
stichting 

mathematisch 

centrum 
~ 
MC 

AFDELING INFORMATICA IW 240/83 NOVEMBER · 
(DEPARTMENT OF COMPUTER SCIENCE) 

P. KLINT 

A SURVEY OF THREE LANGUAGE-INDEPENDENT PROGRAMMING ENVIRONMENTS 

Preprint 

kruislaan 413 1098 SJ amsterdam 
kr)..._u~ Ni) . .zs:; 

WWJfi)f!·!EfK MATHEMATISCN CtNll'ilif,• 
AMSTl!RDAM 

\\11111111111fflllllilllll\\l 
3 0054 00064 8643 



Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands. 

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion 
of pure and applied mathematics and computer science. It is sponsored by the Netherlands 
Government through the Netherlands Organization for the Advancement of Pure Research 
(Z.W.O.). 

1980 Mathematics subject classification: 68B20, 68F05, 68F20, 68F25 

1982 CR. Categories: D.2.2, D.2.3, D.2.5, D.2.6, D.3.1, D,3.4 

Copyright© 1983, Mathematisch Centrum, Amsterdam 



1 

A survey of three language-independent programming environmentst 

by 

Paul Klint 

ABSTRACT 

The creation and maintenance of software is becoming increasingly expensive. To improve 
upon this situation several software tools and language-specific programming environments have come 
into existence. The substantial design and implementation effort to build a programming environ­
ment for each specific language can, however, be reduced by developing language-independent pro­
gramming environments, which can be tailored towards a particular language by supplying them with 
the corresponding language definition. 

This paper surveys three existing, but still experimental, language-independent programming environ­
ments: Mentor, the Synthesizer Generator and CEYX. The similarities between the three systems and 
their individual goals and characteristics are outlined. Using each system a programming environ­
ment for a toy language has been constructed in order to establish some basis for comparison. The 
results of this experiment are discussed. 

KEY WORDS & PHRASES: Software Engineering, Language-Independent Programming Environ­
ments, Syntax-Directed Editing, Semantics-Directed Evaluation. 

tlbis paper is not for review; it is intended for publication elsewhere. 
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1. INTRODUCTION 

The creation and maintenance of software is becoming increasingly expensive. To improve 
upon this situation several software tools and language-specific programming environments have been 
proposed, implemented, and come into use, some of them with considerable success. The implemen­
tation of a programming environment dedicated to a particular language ( e.g., Pascal, Ada, Chill) re­
quires a very substantial design and implementation effort. This is exemplified by the current efforts 
to build Ada Programming Support Environments (APSEs). It is, however, not yet generally recog­
nized that all these language-specific programming environments have many traits in common. These 
can, in principle, be factored out by developing language-independent programming environments, 
which can be tailored towards a particular language by entering a definition of that language into the 
system. Another, even more important, argument in favor of language-independent programming en­
vironments is that they provide a uniform user interface: programmers using different languages can 
still work with similar if not identical programming environments for the various languages. 

The purpose: of this paper is to gain some insight in how well three existing, but still experimen-
tal, systems achieve this goal. The systems surveyed are: 

e Mentor [2,3]1, 

e The Synthesizer Generator [13,14), and 

e CEYX [5]. 

All three systems are still under development. Mentor, being the oldest of the three, has reached a 
state of stability and has already been used for several applications in industry. The selection of these 
systems does not imply any prejudice against other, similar, systems but was largely determined by 
the possibility to gain access to each system and to consult its designers. The descriptions of the sys­
tems are necessarily brief and incomplete and reflect their state as of july 1983. Most notably missing 
is a discussion of the Gandalf [10] system. 

The remaining sections of the paper are organized as follows. In section 2 the similarities 
between the systems are presented. Section 3 contains a brief outline of each system. In section 4 the 
methods for language specification, the properties of the resulting environment and various implemen­
tational issues are compared. Section 5 contains conclusions and points out some areas for further 
research. The comparison is based on implementations of the toy language PICO using all three sys­
tems. The compliete listings of the implementation of PICO under each system are given in the ap­
pendices. 

2. PROPER.TIES COMMON TO ALL THREE SYSTEMS 

The three systems have several properties in common. They are all language-independent and 
use similar notions to structure the definitions of new languages. The use of the word "language" is 
somewhat misleading and restrictive here: these systems are, in fact, all dedicated to the manipulation 
of hierarchically structured information in general. Programs in a programming language form just 
one example of such information. Other examples we shall encounter in the sequel are: systems for 
document preparation, for VLSI design, and for proof checking. All three systems use trees as pri­
mary datastructur,e to represent the objects that are being manipulated. 

The global structure of a language-independent programming environment is shown in figure 1. 
A definition for a new language can globally be subdivided in definitions for: 

lexical syntax: 
which define:s the tokens of the language, i.e., keywords, identifiers, punctuation marks, etc. 



( s,,un:.­

"'lt.".'\l 

('=<lit 
~tm1111ds 

Caource 

lexl 

SCANNER 

edllor 

~pedlkatlon 

EDITOR 

syntax 

AB!>TRMT SYNTAX 

TREE CONSTRUCTOR 

-------1UNPARSER---------i 

' 
' ______ .1, _____ _ 

llllflll)'Se 

specification 

r-----------

: am,tract 

r-----------
••, : Ntatlc ., 

: ,iemantlc, 
"------------

Figure I. Global organization of a language-independent programming environment. 

concrete syntax (also: context-free syntax): 

1 

which defines the concrete form of programs, i.e. the sequences of tokens that constitute a legal 
program. 

abstract syntax: 
which defines the abstract tree structure underlying the concrete (textual) form of programs and 
the mapping from parse-tree to an abstract syntax tree. 

unparsmg (also: pretty printing): 
which defines the mapping of a program from its abstract syntactic form onto its written 
representation. 

static semantics: 
which defines certain constraints on programs that can be verified without executing them, i.e. 
constraints that do not depend on input data. For instance, in a "legal" program all variables 
should lb.ave been declared, all expressions should be type consistent, etc. 

dynamic serwmtics: 
which defines the meaning of a program, i.e. the relation between its input and output data. 

This list is not exhaustive; one could also include documentation, correctness proofs, etc. 

Starting: from a language definition, the three systems process programs in the defined language 
in similar ways. The definition of lexical and concrete syntax contains sufficient information to create 
a parser for the newly defined language and to build a parse-tree. A parse-tree typically contains 
non-terminals (e.g., <expression>) as nodes and terminals (e.g., keywords, <plus-operator>) as 
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leaves. Subsequently, this parse-tree is transformed into an abstract syntax tree. An abstract syntax 
tree typically contains semantic notions (e.g., while-statement, plus-operator) as nodes and only 
constants and identifiers as leaves. The abstract syntax tree can be built directly and independently 
of the parse-tree, when a program is created during syntax-directed editing. If desired, the inverse 
operation can be carried out: the abstract syntax tree can be transformed into source text by means 
of unparsing (pre:tty printing). As can be seen in figure l "unparsing" is, in fact, a misnomer since 
the operations of both the scanner, the parser, and the abstract syntax tree constructor have to be in­
verted in order to transform an abstract syntax tree back into source text. 

