
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE BESLISKUNDE 
EN SYSTEEMTHEORIE 
(DEPARTMENT OF OPERATIONS RESEARCH 
AND SYSTEM THEORY) 

E.A. VAN DOORN 

BW 182/83 

ON ORTHOGONAL POLYNOMIALS ON A HALF LINE AND 
THE ASSOCIATED KERNEL POLYNOMIALS 

Preprint 

~ 
MC 

MEI 

kruislaan 413 1098 SJ amsterdam 

!Mt}L.IOTl:il:Eli MATHEMATlSCl.i Cfeilli!.l.Ml::A 

. .:,, - A,MSTERDAt1 -



Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands. 

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion 
of pure and applied mathematics and computer science. It is sponsored by the Netherlands 
Government through the Netherlands Organization for the Advancement of Pure Research 
(Z.W.O.). 

1980 Mathematics subject classification: 42C05 

Copyright© 1983, Mathematisch Centrum, Amsterdam 



On orthogonal polynomials on a half line and the associated kernel poly-
. *) nomi.als 

by 

E.A. van Doorn 

ABSTRACT 

We consider a sequence of polynomials P which is orthogonal with 

respect to a distribution whose support is contained in [0,00). Our main 

concern is the derivation of limit theorems for P. In the course of this 

we establish some links between the sets of limit points of zeros of P and 

p*, the set of kernel polynomials associated with P, and the parameters in 

the three term recurrence relation for P. 

KEY WORDS & PHRASES: orthogonal polynorrrials, kernel polynomials, Hamburger 

moment problem 

'Ihis report has been submitted for publication elsewhere. 





I Introduction 

00 

Let P = {Pn(x)}n=O be a sequence of monic polynomials satisfying the 

recurrence relation 

P (x) = (x - c )P 
1

(x) - AP 
2

(x) 
n n n- n n-

(n > 1) 

( 1.1) 

where c is real and A 
1 

> 0 (n > 0). A recurrence of this type is a 
n n+ 

necessary and sufficient condition for P to constitute an orthogonal 

sequence. That is, there is a mass distribution d~ on the real line 

(with total mass 1 and infinite support) such that 

00 

f P (x)P (x)d~(x) = n m 
-oo 

0 
nm 

n 
II A . l 

. 1 J+ J= 

where the empty product is interpreted as unity. 

( 1. 2) 

P {x) has n real, simple zeros x 
1

(P) < x 
2

(P) < ••• < x (P). More-
n n n nn 

over, the zeros of P (x) and P 
1

(x) separate each other, that is, 
n n+ 

(i = 1,2, ... ,n), ( 1. 3) 

so that the limits 

l;. (P) = lim x . (P) 
1. Ill. 

(i > 1) 
n-+oo 

, 
exist, and 



2 

Throughout this paper we will assume that the zeros of P (x) are posi­
n 

tive, that is., w~ assume s
1 

(P) ~ 0. 

We let 

o(P) = lim s. (P) , 
i-+<x> l. 

and note that for i ~ 1 

si (P) = si+l (P) => si (P) = o(P) • (1. 4) 

The distribution d~ of (1.2) is uniquely determined by {c ,A 
1

} if 
n n+ 

and only if the Hamburger moment problem (Hmp) associated with Pis 

determined. In this case we have 

supp(d$) n (-00 ,o(P)] = E(P) if o(P) < 00 (1.5) 

and 

supp(d$) = E(P) if o(P) = oo, (1.6) 

where E(P) = {s1 (P),s
2

(P), ••. } and a bar denotes closure. If the Hmp 

for Pis indeterminate, then o(P) = 00 and there is exactly one distri­

bution d$ satisfying (1.2) and (1.6); any other distribution satisfy­

ing (1.2) has at least one supporting point smaller than s
1 

(P). (See 

Chihara [1-4] for the above results). 

