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I • INTRODUCTION 

In [4] Feinsilver presented an operator calculus that allows, among 

other things, to compute transition semigroups in terms of naturally asso­

ciated Hamiltonian flows, but in his work the infinitesimal generators of 

the transition semigroups, or their associated Hamiltonians, depend only on 

the "momentum variables". Here we extend his techniques to situations in 

which the Hamiltonian may depend on the position variables. This will allow 

us to treat a larger class of processes and to bring into play the theory of 

canonical transformations. 

This paper is to be the first of a series, very much modelled on [4], 

and we shall assume familiarity with its notations, results and techniques. 

Below we state the basic assumptions to be kept in mind throughout, in sec-

tion 2 we extend some of the results in [4] to our situation and we give 

a classical model for the Girsanov transformation: it corresponds to a canon-

ical transformation. After this we study how do transition functions "change 

under canonical transformations". 

In section 3 we work out some examples, after which in section 4, we do 

a brief study of moment syste~s. 

Let H(x,p) the Hamiltonian function, be a real analytic function defined 
2n 

on :JR such that IJ(x,p) = T(p) + a(x) • p + V(x) or reducible to such form 

by means of canonical transformations (see [7] for a crash course in classical 

mechanics or [I] for full detail). We shall assume that the canonical equa­

tions 

(I) X. = dx./dt = dH/dp. 
i i i 

p. = dp./dt = - aH/ax. 
i i i 

through each initial point (x,p), which defines a have a global solution 
2n 

flow <I? t (x, p) on :JR • 
I By x(t) or <I?t(x,p) we will denote the first n compo-

nents of <I?t(x,p). 

A function F(x,P,t) will be called the generating function of the canon-

ical transformation (x,p) + (Q,P), if the equations 

( I. 2) Q. = aF/aP. 
i i 

p. = 3F/3x. 
i i 
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can be solved for (Q,P) in terms of (x,p) and back, In this case the new 

Hamiltonian function and canonical equations are 

(1.3)-a H -- H + clF/clt 

(1.3)-b 
. 
Q. = alI/ap. 

1. 1. 
p. = - aH/aQ .. 

1. 1. 

Associated to H(x,p) we put G = H(x,D), when D = (a/ax 1, ••• ,a/axn) and as­

sume the existence of a "transition function" pt(x,y) such that 

( 1. 4) 

defines a semi.group, on an appropriately large class of functions f, having 
aPt 

infinitesimal generator G, i.e., at= GPt = PtG. To finish, we assume the 

existence of a positive function n0 , the vacuum function, such that 

PtnO = n0 (or Gn0 = 0). 

2. OPERATOR CALCULUS 

Here we eixtend some of the basic operator calculus of [4] to our set up. 

Basic to the subjest is the idea of thinking of functions as multiplication 

operators acting on the vacuum function. Feinsilver does it by taking n = 1, 
0 

but one can also reobtain f(x) as (rn0)(x)/n0 (x). Let us begin with an ex-

tension of the 

GLL (General:i.2:ed Leibnitz Lemma). Let K(x, D) denote an operator such that 

K(x~p) is anatytic and the D's are to the right. Then 

K(x,D) 0 U(x) = I 
(m) 

a<m)u 

ax(m) 

cl(m)K 
(x,D)/(m)! 

clp (m) 

D(n) 
where we are 1i~sing the muZtiindex notation., i. e --- = 

cl(x)n 
m 

am I a n 
= 

ax~ ' clxml 
(m)! = m1! ... mn!, etc. for (m) = (m1, ... ,mn). 

n 
PROOF. As l.Il [ 4 J' it suffices to consider, with ek(x) = expik.x, 



(K(x,D) 0 ek) ek, (x) = K(x,D)ek+k' (x) = K(x,ik+ik') ek+k, (x) 

= I 
(m) 

(ik) (m) ik.x 
(m) e 

= I 
(m) 

.,. (m) .k 
0 l. .x 

e 
ax(m) 

a(m) "k' 
( • ') l. .x (m) K x,1.k e 

i)p 

(m) 'k' :p (m) K(x, D) e 1. / (m) ! • 
A computation that will be needed repeatedly below is contained in 

PROPOSITION 2.1. Let l(p) denote an analytic, real valued function on ]Rn 

and F(p) = Vl(p). Then for a.,k E ]Rn, and a,b E JR, b # 0. 