The distinction between concrete and abstract syntax is motivated by the fact that the objects 
dealt with in these systems are most suitably represented by trees, not strings. This most suitable 
form is an abstract syntax tree: the parse-tree is only an intermediate notion in understanding a string 
representation of the abstract syntax tree. Therefore, the concrete syntax of any string representation 
of an abstract syntax tree (there may be many such syntaxes) is regarded as unimportant. In addition 
to this several other observations can be made: 

e Many programming languages have been designed with emphasis on the concrete syntax of the 
language. The abstract syntactic form is, however, in many cases more suited for semantic pro­
cessing than the parse-tree representation itself. It can also contain more information than the 
textual representation of the program. In any case, the textual form can always be recreated 
from the abstract syntax tree. 

e Non-termiillals of the grammar do not have to generate nodes in the abstract syntax tree. An 
identifier may, for instance, occur directly as an <expression>, the intermediate levels in the 
parse-tree such as <simple-expression>, <factor> and <term> being collapsed. 

e The systems presented here, all use parsing techniques suitable for the recognition of LALR(l) 
grammars. In many cases the "natural" grammar for a language does not conform to the 
LALR(l) restriction and has to be transformed into another grammar that does conform to it. 
The resultirtg distortions of the original syntax are, of course, not present in the abstract syntax. 
In addition to this, certain parts of the concrete syntax, such as lists of items described by (left 
or right) recursive syntax rules, are more naturally described in the abstract syntax tree by one 
n-ary node with all items as sons than by a binary tree of items. Note that both problems could 
be solved by using more general parsing techniques and more elaborate formalisms for the 
description of the syntax. 

A final similarity between the systems is that they all create a syntax-directed editor for each 
new language and some standard user interface. 

3. A BRIEF OUTLINE OF EACH SYSTEM 

3.1. MENTOR 

The initial design of Mentor started in 1974 at the Institut National de Recherche en lriforma­
tique et Automatique (INRIA) in France. Implementation of the kernel system was completed in 
1977. Since that time the system has been used for its own maintenance. In 1980 a complete pro­
gramming environment for Pascal was built using Mentor. Later, several other environments were 
constructed (for Ada, document preparation, etc.). The Mentor system itself is still evolving: efforts 
are now directed towards improving the user interface, adding specifications of static semantic proper­
ties to language definitions and exploring multi-lingual systems. 

The original goal of the Mentor system was to create a language-independent system for pro­
gram manipulation and transformation in which syntactic operations on programs were completely 
dealt with by the system. Later, emphasis shifted to syntax-directed editors and tools for the develop­
ment of large software systems. Several of the other ideas on which Mentor is based are: 
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• The system is multi-lingual: it is possible to manipulate objects belonging to different languages 
simultaneously. 

• The interactive manipulation of objects, i.e. trees, can be programmed: this amounts to extend­
ing the user interface by adding new commands to the system. 

• The system is open: programs external to the system can access all of its facilities through a 
standard interface. 

Mentor presents a hierarchically structured view of programs to its users, and adheres to the 
principle that programs are allowed to be incorrect during editing: semantic checks of a program are 
only performed upon explicit request by the user. It encourages the creation of tools to support par­
ticular methodologies ( e.g., top-down, bottom-up) for the structured development of programs. 

Two sublanguages of the Mentor system deserve special attention. The language Metal is used 
to specify the concrete and abstract syntax of a new language. The language Mento/ is used both to 
interact with the Mentor system as well as to add (interactive) tree-manipulation commands. A pro­
gramming environment for a new language is derived from a definition of that language in Metal. 
The resulting environment allows syntax-directed editing of programs in the new language by means 
of a set of standard commands for tree-traversal, editing and searching. Optionally, one can add 
commands (written in Mentol) to perform more language-specific operations, such as high-level mo­
tions in the program ( e.g., move to the next procedure-declaration), checks that all variables have 
been declared, renaming of variables, construction of a graph of procedure calls, etc. 

3.2. The Synthesizer Generator 

The Synthesizer Generator is still under development. It is based on experience gained since 
1978/1979 with the Cornell Program Synthesizer [16], a programming environment dedicated to 
PL/CS. 

The Synthesizer Generator uses the paradigm of top down, hierarchically structured program 
development. But, contrary to the Mentor approach, programs are immediately checked for their 
static semantic correctness during editing, and all errors are immediately reported to the user. The 
current major goal of the project is to provide and improve facilities for incremental checking of static 
semantic constraints of new languages. These constraints are specified by means of an attribute gram­
mar. A recently developed incremental evaluator for attribute grammars [13] is used to perform a 
minima) recomputation of attribute values when a modification is made in a program under construc­
tion. Ultimately the system will also include methods for defining the run-time semantics of new 
languages. Tools for source level debugging and for the detection of anomalies in a program by 
means of fl.ow analysis will then be derived from the semantic definitions. It is envisaged that these 
versions of the system will also include a database with information on the program being edited. 
Such a database may be consulted interactively and may, for instance, contain a record of the current 
error points in the program, of the procedure call dependencies, or of the use-definition relations for 
the variables in the program. 

To date, several systems have been built using the Synthesizer Generator. An experimental en­
vironment for Pascal, and several small systems: several toy languages, a desk calculator, a code gen­
erator for expressions and a proof checker. 

Specifications are presented to the system in the Synthesizer Specification Language (SSL), 
which allows the definition of lexical, concrete, and abstract syntax, and of rules for static semantics 
and for unparsing. The resulting environment allows syntax-directed editing (including incremental 
checking of static semantic constraints) of programs in the new language using a fixed set of com­
mands for tree-traversal and editing; the latter also include commands derived from the language 
definition to create constructs in the new language. 
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3.3. CEYX 

CEYX is a system for VLSI design being developed at INRIA. At first sight, it may come as a 
surprise that such a system is included in this survey. Upon closer inspection, it turns out that the 
process of designing VLSI circuits, as for instance discussed in [9], entails describing various aspects 
(such as geometrical or electrical properties) of the same, hierarchically structured, abstract object. 
All these descriptions are expressed in different languages. In an early stage, it was recognized that 
one needs a very general and flexible system for expressing, editing, and manipulating such multi­
lingual descriptions. Against this background, the CEYX systems attempts to off er: 

• simultaneous manipulation of objects in different languages, 

• specialized, cooperating editors for different languages, and 

• great flexibility in choosing different representations for objects (this is particularly important 
for VLSI design, since huge design files have to be manipulated). 

CEYX draws heavily upon the earlier experience with Mentor. It provides an operators/phyla 
model (see section 4.1.3) for the definition of abstract syntax comparable to the one used in Mentor. 
The system is object-oriented and has borrowed several ideas from Smalltalk [4] and other object­
oriented languages. All nodes in the abstract syntax tree are represented by objects with associated, 
user-defined operations for editing, unparsing and the like. In this way one can also attach rules for 
dynamic semantics to each object. All these user-defined operations have to be programmed in Lisp. 
In addition to this, abbreviations (keys) can be introduced for each semantic operation in a similar 
way as is done in EMACS [15). 

The current implementation of the system does not include facilities to define lexical or concrete 
syntax. 