* * 00 By_, P = {Pn(x)}n=O we denote the sequence of kernel polynomials 



(with parameter 0) associated with P, that is, 

* xP (x) 
n 

Pn+l (0) 
= Pn+l (x) - P (0) Pn(x) 

n 
( 1. 7) 

* P constitutes a sequence of monic, orthogonal polynomials [4, Theorem 

* I.7.1], and therefore there exist real numbers c and positive numbers 
n 

,* p* 
A (n > 0) determining a recurrence of the type (1.1) for • 
n+l 

In what follows we write 

X • = X • (P) 
ni ni 

and * X . 
ni 

* = X • (P ) • 
ni 

* * * The numbers ~i' ~i' a and cr and the sets~ and~ are defined simi-

larly. As a preliminary result we note that as a consequence of the 

separation theorem 

* X < X < X 
ni ni n+l,i+l 

(i = 1,2, •.• ,n) (1.8) 

[4, Theorem I.7.2] we have 

* ~i ~ ~i ~ ~i+l (i > 1) • ( 1. 9) 

After these introductory remarks we are prepared to give the plan of 

the paper. In Section II we will establish some results relating~ to 

the parameters {c ,A 
1

}. The kernel polynomials (1.7) will be studied 
n n+ 

in Section III, our main result being the precise conditions for which 

an equality holds in (1.9). Using our findings of Sections II and III 

we will prove some limit theorems for Pin Section IV. 

3 
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II Orthogonal polynomials on a half line 

The assumption ~l ~ 0 makes that we can invoke a result of Chihara 

[4, Theorem I.9.1] stating that ~l ~ 0 is a necessary and sufficient 

(X) 

condition for the existence of a unique sequence {y} 
2 

of positive 
n n= 

numbers such that 

(n > 0) , 

where y
1 

= 0. Clearly, {yn} can be determined recursively from 

{c ,A 1} . n n+ 

It will be convenient to introduce the quantities 

G = n 
H 

n 

n 

= _II Y2i+/Y2i+2 
i=l 

(n > 0) 

(2. 1) 

(2. 2) 

(where we use Chihara's [5] notation), maintaining the convention that 

the empty product denotes unity. Also, following [3], we will use the 

convention that I1

a~
1 

denotes the series obtained after deleting from 
1. 

{a.} any terms that are equal to zero <I
1

a~
1 

= 00 if a. = 0 for all i). 
1. 1. 1. 

Theorem 1. The following statements are equivalent: 

( i ) ~ 1 > 0 and ( ~: 
1 

< 00 , 

oo n 
(ii) l H l G. < (X) 

n=O n i=O 1. 

(iii) {P (x)/P (O)} converges uniformly on bounded sets to an entire 
n n n 

function whose zeros are simple and are precisely the points ~i (i ~ 1), 



(iv) {p (x)/P (0)} is bounded as n + 00 for at least one x < 0. 
n n n 

The equivalence of (i) and (iii) above was proven by Chihara [3, 

Theorem 2]. For a proof of the equivalence of (ii), (iii) and (iv) 

(essentially due to Stieltjes) we refer to Karlin and McGregor [8, 

Lemma 4]. The results of the latter paper are stated in the context of 

birth-death processes and can be translated to our present notation in 

the manner indicated by Chihara [5, pp. 335-336]. Karlin and McGregor 

do not mention the fact that~ is the set of zeros of the entire func-

tion in (iii), but the proof of Chihara's result shows that this is 

actually a consequence of the uniform convergence. 

Before we can say something about the case ~l = 0 and 
I -1 I C < 00 , 

1. 

.we must mention a result noted in [9, p. 229] (without proof) and [7, 

Theorem A.3] in the context of birth-death processes. In the present 

notation it may be stated as follows. 

Theorem 2. The series 
I -1 l ~i converges if and only if 

oo n oo n 

5 

l G 1 l H. < oo or 
n=0 n+ i=0 1. 

I H I G. < 00 • 

n=0 ni=O 1. 

(2.3) 

Theorems 1 and 2 are easily seen to imply the following. 

Corollary 2.1. One has ~
1 

= 0 and 

oo n 
l G 1 l H. < oo and 

n=0 n+ i=0 1. 

I -1 l ~i < 00 if and only if 

oo n 
I H I G. = 00 

n=0 ni=O 1. 
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Another consequence of Theorem 2, for which we will have later use, 

is the following. 

Corollary 2.2. If oo, then the Hmp for Pis determined. 

