

0. 0. 0. C 

qo. := dim(go.n(knq+pnh)c). That is, po. is the dimension of the set of all 

XE g such that oex = X, q the dimension of the set of all XE g such 
a. a + a. 

that oex = -X. Choose a positive system E in E pq pq 
If G is noncompact, then by a proof, similar to the proof of Lennna 4.2 

we find for the density o: 

(4. 1) o(X) := I .rr + 
O.EE pq 

Pa qo. 
sh o.(X)ch o.(X) I , X E a pq 



Put L :=Kn H, M := CL(a ). Then with a suitable normalization of the pq 
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involved measures, we have the following integral formula ([3, Theorem 2.6]): 

(4. 2) 

+ 
(here a pq 

J' f (g) dg = vol (L/M) f L f f (kexpXh) o (X) dhd.Xdk, 

G Ka H pq 
is the positive Weyl chamber as in Remark 3.7). 

f E C (G) • 
C 

From now on, let U be a compact semisimple Lie group, with analytic 

subgroups K,H as in section 1. Put L :=Kn H, M := CL(a ) . Define a mapping pq 
cp := K/M X A • U/H by pq 

(4. 3) <Ii· (k.M, a) := kaH, 

Normalize measures as follows: 

k EK, a EA pq 

(4. 4) J du= f dk = J dh = J dl = J dm = J 
u K H L M A 

da = 1. 

pq 
Denote· the Lie algebra of U by u. Now the Killing from on u induces invari-

ant measures on U/H, K/M, L/M and a . Let the corresponding Riemannian pq 
measures be denoted by duH, di.di, dhi, and d.X, respectively. Let l,m be the 

Lie algebras of L,M, respectively. Let l' be the orthogonal complemen-t 

(with respect to the Killing form) of m in .l. Then we have to calculate 

ldet d<i>(eM,a) I, where d<i>(eM,a): l' + (k.nq) + apq • dT(a) (k.nq+pnq) is the 

Jacobi matrix (T defined by T(u)xH := uxH for u,x EU). Because of the fact 

that for X E a exp X = e implies a.(X) E 21ri?Z for all a. E I the follow-pq pq 
ing definition makes sense: 

DEFINITION ~' .1. o (expX) := In ..,+ 
O.EL,pq 

LEMMA 4.2. jdet d<i>(eM,a) I = o(a). 

p q 
sin a.a.(iX) cos a.a.(iX) I, X E a pq 

PROOF (sketch). Let q0 be the dimension of the zerospace of ad a in p n h, pq 
and r 0 be the dimension of the zerospace of ad a ink. n q. Choose pq 
ON ( :=orthonormal) bases as follows: 
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I pa. + 
of l' T , ••• ,T (a.EL ) 

a. a. pq 

I pa. + 
of p .L 

y , ..• 'y (a.EI ) n q n a pq' a. a. pq 

I qa. + I qO 
of p n h, X , ••• ,X (a.EI ) , XO, ••• ,XO a. a. pq 

and 

I qa. + I rO 
of k. n q Z , ••• , Z (a.EI ) , zo, ••• ,zo a. a. pq 

such that: 

ad(X)Tj = -a.(iX)YJ 
a. a., 

ad(X)YJ = a. (iX) TJ, 
a. a. 

ad(X)XJ = -a. (iX) ZJ 
a. a., 

ad (X) zJ = a. (iX) XJ 
a. a 

for all XE apq" Choose an ON basis {XI, ••• ,x1} of aµq· Now we'll calculate 

the matrix of d<I> (eM,a) with respect to the ON basis 

of l' 

of q = 

Now if 

+ 

l pa. + I pa + I ro 
T , ••• , T (a.EL ) , Z , ••• ,z (ad ), zo, •.• 'zo , XI , ••. , Xf a a. pq a. a pq 

(k.nq) + a pq' 
and the ON basis 

1 pa. + I pa + I rO 
y ' .•• , y (a.EI ) , z , ... ,z (a.EL ), zo, •.. , zo , XI, •.. ,X,e_ a a. pq a a pq 

(pnqnal. )+(k.nq) + a It is clear that d<I>( M ) (X.) = d,(a)X .. 
pq pq e ,a J J 

YE k. n m.1, d<I>(eM,a)(Y) follows from differentiation of the I-para-

meter curve 

t ·+ TT(exptYexpX) = exp X.TT(exp(te-a~)), 

where rr: U -+ U/H denotes the canonical projection, and X E a 1.s such that 
pq 

a= exp X. Thus 



hence 

= d.(expX)sina(iX)YJ, 
a. 