4. A COMPARISON 

As explained earlier, the systems have different goals and use different specification and imple­
mentation techniques, which makes a comparison very hard if not impossible. In order to establish 
some basis for comparison, I have developed under each of the three systems a programming environ­
ment for the extremely small programming language PICO. This gives at least some insight in the 
various specification methods used and in the quality of the resulting environments. The following 
subsections discuss the methods used for language definitions in each system and the properties of the 
resulting programming environment. The definition of PICO is used as running example. Here is, for 
completeness, the syntax of PICO: 

<pico-program> 
<decls> 
<id-list> 
<series> 
<statement> 
<asg-stat> 
<if-stat> 

<while-stat> 
<exp> 

<simple-exp> 

: := 
::= 
::= 
::= 
::= 
: := 
::= 

::= 
::= 

::= 

'program' <decls> <series> 'end' • 
'declare' <id-list> 1 ; 1 • 

<id-list> 1 , 1 <id> I <id>. 
<series>';' <statement> I <statement>. 
<asg-stat> I <if-stat> I <while-stat>. 
<id> 1 := 1 <exp>. 
'if' <exp> 'then' <series> 
'else' <series> 'fi' • 
'while' <exp> 'do' <series> 'od' • 
<simple-exp>'+' <simple-exp> 
<simple-exp>'*' <simple-exp> I 
<simple-exp>. 
<id> I <number> I 'C' <exp>')' • 
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The non-terminals <id> and <number> respectively represent identifiers and integer constants. The 
only static semantic property we will be interested in is the i·equirement that all variables occurring in 
an <asg-stat> or an <exp> should have been declared, i.e. should occur in the <id-list> of the 
<decls>-part of the PICO-program. 

4.1. Method of language specification 

4.1.1. Lexical definitions 

Mentor and the Synthesizer Generator both use regular expressions for the definition of lexical 
syntax and both use an external scanner generator to actually create a lexical scanner ( see also section 
4.3). CEYX does not yet provide facilities for defining lexical syntax. 

4.1.2. Concrete syntax 

Mentor and the Synthesizer Generator use both a form of BNF notation to specify the concrete 
syntax and both depend on an external parser generator for the construction of LALR(l) parsers. A 
typical rule in a Mentor definition is: 

<while_stat> ::= while <exp> do <series> od; 
while(<exp>, <series>) 

Non-terminals are between angle brackets and terminals are just written as they are. Characters in 
terminals that conflict with the syntax notation have to be escaped (using a sharp sign). The formal­
ism allows neither alternation nor repetition in syntax rules. The part of the rule following the semi­
colon specifies the abstract syntax tree to be built for the construct, in the above example a tree la­
beled with the operator "while" with the abstract trees corresponding to <exp> and <series> as 
sons. 

All constructs of a language that may be created during editing have to be added explicitly as 
alternatives of the start symbol of the grammar so that appropriate entry points can be created in the 
generated parser. 

The Synthesizer Generator uses a syntax notation akin to the Yacc [6] notation. A typical ex­
ample is: 

While_stat ::= WHILE Exp DO Series OD 
< While_stat.abs = MkWhile_stat(Exp.abs, Series.abs);} 

Here terminals are written in uppercase and have to be declared separately in the lexical syntax. The 
formalism allows alternation but does not allow repetition in syntax rules. The part of the rule 
between braces specifies the building of the abstract syntax tree. It is interesting to note that the 
standard attribute grammar mechanism is used to build this tree: in the above example via the syn­
thesized attribute abs. This permits arbitrary computations during construction of the abstract syn­
tax tree and allows, for instance, inclusion of parts of the parse-tree in the abstract tree ( e.g., the con­
stituent characters of a string constant). In a similar way, it is possible to include new subtrees that 
contain values of inherited attributes of the subtree they are replacing ( e.g., substitution of constants 
by their values). 

As stated earlier, CEYX does not yet provide facilities for defining concrete syntax. 
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4.1.3. Abstnlct sym1tax 

In Mentor, the abstract syntax of a language is defined in terms of operators and phyla: 

e The operators label the nodes of the abstract tree. Operators with fixed arity are allowed to 
have childre:n of different kinds. Operators with arity zero are the leaves of the abstract tree 
and represent the atoms of the language. Operators with non-fixed arity (also called lists) are 
only allowed to have children of the same kind. 

• The notion "'kind of children" is formalized by the concept of phylum: this is a non-empty set of 
operators. A phylum is associated with each child position of an operator and indicates precise­
ly which opi~rators are allowed as labels of subtrees at each child position. 

The specification of operators and phyla for a new language contains just enough information to 
maintain the correct relationships between operators and phyla when abstract syntax trees are 
modified. This ensures that the abstract trees remain syntactically correct. 

A typical definition of an operator is: 

while -> EXP SERIES; 

This defines the operator while; nodes labeled with this operator have two children which belong to 
the phyla EXP and SERIES respectively. The formalism allows the definition of list operators: 

series-> STATEMENT+ ... ; 

This defines the operator series; nodes labeled with this operator may have one or more children all 
belonging to the phylum STATEMENT. The definition of the related phyla could be: 

STATEMENT ::= assign if while; 
EXP ::= plus times number; 

(assuming that the operators assign, if, plus, times and number have been appropriately 
defined). 

The names of the phyla play an important role in the resulting programming environment: 
when, during editing, a new construct is about to be entered, Mentor either derives the phylum to 
which the new construct must belong and uses the phylum name as a prompt, or the phylum can not 
be derived automatically in which case the system asks the user to enter the name of the required 
phylum in advance. 

Mentor allows large language definitions to be subdivided in chapters. This feature has not been 
used in the definition of PICO. 

The Synthesizer Generator uses a slightly more restrictive method for the definition of the 
abstract syntax than Mentor. In terms of the operators-phyla model, the Synthesizer Generator al­
lows an operator to occur only once in some phylum. A typical definition of an abstract syntax rule 
is: 

statement: "wh" => MkWhile_stat(exp series); 

which states that a statement may have the form of a subtree with as operator MkWhi le stat and as 
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children the abstract trees corresponding to exp and series. The (optional) string "wh" defines the 
command to be added to the user interface to create while-statements. Note that this mechanism can 
be used in two ways: to define commands for the creation of new nodes in the abstract syntax tree 
and for the inspection (or modification) of inherited (or synthesized) attribute values at a certain point 
in the tree. Actual definitions are slightly more complicated since they also contain unparsing infor­
mation; this is treated further in section 4.1.6. below. 

The sp1xification method for the abstract syntax is also used to specify the domains used in the 
definition of the static semantics. 

CEYX uses the notions of "constructor" and "universe" to define the abstract syntax in a way 
comparable to the model used in Mentor. To a first approximation, a constructor is comparable to 
an operator and a universe to a phylum. Looking more closely, one observes that a universe has all 
the properties of a complete language definition: it describes the well-formed abstract trees for that 
language. As opposed to the approach in Mentor, universes (i.e. formalisms) may be defined in a 
nested fashion and as a consequence, switching of formalisms can be accomplished in a natural way 
by "crossing a universe" in the abstract tree, i.e. by encountering a universe node in the tree. Mentor 
achieves this same effect by associating "annotations" with nodes in the tree which describe the transi­
tion to another language. CEYX has in this way unified the notions of phylum and formalism. The 
advantage of this approach is extreme flexibility. A disadvantage may be that one loses the possibility 
to structure large definitions by distinguishing different languages. 

A fragment from the PICO definition will clarify the hierarchy of types that can be declared in 
CEYX: 

Cdefuniverse pico) 

(defcons program-pico (decls series)) 
(defcons decls-pico id) 
(defcons series-pico statement) 

(defuniverse statement-pico) 

(defcons while-stat-statement (exp statement)) 

(defuniverse exp-pico) 
(defcons plus-exp (exp exp)) 

First, the new universe pico is defined. Next, the three constructors program, decls and series 
are defined, which all three belong to the pico-universe. Note that the notation used indicates that a 
program has two children of type decls and series respectively, and that decls has a list of chil­
dren, all of type id. Also shown are the subuniverses statement and exp. 