Proof. If 
\' I -1 
l ~i - w, then, by Theorem 2, 

oo n 
l G 1 I H. = 00, 

n=O n+ i=O l. 

whence 

00 • 

But the latter is a necessary and sufficient condition for the Hmp asso-

ciated with P to be determined [5, Theorem 3]. D 



III Kernel polynomials 

* * By [4, Theorem I.9.1] the parameters c and A 
1 

(n > 0) in the n n+ 

recurrence for p*, the set of kernel polynomials associated with P, 

satisfy 

* An+1 = Y2n+1Y2n+2 (n > 0) t ( 3. 1) 

<X> 

where {yn}n=
2 

is the sequence of positive numbers which is uniquely 

* determined by { c , A 
1

} through ( 2. 1) . Note that c 
1 

is written in (3. 1) 
n n+ 

as the sum of two positive numbers, which makes the representation 

(3 .1) essentially different from (2 .1) • However, in view of ( 1. 9) our 

* assumption s
1 
~ 0 implies that s1 .:"... 0, so that results analogous to 

P*. ~hose of the previous section are valid for It can easily be veri-

* * * fied that the appropriate quantities y, G and H satisfy n n n 

and 

* G 
n 

* H 
n 

n n-1 

= Y2n+1 l G./ l G. 
j=0 J j=0 J 

n-1 n 

= Y2n+2 l G./ l G. 
j=0 J j=0 J 

= B p Gr n j=0 J 

[ r[ r 1 
n n+1 

= G~ (1+G1)G +1 l G. l G. 
n j=0 J j=0 J 

(n > 0) 

(n ~ 0) t 

* so that these results for P may be formulated in terms of G 
n 

( 3. 2) 

(3.3) 

and H. 
n 

7 
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* . But we can say more about P. First, note that by (1.9) 

' 1 If-: <co<=> 
i 

' * -1 I<1;.> <co, 
i 

( 3. 4) 

,' * -1 so that (2.3) is a necessary and sufficient condition for l (I;.) to 
i 

converge. Then, by interpreting Lemma 4 of Kar1in and McGregor [8] in 

* terms of P, the next result emerges. 

Theorem 3. The following statements are equivalent: 

co n 
(i) I G I H < co ' 

n=0 n+li=O n 

n 
(ii) {( I G.)P*(x)/P*(O)} converges uniformly on bounded sets to an 

j=0 J n n n 

entire function whose zeros are simple and precisely the points I;~ 
i 

(i > 1) I 

n 
(iii) {( L G.)P*(x)/P*(O)} is bounded as n • 00 for at least one x < 0. 

j=0 J n n n 

* Again, Karlin and McGregor do not mention the fact that_ is the 

set of zeros of the entire function in (ii), but, as in Theorem 1, 

this extension is a direct consequence of the uniform convergence. 

Some relations between the polynomials P 
n 

* and P 
n 

(n .?:.. 0) will now 

be derived for future use. To begin with it is easy to see that 

and 

p (0) 
n 

n 
n = (-1) II y

2
. 

i=l 1 
(3.5) 



* p (0) 
n 

n n 

= (-l)n IT Y2· 1 l G. 
i=l i+ j=0 J 

From (1.7) and (3.5) we then obtain 

* xP (x) = P 
1

(x) + y
2 2

P (x) . 
n n+ n+ n 

Combining this result with (2.1) and (1.1) gives us 

* * P (x) = P (x) + y
2 1

P 
1

(x) 
n n n+ n-

(3.6) 

(3. 7) 

(3.8) 

* The orthonormalized polynomials corresponding to P and P will be 
. n n 

* . deno~ed by p and p, respectively. From (1.2), (2.1) and (3.1) we get 
n n 

and 

p (x) 
n 

* P (x) 
n 

[

2n+l i-~ 
= IT y. P (x) 

i=2 J.. n 

[

2n+2 i-~ 
= IT y, p*(x) • 

i=3 J.. n 

Hence, by (3.7) and (3.8), 

and 

P (x) 
n 

(3. 9) 

(3 .10) 

(3.11) 

(3.12) 

9 
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Using (3.11) and (3.12) we can write 

n 2 I p. ex) = 
j=O J 

n ½ * l (y2·+11Y2) p._1 (x)p.(x) + 
j=O J J J 

With (3.5), (3.6), (3.9) and (3.10) this result can be formulated as 

follows. 

Lemma 1 • For n ~ 0 one has 

n 2 I p. ex) 
j=O J 

-1 n * 2 
= y 2 x l (p. (x) ) 

j=O J 

The relevance of this lemma resides in the fact that we will make 

use of the following well-known result from the theory of moments [10, 

Corollary 2.6 and Theorem 2.13]. 

00 

Theorem 4. Let R = {r (x)} 
0 

be a sequence of polynomials which is 
n n= 

orthonormal with respect to a distribution d~ (with infinite support). 