(2.2) exp(aa..F(D) +ba.-x) ek = eba..x exp: {l(ik+ba.) - l(ik)} eik.~ 

PROOF. To obtain this result we use the following version of Trotter's 

product formula, [9], 

exp a.. (aF (D) + bx) ek = 1 . ( ( ) ha. .x )n 1.m exp a a.. F D exp -n- ek 
n->oo n 

and observe that 

aa. exp a a.. F (D) . exp x. (ik+ ha.) = exp n 
1)- n 

.F(ik + ha.) exp x. (ik+ba.) 
n n 

now, iterating one obtains that the left hand side of (2.2) equals 

lim exp 
n• O 

n 

I 
j=I 

aa. -· n 
F(ik +bi) exp(ba.+ik) .x 

n 

which, after converting the Riemann sum into an integral, yields (2.2) 0 

Another variation on the same theme, with a similar proof is 

PROPOSITION 2.3. Let h(x) be a smooth function and let K(x) = Vh(x) 
n Then for x~k E JR , b ,a. # 0 in JR 

(2.4) exp a.. (aD + bK(x) ek = exp a.x. k exp £.{h (x+aa.) - h (x)} eik. x 
a 
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An important special case of this corresponding to h(x) 

which (2.4) becomes 

I 2 • = 2x l.n 

(2.5) iaa.k 2 exp a. (aD + bx)ek = exp exp ba.x +½baa exp ik~x 

These two results are an extension of proposition 8 in [4]. The next result 

is the basic tool for the examples in the next section, It is an analogue 

of the duality of the Heisenberg and Schroedinger representation in quantum 

mechanics [6], and it extends the comments right before prop. 8 in [4]. 
-1 . 

Starting from pt(x,y) put qt(x,y) = n0 (x) pt(x,y) n0 (y) and define the 

semigroup Qt by 

(2.6) Qtf (x) = J qt (x, y) f (y)dy = 

Certainly, when qt(x,y) is known, pt(x,y) can be obtained from 

PROPOSITION 2.7. With the above notations, and for Hof one of the two forms 
. 2 

H = T(p) + a x.p • V(x) or H = } p + a(x) .p + V(x), where a E lR or 

a(x) = VA, A(x) being real valued analytic, 
; 

(2. 8) 

where C+ - C+(t) is ~!<x1p) with p replaced by D. (The reason for the nota~ 

tion will become apparent in section 4). 

-1 tH 
PROOF i. In the style of [4], n0 (x) (e f n0 ) (x) 

-1 + 
= n0 (x) (f(C )nO)(x). 

-1 tH -tH tH 
= no(x) (e . fe e no) (x) 

PROOF ii. We shall verify that both sides have the same derivative with res­

pect tot. We do it for H = T(p) + a x.p + V.(x), the other case having a 

similar proof. Put Ut(x) = Qtf(x), then it suffices to verify that 



Now, up to 0(E 2), C+(E) = x + EVPH'p=D = (l+Ea)x + EVT(p) 'p=D = 

= (I +Ea)x + E .l (D). Then 

I -I + lim - {n0 (x) U (C (E) n0) (x) - U (x)} = 
E t t 

= lim .!.. {n (x)-I JI U(k) fi (k'){ik.C+(E)ik!x_ I}dk dk' 
E~ E O t 0 

where dk denotes then-dimensional volume element in ]Rn, 
.... f -ikx n .... Ut(k) = Ut (x)C dx/(2,r) and the same for n0 (k). 

Now, from (2.2) and then from GLL it will follow that, after taking 

limit as E +O, the last expression yields 

5, 

no(x)-1 II Ut(k) Qo(k'){H(x,ik+ik')-H(x,ik)}eikxeik'xdkdk' = 

-I f(.k)(m) .... ·ko J (m) ., .... 
= n (x) l · 1. u (k) e 1. x dk _a __ H ( x, ik' ) e 1.k • x n (k' ) dk' 

0 (m)~r (m)! t ap (m) 0 

-I \' 
= nO(x) l 

(m)~I 

a (m) a (m) 

ax(m) Ut(x) ap(~) H(x,D)n0 (x) = 

-I a<m) a (m) 
= n0 (x) (z. (m; Ut(x) (m) H(x,D)n0)(x) 

(m)~I ax ap 

where (m) ~ I denotes the multiindex in which at least one element is~ 1, 

and the second step next to the last follows from our assumption on n0 , i.e., 

H(O) (x,D) n0 = G n0 = o. 
Let us now examine the transformation pt(x,y) + qt(x,y) = 