The system for type definitions is richer than shown here. It is, for instance, possible to specify 
children in the declaration of a universe: these children are inherited by all constructors that are 
derived from this universe. Also provided are functions to access the components of universes and 
constructors, to test their type, etc. 
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4.1.4. Static semantics 

Currently, Mentor does not provide means to define static semantics. This implies that all static 
semantic checks have to be programmed explicitly in Mentol and that these checks have to be in­
voked explicitly by the user after he has completed a modification of his program. The Pascal en­
vironment built with Mentor contains, for instance, commands for 

• adding variables to the variable declaration part associated with the current editing cursor in the 
program; 

e (minimal) r,enaming of variables so that distinct objects have distinct names; 

• detection of unused variables; 

• construction and inspection of a procedure call graph. 

The recently developed language Typol [1] for the specification of types and declaration check­
ing will probably be incorporated into the Metal specification language in the near future. 

The Synthesizer Generator is, so to speak, completely geared towards the specification of static 
semantics. As stated earlier, attribute grammars are used for this purpose. With each operator from 
the abstract syntax, one or more attribute equations can be associated. Continuing the example from 
the previous sectilon, a while-statement might have an inherited attribute env (modeling the variable 
declaration environment) from its ancestor statement and this attribute has to be passed on to its 
children exp and series: 

MkWhile stat .• { exp.env = statement.env; 
series.env = statement.env;} 

The Synthesizer Generator also permits references to the values of non-local attributes. The imple­
mentation of PICO given in the appendices uses this feature to eliminate most of the inherited attri­
butes that would otherwise have to be passed to the rules for statements and expressions. Instead, the 
synthesized attribute env of the declaration part is made available to the rule for pico_program and 
that value is refeITed to directly from within the other rules. 

During editing of a program changes in attribute values are propagated incrementally. This 
makes the checking of static semantic constraints immediate and automatic, i.e. it does not have to be 
explicitly invoked by the user. 

CEYX does not support a notion of static semantics. All checks for static semantic constraints 
have to be programmed explicitly in Lisp. 

4.1.5. Dynamic ~:mantles 

Only CEYX allows the definition of dynamic semantics. The other two systems do not include 
facilities for this. 

Mentor relies on an external language processor for the execution of programs. In the 
Mentor/Pascal environment, for instance, programs are edited using the syntax-directed facilities of 
Mentor. When a program has to be executed, it is written onto an external file, compiled by means 
of the standard Pascal compiler of the host operating system, and the resulting object program is then 
executed. It would, in principle, be possible to write an interpreter or compiler for, say Pascal, in 
Mentol. As it was never designed for this purpose, however, Mentol lacks many of the essential prim­
itives and nobody has ever tried to use it for this purpose. Another, more realistic, approach would 
be to use the standard interface between Mentor and Pascal and to write a Pascal interpreter in Pas­
cal that operates on the Mentor abstract tree representation of a program. 
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The Synthesizer Generator allows a similar approach: in principle, procedures written in C 
could be combined with the generated programming environment in order to interpret the abstract 
syntax tree. It is, however, also possible to associate expressions in the Synthesizer Specification 
Language (SSL) with nodes in the tree. This provides a limited, but dean, way to add dynamic se­
mantics. 

CEYX explicitly supports the notion of associating dynamic semantics with each node in the 
tree. The general way to do this is by associating a semantic function under a certain name with a 
constrnct or universe in the tree. For instance, to associate the semantic property pretty with the 
construct wh i l e-s tat one would write: 

(defsem (while-stat pretty) object body) 

Here, object represents the construct with which the semantic property pretty is to be associated 
and body is the Lisp code to be executed when this semantic property is invoked. 

4J .. 6. Unparsmg 

The three systems use surprisingly simple, even primitive, methods for the specification of un­
parsing. All systems use a recursive descent, preorder traversal of the abstract syntax tree for the 
creation of a printed image. During this traversal an indentation level is maintained which can be 
incremented/decremented at the beginning/end of the unparsing of certain constructs. Two major 
problems must be solved by the unparser. First, how to choose the correct format for the unparsing 
of certain constructs. If, for instance, an if-statement with an empty else-part occurs inside another 
if-statement, the unparser has to create an explicit empty else-part for the innermost statement in ord­
er to avoid the dangling else problem. Secondly, the unparser must decide what to do when the un­
parsing of a certain construct overflows the current line. In principle, there are two solutions: 

• associate multiple unparsing formats with each construct and choose one depending on informa­
tion in the abstract syntax tree and on the amount of available space. 

~ associate only one format with each construct, but give variable interpretations to this format, 
depending on the space available on the output medium. 

All three systems use a variant of the second method for unparsing. Only CEYX provides a formal­
ized notion for defining formats with multiple interpretations. This allows formatting of the output 
depending on the space available on the output medium, e.g. an if-statement may be placed on one 
line, but is spread over several lines if it is too long. In the Mentor system this can also be done but 
in an ad-hoc way. The Synthesizer Generator allows the definition of a single format per construct 
with a fixed interpretation. 

Mentor does not provide a specification method for unparsing. A rather flexible scheme has 
been designed but is not yet implemented. The method currently used is to add Pascal procedures for 
unparsing to the environment. A prototype unparser is available which defines the interface between 
the unparser and the Mentor system. In addition to this, Mentor generates a file with Pascal constant 
declarations for all operators and symbols in the new language. The definition of a new unparser 
amounts to writing a procedure for the unparsing of all operators of the abstract syntax of the new 
language. 

The Synthesizer Generator allows associating one unparsing template with each abstract syntax 
rule. Continuing the example of the while-statement in the previous paragraphs, the abstract syntax 
rule, now including unparsing information, assumes the form: 
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statement: "wh" => MkWhile stat C "while" exp "do" 
"\t\n" series 
"\b\n" "od" ) ; 

The strings appearing in the argument list of MkWhi le_stat constitute the unparsing template: they 
will be displayed[ in proper combination with the strings resulting from the unparsing of exp and 
series. The esc:apes in these strings indicate the beginning of a newline ("\n") and increase ("\t") 
or decrease ("\b") of the indentation. 

The Synthe:sizer Generator also provides a rudimentary facility for printing the values of local 
attributes during unparsing. This feature can be used for flagging erroneous statements by introduc­
ing a local error attribute in certain rules: the default value of such an error attribute is the empty 
string, but an error message may be assigned to it which will be printed as part of the unparsing of 
the rule if the error has occurred. 