= dT(expX)cosa.(iX)Zj, 
a. 

d~(eM,a)(Zi) = d.(expX)Zi, 

which proves the lemma. D 

From now on the compactness of U will play an essential role. 

Let (A ) be the set of elements in A such that~ is regular at pq r pq 
(eM,a). That is 

(4.5) = {expX I XE a ,a.(X) i Tii7l if p ~ 0, pq a. 

+ a(X) + !Tii i Tii7l if q ~ 0 Va EE }. 
a. pq 
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Let the image of K/M x (A ) under~, which is an open dense subset -0f U/H 
pq r * 

(by Theorem 3 .6), be denoted by (U/H) • Put ~ := ~ (a ) , ~ := N_ (a ) , * r pq -x pq 
M__ := c.._(a ), M__ := NH(a ). Let W be the Weyl group of E • Then --a -ij pq --a pq pq pq 
wpq = ~/~ = ~/1"11. 

* DEFINITION 4.3. Let J be the set of all pairs (s,mh) such that m E ~' h EH, 

mh EA ands= Ad(m) la E W • pq pq pq 

LEMMA 4.4. Let k EK, h EH and a,b EA be suah that b = kah. Then 
b4 = ka4k-l. pq 

PROOF. Apply o,e and oe to b = kah and eliminate 0h and ok. This gives 

a3 = hb 3k, or b3 = h- 1a3k-l Thus b4 = b.b3 = kah.h- 1a 3k-l = ka4k-l. 0 

Thus J is a finite set, since Jc W (KHnA ), W is finite by de-pq pq pq 
finition, and KH n A is discrete (by Lennna 4.4) as well as compact, hence pq 
also finite. Let j := jJI be the number of elements of J. 
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Observe that J can be given a group structure. Put, for (s 1,m 1h 1), 

(s 2 ,m2h 2) E J 

(4.6) 

-I 
Since (4.6) equals (s 1s 2 ,m1 (m2h2)m1 (m 1h 1)), this is well-defined. The in-

verse of (s,mh) E J is given by 

(4. 7) 
-I -I -I -I 

(s,mh) := (s ,m h ). 

Thus (4.6) gives J a group structure. Moreover, J acts on A in a diffeopq 
morphic way, via 

(4. 8) (s,mh) (expX) := (expsX)mh. 

(4. 9) 

Thus there is a well-defined action of Jon K/M x A via pq 

(4. 10) 
-I 

(Ad(m) la ,mh). (k 1M,a 1) := (k 1m M,mat) 
pq 

(since m EM normalizes M, (4.9) implies that (4.10) is well-defined). 

It is clear that ~0 j = ~ Vj E J. 

PROPOSITION 4.5. ~ is a regular j-to-one mapping of K/M x (A ) onto pq r 
(U/H) . r 

PROOF. Regularity follows from Lemma 4.2, and the open dense subset (U/H) 
r 

is by definition the image of K/M x (A ) . So the only thing left to prove pq r 
is the fact that~ is j-to-one. Therefore, let A' be the set of all a EA 

4 8 12 pq pq 
such that the sequence {a ,a ,a , ••. } is dense in A • Then A' is dense pq pq 



Then for certain h 1,h2 
-1 ' h := h 1h 2 , a2 = ka 1h. 

a 2 e: A' ) • pq 

1 1 

Let Xe: a . Then Ad(k)X e: p, but also o(Ad(k)X) = -Ado(k)X = -Ad(k)X, pq 
hence Ad(k)X e: p n q. (The last identity follows by applying oe to 