= n0 (x)-l pt(x,y) n0 (y), H = }p2 + a(x).p + V(x) and pt is the transition 

semigroup of a Markov process Xt' then Qt is the transition semigroup of 

the process obtained from Xt by subordination with respect to n0 (Xt)/n0 (x0), 

see DYNKIN [3], and the infinitesimal generator of Qt is 

(2.9) ~ -1 Gf(x) = n0 (x) (Gf n0 )(x) = ½ /j, f + h (x). 'vf + 

where /j, denotes the Laplace operator and h(x) = V.ln n0 (x) + a(x). 
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The relationship between that and subordination with 

mt = m! m! with m! = exp - J~ V(Xs)ds and 

t 1vn ~ 
m1 = exp JI __Q (X) dX - ! 

t \ n0 s s 
0 

has already been noticed, see [2] for a review. Here dX = 
s 

Bt being the standard brownian motion on lR.n. Of course 

Ptf(x) = Ex{f(Xt) exp J~ V(Xs)ds} and the connection with 

ordination comes from noticing that due to H(x,D) n0 = O, 

respect to 

the first sub-

The connection with classical mechanics is the following: the canonical 

transformation (x,p) + (Q,P) = (x,p - Vlnn0) is generated by 

F(x,P) = x,P --Vlnn0 (x) and is such that the new Hamiltonian is 
~ 2 H(Q,P)= HP+Vlnn0) + a(x). (P+Vlnn0) +V(x) which after replacing Pi by 

a/aQ. becomes Gas given by (2.9). To finish this digression we note that 
l. 

even when the subordination with respect to multiplicative functionals can 

not be applied, for example when H = T(p) + a(x).p + V for general T(p), 

the infinitesimal generator G0can still be obtained from G by means of the 

canonical transformation (x,p) + (Q,P) = (x,p -Vlnn0 ). This is the content 

of 

LEMMA 2.10. Let _h(x) = VlnnO(x). Then for any muZtiindex (m) 

(2. I I) (D+h (x))(ll)),f (x) = nO (x) - I ( (D) (m) fnO) (x) 

PROOF. When Im I = ~m. = I it is obvious. Assume (2.11) is true for some (m), 
l. 

then if o. = (O, ••• ,1, ••. ,O) i = 1,2, ••• ,n, 
l. 

nO (x) - l ((D) (m+o i) f nO) (x) = nO (x) - l (D) (m) nO (Do if+h (x)) 

( ) o. (m+o . ) f • 
= (D+h) m (D 1. f+h (x)) = (D+h) 1. • 

This degression about canonical transformations can be cast into a 

framework analogous to that of quantum mechanics (see [8] for example). 



7 

To motivate, notice that if F(x,P) = J1 q>i (x) Pi with cf> = (cf> 1, • • • ,cf>n) being 

a diffeomorphism of JR onto itself (or onto some appropriate open subset 

of ]Rn) and if £: ]Rn + JR then if 1(k) = JeikQ f(Q)dQ. 

(2. 12) 

and the 

f (x) = f (cf>(x)) = J e -F (x, ik) i (k) dk 
c2'1Tl 

nice thing about the substitution transform (2.12) 

invertible, i.e., 

LEMMA. 

then 

(2. 14) 

2. 13. With the same notations as above, 

f(Q) = Je-F'(Q,ik)f(k)dk 
(2'1T)k 

if F' (Q,p) 

is that it is 

n -1 = E cf>. (Q)P .. 
1 l. l. 

PROOF. It suffices to notice that Je-F'(Q,ik) eikxdk = o(<j>-l(Q) -x). • 
(2'1T)n 

Comment: The role of the above canonical transformations will become more 

clear in example (e) below. 

This whole setup can be ~xtended to canonical transformations of the 
type 

n 
(2. 15) = I <j>.(x,t)P. + w(x,t) 

1 l. l. 

n n 
where <j>(,t): lR. + JR has a differentiable universe, smooth int, etc. 
then 

(2. 16) \ -1 -1 
F'(Q,P,t) = l, <j>i (Q,t) pi - $(<j> (Q,t),t) 

generates the canonical tranformation inverse to (2.15), and Lemma (2.13) 
becomes 

LEMMA 2.17. With the same notations as above, if 

(2.18) 

then 

f(x,t) = Je-F(x,ik,t) 1(k,t)dk = e-w(x,t) f(q,(x,t)) 
(2'1T)n 
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(2. I 9) f(Q,t) r e-F' (Q,p,t) ,. 
= J ....:.....:..~ f(k,t)dk 

(2n)n 

PROOF. Similar to that of Lemma (2.13). 0 

Comments. Of course Lemmas (2.13) and (2.17) can be proved by trivial sub­

stitution. The whole point of (2.18) and (2.19) is to have a scheme allowing 

for the transformations themselves and for possible extension to more general 

transformations. This is-carried out below. We obtain in this way a theory 

of representations_ of a subgroup of the group of canonical transformations. 