The specification method for unparsing as used in CEYX was inspired by previous work of 
several researcheirs [ 12, 17]. It uses the notion of horizontal and vertical blocks of text that have to be 
kept together during unparsing. In these blocks possible cutpoints have to be declared explicitly. The 
pieces of text between cutpoints form the components of a block. The components of a horizontal 
block are placed on the current line from left to right. If the current line overflows, a new line is 
created starting at a given indentation after which the remaining components of the block are placed. 
This process is re:peated until all components of the block have been printed. The elements of a verti­
cal block are either placed on the same horizontal line, if there is enough room, or on consecutive 
lines with the sarne amount of indentation. The basic functions for unparsing are: 

vprinch 
vpatom 
vterpri 
hblock 
vblock 

prints one character 
prints one atom 
prints a new line 
defines a horizontal block 
defines a vertical block 

cutpoint defines a cutpoint 
vd i spat ch recursively unparses subtrees 

There are also functions available to explicitly set the required indentation for horizontal and vertical 
blocks. The above unparsing rules are associated with a construct in the abstract tree by defining se­
mantics with the name pretty for it. For instance, the unparsing rules for the while-statement are: 

(defsem (while-stat pretty) Cx) 
Cvblock-with-indent 0 

Chblock 
Cvpatom "while") Ccutpoint) 
Cvdispatch (get-son x 1))) ; test-part 

(cutpoint) 
Cvblock 

Cvpatom "do") Ccutpoint) 
Cvdispatch (get-son x 2))) ; do-part 

Ccutpoint) 
Cvpatom "od"))) 



4.2 . .Properties of the :resulting environment 

4.2.1. User interface and basic primitives 
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The Synthesizer generator and CEYX both provide the user with a screen-oriented interface. 
Currently, Mentor only provides a teletype-oriented one, but a screen-oriented version is expected to 
be released near the end of 1983. All systems use the notion of a "current tree" and of a pointer 
(cursor) in the current tree. 

In Mentor one is, in fact, always communicating with the Mentol command interpreter. The 
current tree can be traversed using: 

@ language-independent commands for editing (i.e., "up", "down", "left", "right", "n-th son", 
"delete", "insert", etc.) and for tree pattern matching (i.e. "find next if-statement", where the 
operator "if' is a parameter of a language independent command.). 

@ language-dependent commands (i.e. Mentol procedures for finding, for instance, the next pro-
cedure declaration respecting the scope rules of the language under consideration, etc.). 

If desired, the current tree can be printed with a certain, optionally specifiable, level of detail. In fact, 
an arbitrary number of trees can be manipulated simultaneously. Since Mentol allows the definition 
of procedures, the user interface can be extended in an arbitrary way. 

After each command, the Synthesizer Generator automatically unparses the current tree and 
displays it on the screen with the cursor highlighted. The current tree can be traversed using: 

@ language-independent commands (i.e., "up", "down", "left", "right", "delete", "insert", etc.), 

@ language-dependent commands for the creation of new language constructs (this was discussed 
earlier in section 4.1.3). 

The system does not provide facilities for searching or for further extending the user interface. 
Another noteworthy property of this system is that at any moment during editing there are two alter­
native ways to enter a new construct: 

@ by entering the shorthand command (e.g., "wh") that is given in the the definition of the 
abstract syntax, or 

@ by typing the full text of the construct to be entered; this text is then parsed and converted into 
an abstract tree. 

The shorthand commands that are applicable at each stage are also displayed in a menu. 

CEYX provides the notion of dynamically defined keys that define the properties of the user­
interface. At each moment, during editing, there is a "current" object. As explained earlier, there is 
an arbitrary number of semantic rules associated with each object. These semantic rules can be in­
voked via a shorthand notation that associates a key with a semantic rule. During editing, the user 
types such keys as commands to the system. The interpretation of these keys depends on the key 
definitions for the current object. The interpretation of keys is completely dynamic: if the current ob­
ject does not define a certain key, the key definitions of the parent object are searched, and so on, un­
til a definition is found. If no definition is found either a system-provided default is assumed or an 
error message is given. In this way, standard operations like up, down, insert or delete can be special­
ized for certain classes of objects. This mechanism also allows the evaluation of arbitrary Lisp expres­
sions during (>,diting and gives access to an EMACS-like text editor which forms an integral part of 
the system. 
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4.2.2. Communication with the outside world 

Mentor provides three methods for communication with the outside world: 

@ External text-files can be parsed and converted into an abstract syntax tree and vice versa. 

@ Abstract syntax trees can be saved on external files and be reloaded into the system. 

@ External Pascal procedures can be called and the Mentor primitives are also accessible from 
Pascal. 

The Synthesizer Generator only allows calling of external C procedures. Saving and restoring of 
abstract syntax trees is planned for inclusion in coming versions of the system. 

CEYX allows abstract trees to be saved on external files by saving a Lisp expression that will 
recreate the tree. Moreover, Lisp functions can be called at any time from CEYX so it inherits all fa­
cilities for communication with the outside world from the Lisp system. 

4.2.3. Multiple languages. 

Mentor and CEYX permit the simultaneous manipulation of abstract trees belonging to 
different languages. 1bis allows, for instance, the manipulation of Pascal programs in which the com­
ments are written in some formal specification language, or the manipulation of documents containing 
mixtures of ordinary text and formal notation ( e.g., a language reference manual, a book on quantum 
mechanics, this paper). 

Both systems are also self-descriptive: their meta-language (i.e. the formalism used for language 
specifications) can be defined in the meta-language itself. Such a self-referential definition makes it 
possible to extend the meta-language and to create new versions of the system by means of a 
bootstrap. 

The Synthesizer Generator supports the manipulation of abstract syntax trees in just one 
language. 

4.3. Implementation of the systems 

Mentor is implemented in Pascal on a Honeywell-Bull 68 under Multics. For the creation of a 
lexical scanner and a LALR(l) parser it uses the SYNTAX system developed at INRIA by the "Lan­
gages et Traducteurs" team. Currently, the system is being ported to a VAX under Berkeley UNIX. 
The UNIX implementation uses Lex [8] and Yacc [6] for the creation of a scanner and a parser. 

The Synthesizer Generator is implemented in C on a VAX under Berkeley UNIX. It also uses 
Lex for the creation of a lexical scanner and Yacc for the creation of a LALR(l) parser. 

CEYX is completely implemented in Lisp. Versions exist for Maclisp (Multics) and LeLisp 
(VAX, M68000, SM90). The current system does not include parsers, but an adaptation of Y ace to 
Lisp has been completed and will be incorporated in newer versions of the system. 

5. CONCLUSIONS 

An absolute comparison of the three systems, it must be reiterated, is hardly possible, but some 
general lessons can nevertheless be drawn. 

First, it can be concluded that it is realistic to build language-independent programming en­
vironments. In the long run they will have great advantages over language-specific systems. Advan­
tages not only in terms of savings in design and implementation effort, but also in terms of affordable 
generality and sophistication of the resulting systems. 1bis type of programming environment will 
make it economically feasible to develop environments for very specialized application languages and 
to experiment with new features while a language is still under development. 
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Secondly, several particularly important features can be identified in the systems under con-
sideration: 

• a screen-oriented user-interface, 

• programmability of the user-interface, 

• pattern matching, 

• parsing/unparsing of external files and storage of programs in their abstract tree form, 

• multiple unparsing schemes, 

• manipulation of multiple languages, including the possibility to annotate a program in one for­
malism with comments in another formalism, 

• incremental checking of static semantic constraints, and 

• self-referential system descriptions. 

The definition of both concrete and abstract syntax in these systems leads to much duplication in the 
language specifications. One can easily envision that these definitions will be simplified in future sys­
tems since major parts of the abstract syntax can be derived automatically from the concrete syntax. 

Thirdly, the specification of dynamic semantics forms the weakest part of all three systems. 
Much work remains to be done in order to build language-independent programming environments 
that cover the complete editing-execution-debugging cycle. Three topics deserving special attention 
are: 

• language-independent debugging, 

• language-independent tools for flow analysis, and 

• general, language-independent, optimization techniques. 