4 4 -1 4 4 -1 -1 4 -1 . 4 
a2 = ka1k , which gives a 2 = cr(k)a 1o(k ) • Hence (k cr(k))a1 (cr(k )k) = a 1, 

-1 -1 hence (k cr(k))a(cr(k )k) = a Va e: A , thus Ad(k)X = Ad(cr(k))X VX e: apq). 
pq 4 

Moreover, Ad(k)X centralizes apq" Namely Ad(a2)Ad(k)X = Ad(k)Ad(at)x = 

= Ad(k)X, hence Ad(a)Ad(k)X = Ad(k)X Va e: A , hence [Y,Ad(k)X] = 0 VY e: a 
* -1 -1 ~q pq 

Thus k e: ~, and kh = ka 1 k a 2 e: Apq" So, if a 1,a2 e: A~q' k e: K, he: H, 

then a 2 = ka 1h iff k e: ~ and kh e: Apq" 

Now, let a 1 ,a2 e: A' , k 1 ,k2 e: K, h 1 ,h2 e: H be such that a 2 = k 1a 1h 1 = 
-1 pq -1 4 -1 4 

= k 2a 1h2 • Put k := ~f k 1, h := h 1h 2 , then ka 1h = a 1, thus ka 1k = a 1, by 

Lenmia 4.4. Thus kak = a Va e: A , hence Ad(k)X = X VX e: a . Thus pq pq 
Ad(k 1) lapq = Ad(k 2) lapq' thus k 1h 1 = k 2h 2• 

Thus~ is a j-to-one mapping of K/M x Apq onto ~(K/MxA~4) =: (U/H)'. 

We shall now prove that~ is j-to-one from K/M x (Apq)r onto ~(K/M.x (Apq)r) = 

= (U/H) • (U/H)' is dense in (U/H) , because A is dense in (A ) . 
r , _ 1 r . pq _1 pq r 

· Let ye: (U/H) • Assume I~ (y)I > J, x 1, ••• ,xj+l e: ~ (y). Then t_here 

::is an open neighbourhood V of y, and disjunct open neighbourhoods U. of 
i 

x. (i = 1, •.. ,j+I) such that F: U. • Vis a homeomorphism. But 3z 
i i 

thus ~-I (z) c K/M x A' , and l~-l (z) I > j+l. Contradiction. 

e: V n (U/H)', 

-1 pq. . -1 . . 
Assume I~ (y) I < J, ie. ~ (y) = {x1, ••• ,xt}, t < J• Again, take V 

open neighbourhood of y, and U. open neighbourhood of x. (i = 1, ••• ,t) such 
i i 

that F: U. • Vis a homeomorphism. Now by the action (4.10) J acts diffeo
i 

morphic on K/M x A , and ~0 j =~,hence j(K/M x (A ) ) = K/M x (A ) pq pq r pq r 
Vj e: J. Let y • y, with y e: V n (U/H)'. Let z E u1 be such that Hz) = n n n n 
= y. 3j e: J such that j .z jU1 u ••• u U, because J.z has cardinality n n n n t n 
j > t, and is mapped toy, since~ is injective on each U. (i = 1, ••• ,t). n i 

Hence there is a subsequence j 0 .zin' with j 0 e: J fixed (because J is finite), 

Zin • x 1, and j 0 .zin • j 0 .x1 i u1 u ••• u Ut, and j 0 .x1 e: K/M x (Apq)r since 

x 1 e: K/M x (A ) • Contradiction. vq r 
Thus 1~- (y) I = j, which proves the proposition. D 

REMARK 4.6. Let w := lw I, k := Im n A 1- Then it can be shown that j =wk. pq pq 



12 

THEOREM 4.7. Let f E C(U). Then, with the nonnaZization of measures (4.4), 

(4.11) f o(a)da J f(u)du =ff f f(kah)o(a)dhdadk. 