Let us examine now how to relate solutions of 'ap/yt = Gp to solutions 

of 'ap/'at = Gp, where the Hamiltonians Hand H, associated to G and Gres­

pectively, are related by (1.3-a) i.e., H = H + 'aF/'at. This is the content 

of 

PROPOSITION 2.10. Assume that F(x,P) is given by (2.15) and that 

= r(a/aQ) + u(Q) 

and let p(Q,t) ~atisfy 'ap/'at = Gp(Q,t), then 

P(x,t) = e-~(x,t) p(~(x,t),t) = Je-F(x,ik,t) p(k,t)dk/(2n)n 

satisfies 'ap/at = Gp(x,t). 

PROOF. By taking Fourier tran!iforms of 'ap/yt = Gp note that 

a~(k,t)/ap = (T(-ik) +U(-i'vk))~ (k,t), where the symbols have 

an obvious meaning. Now, 

'ap/at = Je-F(x,ik,t){- ~! (x,ik,t) +T(-ik) +U(-i'vk)}~(k,t)dk/(2n)n 

= Je-F(x,ik,t){- :: (x, aaQ,t) +T(aaQ) +U(Q)}Jeik.Q p(Q,t)dQ dk/(2n)n 
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where { } stands for 

-1 -1 a aF -1 a a a 
{H(cp (Q), (VF) (cp (Q), a·Q' t)) + c3t) (cp (Q), oQ' t) - at (x,TQ, t)}. 

Now, using the representation 

and integrating with respect to Q we obtain the desired result since the 

last two terms cancel out. D 

To close this circle of ideas, and to tie up with lemma 2.10 and the 

connnents preceeding it, note that when 
~ tG ~ tG F(x,D) = x.P -lnf20 , Q f =e f can be computed with the aid of P = e 

.t lnn ~ ~ t 
as follows: apply P to f (x) = e Of (x) = n0 (x) f (x) and express in terms 

~ t lnn (x) -1 
of Q(=x) again Qtf = e O (Pt nO f) (x) = nO (x) (P tnOf) (x). But the most 

important application is contained in 

THEOREM 2.21. Assume H = H(p), i.e., the classical system is integrable. Then 

S(x,p,t) = x.P ... H(P)t is the canonical transfomzation ''bringing the system 

to rest" and p (x, t) = f exp - S (x, ik, t) f (k) dk / (2'1T) n satisfies 

(2.22) 

and 

PROOF. 

~ = H(D) p yt 

p(x,t) • f(x) as t • O. 

ap J as ~ I n at= (- at) exp - S(x,k, t) f (k) dk (2'1T) 

= I H(ik) exp ikx exp+ H (ik) t f (k) dk / (2'1T) n = H(D) p (x, t) 

where we used H(ik) + ~~ (x,ik,t) = O. The limit as t • 0 is obvious. D 

Connnents. The open problem is now, given a system described by H(x,p) and a 

transformation (x,p) +(Q,P), generated say by F(x,P), what is the f(Q) 
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corresponding to f(x)? When the x's and p's are not mixed, the results are 

contained in Lennna 2.17 above, and to treat the general case note the fol­

lowing 

LEMMA 2.22. Let F(l)(x,p1), F(Z)(x1 ,p2) be the generating functions for the 
• 1 1 2 2 transformat~ons (x,p) • (x ,P) • (x ,P ), then 

F(x,p2) = F(l)(x,pf) -x1 .p1+ F(Z)(x1 ,p2) generates the composite transfor-
2 2 mation (x,p) • (x ,p ). 

PROOF. Just use (1.2). 