Finally, it should be noted that none of the systems under consideration provides primitives for 
version control or project management nor does any of them support a particular, explicit, methodol­
ogy for software development. 
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Appendix I. PICO implemented with Mentor 

I.a. Lexical definitions 

SIMPLE CLASSES 

UCLET 
LCLET 
CHIF 
SP 

= "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 
= "abcdefghijklmnopqrstuvwxyz"; 
= "0123456789"; 
= " fl 

, #011 ; -- HT 
EOL = #012; 
CLAM ="!II; 
UNDERSCORE="_"; 
OTHERS = "&{}~ \ - I?/% I • <>iii""'-" ; 

COMPOUND CLASSES 
LETTER = UCLET + LCLET; 
LETCHIF =LETTER+ CHIF; 
ANY EOL = ANY-EOL; 

ABBREVIAT!IONS 

COMMENTS 

TOKENS 

IDENT = LETTER { [UNDERSCORE] LETCHIF } iil1; 
UCIDENT = UCLET { [UNDERSCORE] UCLET } ; 
COMMENT= -SP&1{-SP}I-SPI-EOLl(-SP&1{-SP}-CLAMI-CLAM&1){ANY}EOL 

-- &1 : true if clam lay at colomn 1 

COMMENT {COMMENT}; 

PHYLUM 
%IiD 
%NIUMBER 
%MIETAVAR 

= "["&2 UCLET { [UNDERSCORE] UCLET} "]" ; 
= IDENT; CONTEXT ALL BUT %ID, %NUMBER; 
= CHIF { CHIF}; 
= - "$" UCIDENT ; 

17 

. , 
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lb. Abstract and concrete syntax 

definition of PICO is 

rules 

<root> ::= <pico_program>; 
<pico_program> 

<pi co __ program> · ·= program <dee ls> #; <series> #end ; 
pii co _program( <dee ls> ,<series>) 

<decls> ::= declare <id list>; 
<iid list> 

<id list> ::=<id>; 
decls-listCC<id>)) 

<id liist> ··= <id list>#, <id>; 
dEic ls-post( <id_ list> ,<id>) 

<series> ::=<statement>; 
series-list(C<statement>>> 

<series> ::=<series>#; <statement>; 
series-postC<series>,<statement>) 

<stateiment> : : = <asg stat> ; -
<c1sg stat> -

<statEiment> : : = <if stat> ; -
<if stat> 

<s ta teiment> : : = <while stat> ; 
<1;1hile stat> 

<asg_stat> ··=<id>#:= <exp>; 
assign(<id>,<exp>) 

<if stat> ··= if <exp> then <series> else <series> fi ; 
if(<exp>,<series>.1;<series>.2) 

<while stat> ::= while <exp> do <series> od; 
whileC<exp>,<series>> 

<exp> ::=<plus>; 
<plus> 

<exp> : : = <times> ; 
<times> 

<exp> : : = <simple exp> ; -
<s:imple exp> -<simpl.e exp> : : = <id> ; 
<id> 

<simpl.e exp> : : = <number> i -
<number> 

<simpl.e_exp> : := #( <exp> #) ; 
<eixp> 

<plus> ::= <simple_exp> #+ <simple_exp>; 
pl.usC<simple_exp>.1,<simple exp>.2) 

<times:> : := <simple_exp> #* <simple_exp> ; 
timesC<simple_exp>.1,<simple_exp>.2) 

<id> ::=%ID; 
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id-atomCXID) 
<number> ::=%NUMBER; 

number-atomCXNUMBER) 

<root> .. - #[PICO PROGRAM] <pico_program> ; 
<pico_program> 

<root> : := #[PICO PROGRAM] <metavar> ; 
<metavar> 

<r·oot> .. - #[DECLS] <decls>; 
<decls> 

<root> : := #[DECLS] <metavar> ; 
<metavar> 

<root> : := #[SERIES] <series> ; 
<series> 

<root> : := #[SERIES] <metavar> ; 
<metavar> 

<root> : := #[IF] <if stat> ; 
<if stat> 

<root> .. - #[IF] <metavar> ; 
<metavar> 

<root> : := #[WHILE] <while stat> ; 
<while stat> 

<root> ::= #[WHILE] <metavar> ; 
<metavar> 

<root> : := #[EXP] <exp>; 
<exp> 

<root> : := #[EXP] <metavar> ; 
<metavar> 

<root> : := #CID] <id>; 
<id> 

<root> : := #CID] <metavar> ; 
<metavar> 

<metavar> : := %METAVAR ; 
meta-atom(XMETAVAR) 

abstract syntax 

pico_program -> DECLS SERIES; 
decls -> ID+ ... ; 
series -> STATEMENT+ ... ; 
assign -> ID EXP; 
if -> EXP SERIES SERIES; 
while -> EXP SERIES; 
plus -> EXP EXP; 
times -> EXP EXP; 
comments -> COMMENT+ ; 
id -> implemented as IDENTIFIER; 
comment -> implemented as STRING; 
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number -> implemented as INTEGER; 
meta -> implemented as IDENTIFIER; 

PICO PROGRAM : : = pico program; -
DECLS ::= decls; 
SERIES ::= series; 
STATE~IENT : := assign if while; 
EXP •• = plus times ID number; 
ID ... = id; 
COMMENIT : : = comment; 

end definitioni 



I.e. Checking of static constraints 

X Mentol procedures for checking variable declarations 
.rec 
mentol 
:& X begin of a function definition 
X The following procedure checks that all identifiers in a 
X PICO program are actually declared • 
• def <.all declared, 
C pd; X save current cursor 

lild:u* s1; 

lilk:u* s2; 
.foreach<lilid, 

X 
X 
X 
X 

u* goes to the root of the tree 
d becomes the first son of the root 
(i.e. the declaration part) 
set current pointer to series part 

X for each occurence of an <id> in series 
X check that it occurs in decls • 

• occurs<lilk, lild> 
>; 

pu; 
) > 

ss2;.lredef; 
:& 

X restore previous cursor 

X end of a function definition 

X The following function ensures that a given name occurs 
X in a list of identifiers 
.def <.occurs<lilname, lillist>, 
C lillist f lilname; X find name in list 

) > 

? , X if found do nothing 

C .pnnl<lilname>; X otherwise give errormessage 
lilmess s1 p 

ss2;.lredef 
X here follows one string constant 
lilmess:& 
comment sJ 
is not defined 

21 
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I.d. Unparsing 

C* The unparser for PICO is obtained by inserting certain language­
dependent parts in a prototype unparser written in Pascal. 
The resulting program consists of about 500 lines and is not 
reproduced here; only the language dependent parts are shown. 
Procedures and types not defined here are part of the unparser 
interface with Mentor*) 

const 
C* node types in the abstract syntax tree*) 
IDNODE =1; 
COMMENTNODE=2; 
NUMBERNODE=3; 
METANODE=4; 
PICOPROGRAMNODE=13; 
ASSIGNNODE=14; 
WHILENODE=15; 
PLUSNODE=16; 
TIMESNODE=17; 
DECLSNODE=22; 
SERIESNODE=23; 
COMMENTSNODE=24; 
IFNODE =29; 
C* Keywords and special symbols*) 
TKPROGRAM=1; 
TKEND =2; 
TKDECLARE=3; 
TKIF =4; 
TKTHEN =5; 
TKELSE =6; 
TKFI =7; 
TKWHILE =8; 
TKDO =9; 
TKOD =10; 
(* special characters -- skip constant 11 *) 
TKSEMI =12; 
TKCOMMA =13; 
TKASG =14; 
TKLPAR =15; 
TKRPAR =16; 
TKPLUS =17; 
TKTIMES =18; 