Then 

(x real) (3.13) 
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Moreover, if the Hmp for R is determined (so that d~ is unique), then 

equality holds in (3.13); if the Hmp for R is indeterminate, then the 

right hand side of (3.13) is positive and for every x there is exactly 

one distribution d~ for which equality holds in (3.13). 

We are now in a position to state the main result of this section. 

Theorem 5. * (i) If s 1 = 0, then si = si+l (i ~ 1). 

* (ii) If s
1 

> 0 and the Hmp for Pis determined, then si = 

(iii) If. s
1 

> 0 and the Hmp for Pis indeterminate, then 

* si < si < si+1 (i > 1 >. 

Proof. Part (i) has been established in [6, Lemma A.1]. 

s. (i > 1) • 
l. = 

As for (ii) we denote by d$ the unique distribution with respect to 

* which the P are orthogonal. Then P is orthogonal with respect to 
n 

-1 
d~(x) = y

2 
xd$(x) (see [1, 4]). Note that 

supp(d~) = supp(d$) , (3.14) 

since s
1 

= min(supp(d$)) > 0, and 

* so that d~ is properly normalized. If the Hmp for P is determined, 

* * then d~ is the unique distribution for P, so that si = s. (i ~ 1) by 
l. -

. * (1.5) and (1.6) (1.n terms of P) and (3.14). Therefore, let us assume 
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* that the Hmp for P is indeterminate. From [5, Theorem 3] we then have 

whence 

I H [ I G.]
2 

< 00
, 

n=1 n i=l i 

oo n 
l H l G. < 00 • 

n=0 ni=O i 

Invoking Theorem 1 we conclude that {P (x)/P (O)} converges to an 
n n n 

entire. function Q
00

(x), say, whose zeros are precisely the points [;i 

i;;:' -1 
(i ~ 1). Also from Theorem 1 we see that l E;. < 00 , so that, by (3.4), 

]. 

I' ([;~)-1 < oo. * * Since £;
1 
~ £;

1 
> 0 we can apply Theorem 1 to P yielding 

]. 

* * . * that {P {x)/P (0)} converges to an entire function Q (x), say, whose n n n oo 

* _zeros are precisely the points E;. (i ~ 1). 
]. 

Evidently, we have cr = 00 • Now let x be an arbitrary number which is 

\00 2 
not in~- Then, by (1.6) and Theorem 4, lj=Opj(x) = 00 , whereas, also 

l oo * 2 by Theorem4, . 
0 

(p. (x) ) 
J= J 

< 00 ,_ since 

From Lemma 1 we therefore obtain 

P 1 (x) n+ 
p 1(0) 

n+ 

* P (x) 
n 

P* (0) 
n 

n 
l G, + +oo 

j=0 J 

* the Hmp for P 

(n • oo) , 

is indeterminate. 

implying that P (x)/P (0) and p*(x)/P*{O) must have the same sign for n 
n n n n 

sufficiently large. A simple argument shows that this will happen for 

* * every x i.. ~ only if Q (x) and Q (x) have identical zeros, i.e., [;. E;i. 
00 00 ]. 

(i ~ 1). 



Finally turning to part (iii} we note that if ~1 > 0 and the Hmp 

for Pis indeterminate, then also the Stieltjes moment problem for P 

is indeterminate. By [5, Theorem 2] this is equivalent to 

L(G. + H.) < 00 • Under the latter condition, however, the validity of 
J J 

(iii} was established in [5, p. 340]. 0 

13 
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IV Further limit theorems 

00 

For any sequence {an}n=O we denote by S({an}) the number of sign 

changes in the sequence {a} after deleting all zero terms. By con­
n 

00 

vention, S({O}) = -1. Now let R = {R (x)} 
0 

be any sequence of monic 
n n= 

orthogonal polynomials. From [6, Theorem 3] we then have 

S({(-l)nR (x)}) 
n = {ko if x .:s_ ~1 (R) 

if ~k(R) < X 2. ~k+l (R) 

Assuming ~l (R) > -co we subsequently define 

00 

I(R) = U (-co,~, ( R) ] 
i=l l. 