Connnent. When F(Z) (x 1,p2) is the inverse of F(l)(x,p') then F(x,P2) = 

generates the identity transformation 

LEMMA 2.23. Let F(x,P) and F'(Q,p) be the generating functions of 

(x,p) • (Q,P) and its inverse~ Then 

(2.24) J eik.x-F(x,ik') F' (Q ik) _ iQ•k 
-------- dx = o(k-k')e ' 

(21T)n 

2 x.P 

-ik.a PROOF. Multiply the left hand side of 2.24 bye and integrate ink, use 

- F(a,ik) = - ia.k --- iQ.k'+ F! (Q,ik) as follows 

J J -ik•a ik.-)( 
dx _ e e e-F(x,ik')dk = J o(x-a) e-F(x,ik'.)dx = e-F(a,ik') 

(21T)n 

= e-ia.k'+ F(Q',ik')-iQ.k'=J o(k-k') eF(Q,k)-iQ.k'e- ik.a dk. O 

To close note that all generating functions could depend on time, and finish 
the section with 

PROPOSITION 2.25. Define 

f(x,t) = J e-F(x,ik,t) ?(k,t)dk/(21T)n 

then 

f(Q,t) = J e-F' (Q,ik,t) f(k,t)dk/(2,r)n. 
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PROOF. From Lemma (2.23) it follows readily that 

... rikx 
f:(k, t) = J f(x, t)dx = 1(k,t)eF'(Q,ik) - iQ.k 

then Je-F' (Q,ik) f(k) dk/(21r)n = J1(k, t) e -iQ.kdk/(21r)n = f(Q,t). 0 

3. EXAMPLES 

(a) The one dimensional oscillator process. 
2 2 2 2 Let H(:x,p) be ½(p -w x +w). Now n0 (x) = exp - (wx /2) is annihilated by 

G = ½(D2-w 2:x2+w). The canonical equations are easily integrable, yielding 

x(t) = xcoshwt + E. senhwt. Set C+ =bx+ aD with b = coshwt 
w 

a= senh wt/w. Now 

and with the aid of (2.4) or (2.2) we obtain 

f(C+) n0 (x) = II f (k) e -k2 senh w ~ cosh wt ikx ( -·k senh wt) dk e QQ Xi W • 

Now, expanding the exponential in n0 (x), regrouping terms and undoing one 

more Fourier transform one obtains 

(3. I) 
r wt 2 l /2 = J f (y){exp -(y-xe ) /2cr(t)}dy/(21rcr(t)) 

with 
-2wt cr(t) = (1-e )/2w. 

the 
tG 

e 

Some (Obvious 
. tG0 semigroup e 
+tw/2 tGo = e e . 

tG comments are due. First the semigroup e is related to 

G -- -1 (D2-w2x2) b f h b. b d" . Y means o t e o vious su or ination 
' 0 2 

The role of the subordination is to allow us to have 
. . . 0 ( ) tGo . n0 as a vacuum. Certainly the transition density pt x,y of e is 

e-tw/2 pt(x,y). Also the pt(x,y) is related to the density qt(x,y) of Qt 

as mentioned above. We only add that the generator G of Qt is ½ n2 -w x D, 

the generator of the Ornstein-Uhlenbeck process. Thus the oscillator process 

and the 0-U process are related by the canonical transformation generated 
2 by F(x,P) = xP + x w/2 + t/2. 



12 

(b) A particle in a constant force field. 

The Hamiltonian H = ½ E P: /m. + E. x can be transformed into 
' ' 2 n 2 H = ½ P1 + ax 1 + E2 P1/2 by means of 

suffices to consider H = ½ P2 + ax together with G = ½ 

Observe :now that the generating function 

a canonical transformation, thus it 
d2 --+a:x. 

dx2 

2 3 2 F(x,P) = xP + at P/2 - axt - ta /6 

2 transforms (x,p) into (Q,P) = (x+at /2,p+at) and H into 

For the free particle, (e tH f) (Q) r -(Q'-Q) 2/2t 
= J f(Q' )e ---- dQ' 

(27rt)l /2 

and therefore, according to the results of section 2 

2 3. ~ 
= e atx+a t /6 (e tHf) (x + at2 / 2) 

which yields for pt(x,y) the result 

1 - I /2 ( ( ,2 ( ) 2 3 } Pt(x,y) = (27ft) exp~- x-y + x+y at+~ 
L 2t 2 24 . 

(c) A repulsive oscillator in a constant electromagnetic field. 