C* DECTABLE .is the unparser *); 

procedure DECTABLECP:TREES;HOLO:INTEGER); 

(* Unparsing of comments.*) 



procedure DECCOMCWHERE:TREES;K:KINDS); 
var COM:TREES; 
begin ••• end; 

<* Unparsing of list nodes*) 
procedure DECLIST(P:TREES); 

begin ••• end; 

<* Unparsing of fixed arity nodes.*) 
procedure DECEXP(P:TREES;HOLO:INTEGER); 

begin 
case OPER(P) of 

end 

IDNODE,NUMBERNODE: PRINTATOM(P); 
METANODE: PRINTMETA(P); 
PLUSNODE,TIMESNODE: 

begin 
KEYPRINT(TKLPAR); 
DECTABLE(P,HOLO); 
KEYPRINT(TKRPAR); 
end 

end(* DECEXP *); 

procedure DECTA1Cvar P:TREES); 
begin 
case OPERCP) of 

NUMBERNODE,IDNODE: PRINTATOM(P); 
COMMENTNODE: 

begin 
SPPRINT(3); 
PRINTATOM(P) 
end; 

METANODE: PRINTMETA(P); 
PICOPROGRAMNODE: 

begin 
KEYPRINT(TKPROGRAM); 
WLINE; 
WTAB; 
DECTABLE(CHILDC1,P),HOL0-1); 
WLINE; 
DECTABLE(CHILDC2,P),HOL0-1); 
BACKTAB; 
WLINE; 
KEYPRINT(TKEND) 
end; 

ASSIGNNODE: 
begin 
DECEXP(CHILD(1,P),HOL0-1); 
KEYPRINT(TKASG); 
DECEXP(CHILD(2,P),HOL0-1) 
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end 

end; 
IFNODE: 

begin 
KEYPRINT(TKIF); 
DECEXP(CHILD(1,P),HOLO-1); 
KEYPRINT(TKTHEN); 
WTAB; 
DECTABLE(CHILD(2,P),HOLO-1); 
BACKTAB; 
WLINE; 
KEYPRINT(TKELSE); 
WTAB; 
DECTABLE(CHILD(3,P),HOLO-1); 
BACKTAB; 
WLINE; 
KEYPRINTCTKFI) 
end; 

WHILENODE: 
begin 
KEYPRINT(TKWHILE); 
DECEXP(CHILD(1,P),HOLO-1); 
KEYPRINTCTKDO); 
WTAB; 
DECTABLE(CHILD(2,P),HOLO-1); 
BACKTAB; 
WLINE; 
KEYPRINT(TKOD) 
end; 

PLUSNODE: 
begin 
DECEXP(CHILD(1,P),1OOO); 
KEYPRINT(TKPLUS); 
DECEXP(CHILD(2,P),1OOO); 
end; 

TIMESNODE: 
begin 
DECEXP(CHILD(1,P),1OOO); 
KEYPRINT(TKTIMES); 
DECEXP(CHILD(2,P),1OOO); 
end 

end(* DECTA1 *); 

(* BODY OF DECTABLE *) 
begin ••• 
end(* DECTABLE *); 



Appendix Il: PICO implemented with the Synthesizer Generator 

I* Definition of PICO for the Synthesizer Generator *I 

I* PART I -- lexical syntax *I 

NUMBER: < [0-9]+ >· , 
WHITESPACE: < [\ \t\n]* >· I 

PROGRAM: < "program" >· , 
END: < "end" >· , 
DECLARE: < "declare" >· , 
IF: < "if" >· , 
THEN: < "then" >· , 
ELSE: < "else" >· , 
FI: < "fi" >· , 
WHILE: < "while" >· , 
DO: < "do" >· , 
OD: < "od" >· , 
ID: < [a-zA-Z][a-zA-Z0-9]*1[?] >· , 
ASSIGN: < "·-" .- >· , 

I* PART II -- abstract syntax *I 

root pico_p1rogram; 

pico_program: 
"p" 

; 
decls 

"d" 
; 

id list 

MkProgramBot( "<pico_program>" ) 
=> MkProgram C "program\t\n" 

decls "\n" 
series "\b\n" 
"end\n" ) 

MkNul lDecls C "<decls>" ) 
=> MkDecls C "declare " id list ";\n" ) 

Mkld list1 C id 
"2" => Mkid list2 C id"," id list ) 

; 
series 

; 
statement: 

I 

"2" 

JI:=" 

"if" 

"wh" 

MkSeries1C statement ) 
=> MkSeries2C statement ";\n" series) 

"<statement>" 
=> MkAsg_statC I* error attribute: *I "\003\001" 

id" :="exp) 
=> Mkif stat( "if" exp" then" "\t\n" 

series "\b\n" 
"else" "\t\n" 
series "\b\n" 
"fi" ) 

=> MkWhile stat( "while" exp "\n" 
"do" "\ t\n" 
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; 
exp 

; 
id 

; 

"+" 
"*" 

"<exp>" 

series "\b\n" 
"od" > 

=> MkPlusC "C" exp"+" exp")") 
=> MkTimes( "("exp"*" exp")") 

MkUse C ID/* error attribute: *I "\003\001") 
MkNumber( NUMBER) 

MkNullldC"<name>") 
Mkld( ID) 

/* PART III -- concrete syntax 
All productions of the concrete syntax produce an abstract 
syntax tree via the synthesized attribute "abs". 

*' 
Pico_program 
Decls 
Id list 
Series 
Statement 
Exp 
Id 

{synthesized pico_program abs;}; 
{synthesized decls abs;}; 
{synthesized id_list abs;}; 
{synthesized series abs;}; 
{synthesized statement abs;}; 
{synthesized exp abs;}; 
{synthesized ID abs;}; 

I* Declare priority and associativity of '+' and '*' *I 

left '+'; 
left '*'; 
Pico_program ::= 

PROGRAM Decls Series END 

; 
Decls : : = 

DECLARE Id list I•' , 
; 

Id list ::= 
Id 
Id I I Id list , 

; 
Series : := 

Statement 
Statement I • I Series , 

; 
Statement : := 

Id ASSIGN Exp 

< Pico_program.abs = 
MkProgramCDecls.abs, Series.abs);} 

< Decls.abs = MkDeclsCid_list.abs);} 

{ Id_list.abs = Mkld_list1Cld.abs);} 
{ Id listS1.abs = 

Mkld list2C Id.abs, Id_list$2.abs);} 

{Series.abs= MkSeries1(Statement.abs);} 
< SeriesS1.abs = 

MkSeries2CStatement.abs, SeriesS2.abs);} 

<Statement.abs= 
MkAsg_stat(Id, Exp.abs);} 



I IF Exp THEN Series ELSE Series FI 
{Statement.abs= 

Mkif_statCExp.abs, SeriesS1.abs, 
SeriesS2.abs);} 

WHILE Exp DO Series OD {Statement.abs= 
MkWhile_statCExp.abs, Series.abs);} 

; 
Exp : : = 

Exp '+' Exp { Exp$1.abs = 
MkPlusC ExpS2.abs, Exp$3.abs);} 

Exp '*' Exp { ExpS1.abs = 
MkTimesCExp$2.abs, Exp$3.abs); 

IC I Exp I ) I { ExpS1.abs = Exp$2.abs;} 
ID { Exp.abs = MkUse CID);} 
NUMBER { Exp.abs= MkNumberCNUMBER); 