A U KA H pq pq 

PROOF. From what is said above, it follows that we have the following ex-

pressions: 

(4. 1 2) 

(4. 13) 

(4. 14) 

J 
U/H 

.-1 f 1 (uH)duH = yJ f J f 1(kaH)o(a)dkMda 

A K/M pq 
(y = vol~A )' fl E C(U/H)), 

pq 

vol(U/H) j f 2(u)du = J (J f 2(uh)dh)duH C(f2eC(U)), 

H U U/H 

vol(K/M) J f 3(k)dk = J (f f 3(km)dm)dkM C(f3EC(K)). 

K K/M M 

Now (4.12), (4.13) and (4.14) imply (cf. HELGASON [4,p.384]) that for all 

f E C(U): 

vol(U/H) J f(u)du = yj- 1vol(K/M) f f j f(kah)o(a)dhdkda. 

U A KR pq 
(4.11) follows by substitution off= 1. D 

REMARK 4.8. The evaluation of JA o(a)da leads to integrals of Selberg

type. See MACDONALD [9] for somep~xplicit values and some conjectured values 

for integrals of this type. 

5. THE K,H-RADIAL PART OF THE LAPLACE-BELTRAMI OPERATOR 

In this section let G again be an arbitrary connected real semisimple 

Lie group. Let o'(n) denote the radial part of the Laplace-Beltrami operator 

acting on a K-invariant function f E C00 (G/H) (which we shall denote by 
00 

f EC (K\G/H)). As in the proof of LeIIDJ1a 4.2, choose a basis x1, ••• ,Xl of 

a. such that B(X.,X.) = o .. , where B(•,•) denotes the Killing form on g. 
pq 1 J 1J 
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Let the function o on A be defined as in (4.1) (g noncompact), or as in . pq 
Definition 4.1 (g compact). For a Er , let m be the multiplicity of a in pq a 
g, that is m = p + q • Put p : = ½ }: "'+ m a. For a E r , define A by 

a a a aE~p a pq a 
B(X,A) = a(X) for all XE a , and A by~(X,A) = p(X) for all XE a a pq P P pq 

THEOREM 5.1. o'(Q) = l~-1 x~ + 2A + 2\ (p (e2a-l)- 1-q (e2a+l)- 1)A. 
J- J p laEr+ a · a a pq 

PROOF. (See also [2, formula (4.12)] and [3,p.307]). According to Theorem 
00 

3.6 we have G = KA H. Let f EC (K\G/H). Observe that according to Theorem pq 
4.7 (or according to (4.2) if G is noncompact) we have 

(5. I) J f(x)dx = c J 
A pq 

f (a) o (a) da. 

G/H 

Then it follows from HELGASON [5, Theorem I.2.11] that 

(5. 2) 

where~ is the Laplace-Beltrami operator on A • Thus pq 

(5 .3) 

But if {X1, ••• ,Xl} is an orthonormal basis of apq' then we have 

l 
~ = z: 

j=l 

2 x .• 
J 

Thus (5.3) becomes 

(5.4) 
l 

. o, en> = I 
j=l 

or, by simple calculation 

(5 .5) 0' (Q) 
l 

= I 
j=l 

x~ + 2 
J 

l 
I 

j=l 

Substitution of the expression for the function o gives 
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l 
o'(n) = l x: + 2A + 2 1 

j=l J p a.EE+ 
pq 

2a. -1 2a. -1 
{p (e -1) -q (e +l) )A. 

a. a. a. • 

As a corollary we obtain the following expression for o'(n), acting 

on f E C~(K\G/H): 

(5.6) (o' (n) f) (expX)J 
l 

= < r x:+ r 
j=l J a.EE+ pq 

If G is compact (5.6) gives 

(5. 7) 
l 

(o' (n)f)(expX) = ( l x:+ l 
j=l J a.EE+ 

pq 

(p cotha(X)+q tha(X))A ).f{expX). 
a a. a. 

(p cotga(iX)+q tga.(iX) )iA ) .f(expX). 
a. a a. 
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