The Hamiltonian function is given now by 

(3. 2) 
2 2 2 2 H = ½(P -A(x)) + E.x - Y2 x 

where A(x) = Ax, E being a fixed vector and A the matrix 

c-1 D A = (ll } Q 

0 0 

is such that for any vector N, AN= !B t--. N with B = curl A and t--. denotin~ 

the standard vector product in ]R3. This example may be transformed into 



example (a) by means of two canonical transformations. Put R(t) = exp t A, 

then with the aid of 

F(x,TI) = (TI,R(t)x) = TI.(R(t)x) 

transform (3.2) into 

2 2 H' = ½(TI - (q,cr q)) + E(t).q 

13 

where E(t) = R(t) E and cr2 being a diagonal matrix with diagonal entries 

a;= a;= w2 + y 2 , a~= y2 • Certainly q = R(t)x and TI= R(t)p. Now, choose 

homogeneous but time dependent vector fields ~(t) and n(t) and a function 

Ht) such that 

F'(q,P) = q.P + P.~(t) - q.n(t) + ~(t) 

generates the transformation (Q,P) = (q+~(t), TI + n(f)) and 

~ oF' 2 
H = H' + - = ½ (P - ( Q, a Q)) yt 

It is easy to see that ~ = n, n = cr2 ~ + E(t) and ~ + Ht2+cr2~2) = 0, and 

one can take zero initial conditions all over when integrating these equa­

tions. 

From example (a) it follows that in the Q coordinates 

with 

~t(Q,Q') = N(t)exp- }:cr.{(Q~+Q! 2 ) Cosh cr.t - 2Q.Q!}/senh cr.t 
l.. l.. l.. l.. l.. l.. l.. 

and 

N(t) 

Now, taking into account that at t = 0 all the canonical transformations 

considered in this example reduce to the identity, we obtain, undoing all 

the transformations above that 
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-- N(t)exp LX,R(-t)17(t)) -<l>(t) - ½ I {(y: + (xl (t)+ ~.) 2) 
I. I. 

cosh cr.t - 2y. i.} cr./2 senh cr.t]. 
I. I. I. I. I. 

where x. = (R(-t)x) .. 
I. I. 

Actually, since the H'above 1.s time depended, a trivial correction is needed 

when obtaining P'(q,q') from Pt(Q,Q') = one should apply P (Q,Q') to the t t-s 
date f obtaine!d from f' by means of (the inverse of) F(q,P,s). This would 

yield P; t (q,q') correctly. 
' All this examples yield the quantum mechanical expressions when the 

change t • it is made, see [SJ. 

(d) We shall mention that there 1.s another class of problems that reduce 

to the oscillator process, namely problems leading the forced and damped 

oscillators characterized by the Newton equation x + 11.x + w2x == f(t). These 

as well as applications to some infinite dimensional systems are appearing 

elsewhere. 

(e) Consider now the system with Hamiltonian H = ½ ri(r.a .. (x)P2 were 
J l.J 

h 1 f h J b . f ,,,-1 ]Rn n . d t e a. . are t 1e components o ,t e aco 1.an o "' : • 1R . Cons 1. er now 
1.J 

the canonical transformation 

F(x,P) = L <Pi (x) Pi 

2 then (Q. ,P.) == (<f>. (x), r Q .• (x)P.) and H = ½ r P .. Given 
I. I. I. J l.J J I. 

f(x), f(Q) = f(<t,- 1 (Q)) and therefore 

(etHf)(x) = (etHf)(<P(x)) = Jf(y){exp-(.<P(y)-<P(x)) 2/2t}J(y) 

dy/(2,rt)n/ 2 

where J(y) = det(clQ./cly.). 
I. J 

(f) Consider now a particle diffusing on the unit 

mechanical system has Hamiltonian H = .!. L2 and G = 2 
• + In this case C = a. + t IL and 

circle. 
I a2 
2 ae2 

The corresponding 



(etHf)(a) = f(C) 1 = L f(n) e-inC+/Z,r 
2,r n 

where f(n) -- 21T J f(a)ein a de. 

0 

A word about these examples: what they have in common is that the canonical 

transformation reducing the initial problem to a "known" problem induces a 

transformation of the "spacial coordinates" alone. We hope to complete the 

treatment of more complicated cases of integrable systems using the results 

at the end of section 2 in the near future 

Also, the analogue of these techniques in the context of quantum 

mechanics will be the subject of a fortlkoming note, for it requires a 

phrasing of its own. 