; 

Id ::= 
ID {Id.abs= MkidCID);} 

; 

I* Now correlate concrete and abstract rules with each other *I 

pico_program 
decls 
id list 
series 
statement 
exp 
id 

- Pico_program.abs; 
- Decls.abs; 
- Id_l ist.abs; 
- Series.abs; 
- Statement.abs; 
- Exp.abs; 
- Id.abs; 

I* PART IV -- static semantic rules *I 

I* Definition of the environment datatype *I 

ENV 

; 

NullEnvC ) 
EnvConcatC ID ENV) 

ID lookup(id, env> 
ID id; ENV env; 
{ return( with Cenv) C 

NullEnvC): "?" . , 
EnvConcatCi, e): i ==id? id 

}; 
lookup( id, e »); 

} 

I* Inherited and synthesized attributes in the abstract syntax tree *I 

pico_program {synthesized ENV env;}; 
decls {synthesized ENV env;}; 

} 
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id list 
id 

{synthesized ENV env;}; 
{synthesized ID name;}; 

I* definition of static semantic rules *I 

MkProgramBot 
MkProgram 
MkNullDecls 
MkDecls 
Mkid l ist1 
Mkid list2 
MkAsg stat -

MkNullid 
Mkid 
MkUse 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

O; 
{ pico_program.env = decls.env; }; 
{ decls.env = NullEnv<>; }; 
{ decls.env = id_list.env; }; 
{ id_list.env = EnvConcat(id.name, NullEnv()); }; 
{ id_list$1.env = EnvConcat(id.name, id_listS2.env);}; 
{ local STR error; 

}; 

error= lookup(id.name, {pico_program.env}) -- "?" 
? "UNDECLARED--> II 

fl II • , 

•• {id.name="?";}; 
{id.name= ID;}; 
{ local STR error; 

}; 

error= lookup(ID, {pico_program.env}) -- "?" 
? "<-- UNDECLARED" 

1111 ; 



Appendix ID: PICO implemented with CEYX 

; Definitions for the lexical items id and number 

(deftype id 'is-id) 
(de is-id (x) (and (atomp x) (not (numberp x)))) 

(deftype integer 'is-integer) 
(de is-integer (x) (numberp x)) 

; Definitions for the abstract syntax trees 

(defuniverse pico) 
(defcons program-pico (decls series)) 
(defcons decls-pico id) 
(defcons series-pico statement) 

(defuniverse statement-pico) 
(defcons if-stat-statement (exp statement statement)) 
(defcons while-stat-statement (exp statement)) 
(defcons asg-stat-statement (id exp)) 

(defuniverse exp-statement) 
(defcons plus-exp (exp exp)) 
(defcons times-exp (exp exp)) 
(defcons use-exp Cid)) 
(defcons number-exp (integer)) 

; Definitions for the unparsing rules 

(defsem (program pretty) (x) 
Cvterpri) 

(vpatom "program") 
(vblock-with-indent 4 

Ccutpoint) 
Cvdispatch (get-son x 1)) 
(vpatom ";") 
Ccutpoint) 
(vdispatch (get-son x 2))) 

(vterpri) 
Cvpatom "end")) 

Cdefsem (decls pretty) (x) 
(setq x (get-sons x)) 
(hblock-with-indent 4 

(vpatom "declare") 
(vdispatch (car x)) 
Csetq x (cdr x)) 
(while x (vpatom ", ") 
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Ccutpoint) 
Cvdispatch (car x)) 
Csetq x Ccdr x))))) 

Cdefsem (series pretty) Cx) 
Csetq x (get-sons x)) 
Cvblock-with-indent 0 

Cvdispatch (car x)) 
Csetq x Ccdr x)) 
(while x Cvpatom ";") 

Ccutpoint) 
Cvdispatch (car x)) 
Csetq x Ccdr ~))))) 

Cdefsem (if-stat pretty) Cx) 
Cvblock-with-indent 0 

Chblock 
Cvpatom "if") 
Ccutpoint) 
Cvdispatch (get-son x 1))); test-part 

Ccutpoint) 
Cvblock 

(vpatom "then") 
Ccutpoint) 
(vdispatch (get-son x 2))); then-part 

Ccutpoint) 
(vblock 

(vpatom "else") 
(cutpoint) 
Cvdispatch (get-son x 3))); else-part 

(cutpoint) 
C vpatom "f i "))) 

(defsem (while-stat pretty) (x) 
Cvblock-with-indent 0 

Chblock 
Cvpatom "while") 
Ccutpoint) 
Cvdispatch (get-son x 1))); test-part 

(cutpoint) 
Cvblock 

Cvpatom "do") 
Ccutpoint) 
Cvdispatch (get-son x 2))); do-part 

Ccutpoint) 
C vpa tom "od"))) 

(defsem (asg-stat pretty) Cx) 
Chblock 

Cvdispatch (get-son x 1)); id 



Cvpatom" := ") 
Cvdispatch (get-son x 2>>>> ; exp 

Cdefsem (plus pretty) Cx) 
Cvdispatch (get-son x 1)) ; left operand 
Cvpatom" + ") 
Cvdispatch (get-son x 2))) ; right operand 

Cdefsem (times pretty) Cx) 
Cvdispatch (get-son x 1)) ; left operand 
Cvpatom" * ") 
Cvdispatch (get-son x 2))) ; right operand 

Cdefsem (use pretty) Cx) 
Cvpatom (get-son x 1))) 

Cdefsem (number pretty) Cx) 
Cvpatom (get-son x 1))) 

; Constructors for the editor 

(de mk-program () (program Cmetavar 'decls) Cmetavar 'series))) 
(de mk-decls () Cdecls Cmetavar 'id))) 
(de mk-series () (series Cmetavar 'statement))) 

Cde mk-if-stat C) (if-stat Cmetavar 'exp) 
Cmetavar 'statement) 
Cmetavar 'statement))) 

(de mk-while-stat C) (while-stat Cmetavar 'exp) Cmetavar 'statement))) 
Cde mk-asg-state C) (asg-stat Cmetavar 'id) Cmetavar 'exp))) 

(de mk-plus () (plus Cmetavar 'exp) Cmetavar 'exp))) 
(de mk-times () (times Cmetavar 'exp) (metavar 'exp))) 
(de mk-use C) (use Cmetavar 'id))) 
(de mk-number () (number Cmetavar 'integer))) 

; Checking of static semantic constraints 

(de all-declared Cprog) 
(let (Cid-list (get-sons (get-son prog 1))) 

(series (get-son prog 2))) 
(send 'not-declared series id-list>>> 

; By default all tree nodes propagate the signal "not-declared" 

Cdefsem (pico not-declared) (x id-list) 
(let ((sons (get-sons x))) 

(while sons 
(send 'not-declared (car sons) id-list) 
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Csetq sons Ccdr sons>>>>> 

; Special treatment of "not-declared" for asg-stat and exp 

Cdefsem Casg-stat not-declared) Cx id-list) 
Clet (Cid (get-son x 1)) 

(exp (get-son x 2))) 
(is-declared id id-list) 
(send 'not-declared exp id-list>>> 

Cdefsem Cuse not-declared) Cx id-list> 
(is-declared (get-son x 1) id-list)) 

Cdefsem (number not-declared) Cx id-list)) 

(de is-declared Cid id-list) 
Cif (not (member id id-list>> 

(print id " not declared"))) 