( 4. 1} 
(k > 1) 

Note that I(R) = (-00 ,cr(R)] or I(R) = (-00 ,cr(R)), depending on the 

occurrence of the event~- (R) = ~- 1 (R) for some i (cf. (1.5)). 
]. J.+ 

Returning to the context of the previous sections we note that 

I(P) = I(P*) in view of (1.9). Now applying (4.1) to both P and p* 

one readily sees that for each x E I(P) there exists an integer 

00 

N = N(x) such that the sequence {Pn(x)/Pn(O)}n=N is monotone and with-

out sign changes. In particular for x < 0 (.:s_ ~
1

) it is easily shown 

00 

that the sequence {Pn(x)/Pn(O)}n=O is positive and increasing. Whether 

P (x)/P (0) tends to infinity or not as n + 00 must be decided from 
n n 

Theorem 1. In what follows we restrict our attention to positive x. 

Theorem 5 enables us to relate the behaviour of {P (x)/P (O)} to the 
n n 

points~- (i ~ 1). Indeed, from Theorem 5 (ii) and (4.1), applied to P 
]. ,. 

* and P, we easily obtain the following lemma. 



Lemma 2. If the Hmp for Pis determined, ~1 > 0 and ~k < x,;;, ~k+l 

(k > 0, ~O = 0), then there exists an integer N = N(x) such that the 

sequence {(-l)kP (x)/P (0)}
00 

is positive and decreasing (N(x) = 0 if 
n n n=N · 

Under the conditions of this lemma the sequence {P (x)/P (O)} tends 
n n n 

to a finite limit. The next theorem, which is a generalization of [3, 

Lemma 2] gives a criterion for this limit to be zero when x < cr (com-

pare Theorem 1 ) • 

\' -1 Theorem 6. If ~1 > 0, l ~
1
. = 00 and 0 < x < cr, then {P (x)/P (0)} 

n n n 

converges to zero • 

. Proof. By Corollary 2.2 the Hmp for Pis determined when I'~:1 
= 00 , 

l. 

so that Lemma 2 applies. Let a be any positive number smaller than cr, 

and 

R = max max 
0,;;,x,;;,a n~0 

IP (x) /P ( 0) I . 
n n 

By Lemma 2, R < 00 • Moreover, by [3, Lemma 2], {P (x)/P (0)} tends to 
n n n 

zero for O < x < ~1• The result follows by the Stieltjes-Vitali theo-

rem. D 

Remark: We conjecture that Theorem 6 remains valid when cr is replaced 

by lim x 
nn n-+«> 

Let us now turn to the case ~l = 0. Theorem 5 (i) and (4.1), applied 

15 
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* to P and P , readily yield the next lemma. 

Lemma 3. If ~l ~'O and ~k < x ~ ~k+l (k ~ 1), then there is an integer 

N = N(x) such that the sequence {(-l)kpn(x)/Pn(O)}:=N is positive and 

increasing. 

Our final result gives the limit of the sequence {(-l)kP (x)/P (O)} 
n n n 

for x ¢ ~ . 

Theorem 7. If ~l = 0 and ~k < x < ~k+l (k > 1), then {(-1)kp (x)/P (O)} 
n n n 

tends to infinity. 

Proof. First suppose that the Hmp for Pis determined. From (3.5) and 

(3.9) we see that 

00 

l G P
2

(x)/P
2

(0) 
n=O n n n 

By (1.5), (1.6) and Theorem 4 we have 

whence LG < 00 , and on the other hand n 

l
oo 2 

on the one hand 
0

p (0) < 00 , 
n= n 

\00 2 
ln=Opn(x) = oo for ~k < x < ~k+l . 

It follows that in the latter case {P (x)/P (O)} must be unbounded. The 
n n 

required result follows by Lemma 3. 

Next assume that the Hmp for Pis indeterminate, so that, by Corol-

\I -1 
lary 2.2, l ~- < 00 • Let a> 0 and R = 

i 

Clearly,~- (R) = ~- + a (so that ~
1

(R) 
i i 

00 

{R (x)} 
0

, where R (x) = P (x-a). 
n n= n n 

> 0) and I'(~. (R))-l < oo. Apply­
i 

ing Theorem 1 to R yields that R (a)/R (0) • 0 (n • oo), whereas for 
n n 

~k < x < ~ we have that R (x+a)/R (0) tends to a non-zero limit. k+l n n 
• 

Since 
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P (x) R (x+a) R (a) 
n n n 

P ( 0) = -R-( 0-)- / _R_(_O_} 
n n n 

it follows that IP (x)/P (0) I • 00 as n • 00 • Lemma 3 now gives the 
n n 

required result. 0 
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