4. SOME MOMENT THEORY 
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In this section we explore some partial aspects of a possible extension 

of the results in [4]. It is here where the reason for introducing the canon­

ical variables Q = x, P = p - Vlnn0 becomes apparent, namely, Pn0 (x) _:' 0 and 

n0 = 1 is a vacuum for G. 
2 Throughout this section we shall assume that H = !P + a(x) .p + V(x) 

~ 2 ' and H = !P + h(x) .p , with h(x) = a(x) + \7lnn0 (x). We shall assume also that 

the equation of motion 

~ Q. = aH/a P. ' P. = - oH/aQ. 
l. l. l. l. 

have a global solution passing through every point (Q,P), and as above, we 

denote Q(t,Q,P), with P. replaced by a/aQ., by ct. 
l. l. 

Let us define the "momentum operators" by 

(4. 1) 

+ 
dC i + 

P. (t) = -d.. - a. (C ) , 
l. .. l. 

as suggested by the classical relations 

It is easy to verify that 

x. = p. + a.(x) and Q. = P. + h.(Q). 
l. l. l. l. l. l. 
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(4. 2) Pi.(t) QO = aln Q (C+) QO' 
clx. 0 

1 

~ p. (t) 
1 

a = - 1 = 0. 
clQ. 

1 

It suffices to differentiate Q x. and look at it. Similar computations are 
t 1 

contained in 

LEMMA 4.3. The following hold 

(i) 
+ + ~+ ~+ 

[f(C ),g(C )] n0 = 0, [f(C ),g(C )] 1 = 0 

for appropriate but arbitrary f,q. 

+ ~ 
(ii) [C., p.] no = - cS •• no, [C. ,P.] = - cS •• 1 

1 J 1J 1 J 1J 

(iii) [p.,p.] no = o, [P.P.] 1 = 0 
l. J l J 

(ii) 
-1 + -1 + aln n (C+) -1 aln n (C+) + 

no C. P. no = no C. no = no C. no. 1 J 1 ax. 0 clx. 0 l 
J J 

-1 d + + + -1 d + + . -1 + d + 
no <at c j -a.(C)) Ci QO = no dt (C. C.) n - no C. dt ci no-J J l 0 J 

but from 

and 

~ 
0 x.x. = A G x. x. = 
·t 1 J t 1 J 

= c;ij + n~ 1{C: ~~~ n0 (c+) + < aj (C+) + c; ai (C+) + 

+ c: .a!n. n (c+)} n0 J clx. 0 
l it follows that 



and therefore 

The rest are left for the reader. D 

Now put 

(4.4) C.(t) = p.(t) - ~ Q (C+) , 
1. 1. ax. 0 

1. 

then, Lennna 4.3 implies that 

0 ••• 
l.J 

G. <t> = P. <t> 
1. 1. 

+ + 
[C.,C.] ~+ ~+ 

[C.,C.]t=O [C.,C.] no = Q = [C.,C.J 1 = 
1. J 1. J 0 1. J . 1. J 

+ ~ ~+ [C.,C.] no = o .. no [ C. ( t), C ( t)] 1 = o .. 
1. J l.J 1. . 1.J 

for i,j = 1, ••• ,n. And.we also have 

(4.6) 
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for i = t, •.. ,n. Now it is apparent that the notation was chosen to conform 

to that of quantum mechanics. 

Define now, for any multiindex (m) = (m1, ••• ,mn) 

~ ho = no h0 = 1 

h (x,t) = C+(t))(m)Q 
m 0 h(m)(x,t) = (C+(t)) 1 

then from (4.6) and (4.5) we obtain an analogue to Proposition 10 in [4]. 

PROPOSITION 4.8. 

+ ~+ ~ ~ 
(a) Cih(m) = h Ci \m) = h 

(m+e.) (m+e.) 
1. 1. 

~ ~ ~ 
(b) Ci h(m) - m h Ci\m) =mh - i (m-e.) i (n-e.) 

1. ~ 1. 

clh 2!:.(m) "~ (c) at (m) = Gh(m) = G h(m) at 
+ ~+ ~ (d) C. C.\ ) = mi h(m) C. C. h( ) = mih(m) 1. 1. m 1. 1. m 
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PROOF. Let us do (part of) (c) 

Conunent. Proposition (2. 20) contains the relationship between .h(x( t)) and 

h(x,t). We mention in passing that, by starting with a vacuum n0 for G 
one can obtain still more moment systems, and this is a good point to stop 

for the time being. 
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