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Invariance properties of the conditional independence relation*) 

by 
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ABSTRACT 

The conditional independence relation for a triple of a-al~ebra's is in­

vestigated. For certain operations on this relation necessary and sufficient 

conditions are derived such that these operations leave the relation invariant. 

Examples of such operations are the enlargement or reduction of the a-algebra's, 

and an absolute continuous change of measure. A projection operator for a­

algebra's is defined and some of its properties are stated. The a-algebraic 

realization problem is briefly discussed. 
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I • INTRODUCTION 

The purpose of this paper is to certain invariance properties 

of the conditional independence relation, properties of a projection oper-

ator for a-al 

problem. 

's, and to discuss briefly the realization 

The conditional independence relation for a triple of a-algebra's 

F 1,F2, G of a probability space is defined the condition that for any 

two positive random variables x 1,x 2 that are respectively F1,F2 measurable, 

one has 

This relations plays a key role in a large number of areas of probability 

theory and stochastic processes, In the area of sufficient statistics the 

conditional independence relation enters in a natural way [1,2,8,17 . The 

role of the relation in sufficient statistics has recently been stressed in 

[3,4,5,!2,l4]. In stochastic processes, the conditional independence relation 

appears in the theory of Markov processes, in particular in the concept of 

germ field [9,13]. In stochastic system theory the relation is essential 

for the definition of a stochastic dynamic system and the stochastic reali­

zation problem [10,18,19,20]. Other areas in which the conditional indepen­

dence relation arises are infonnation theory and random fields. In all 

these areas the relation enters in the question how to reduce available in­

formation. 

The main problem to be posed and solved in this paper is to give neces­

sary and sufficient conditions for the invariance of the relation under 

certain operations. Examples of such operations are to make F1 smaller er 

larger, G smaller or larger, and to perform absolute continuous changes of 

measures. A second problem to be investigated is to derive properties of a 

projection operator for a-algebra's. Finally the a-algebraic realization 

problem will briefly be mentioned. 

The invariance properties of the couditional independence relation 

have been discovered in an investigation of the a-algebraic realization 

problem [19]. These properties seem sufficiently interesting to other areas 

of probability theory and stochastic processes to receive proper attention. 
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The motivation of the investigation of the conditional independence 

relation is the stochastic realization problem. In this problem one is 

given a stochastic process and asked to construct a stochastic system in a 

specified class such that the output of this system equals the given process. 

The practical motivation of this problem comes from communication and con­

trol, econometrics, time series analysis, and other areas where model buil­

ding is important. The stochastic realization problem for Gaussian processes 

has been extensively investigated [10]. For non-Gaussian processes there are 

still many open problems. In a static context the strong version of the 

stochastic realization problem reduces to the a-algebraic realization pro­

blem. 

The a-algebraic realization problem is given two a-algebra's F 1,F 2 to 

classify and to construct all a-algebra's G that make F1 ,F2 conditional in­

dependent and that are minimal in a to be specified sense. This problem is 

unsolved [19]. For the case where the a-algebra's F 1,F2 are generated by 

Gaussian random variables a rather complete solution is available [18]. A 

generalization of the latter case to a Hilbert space framework has been in­

vestigated [JO]. However, for the a-algebraic case the analogy of a-algebra's 

with Hilbert spaces is not useful because the set of a-algebra's on a pro­

bability space is a lattice on which no orthogonal complement exists. The 

questions that the a-algebraic realization problem poses are rather dif­

ferent in nature than those posed in the statistics literature. The a-alge­

braic realization problem therefore requires new tools, and the structure 

of its solution is likely to be rather different from the Hilbert space 

case. The invariance properties of the conditional independence relation 

are basic techniques for the investigation of this problem. 

A brief outline of the paper follows. In the next section the problem 

is formulated and elementary properties of the conditional independence re­

lation are mentioned. The invariance properties are derived in section 3, 

while in section 4 several properties of a projection operator for a-alge­

bra's are investigated. The a-algebraic realization problem is briefly 

discussed in section 5. 



2. THE PROBLEM FORMULATION 

In this section the conditional independence relation is defined and 

the invariance problem posed. 
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Throughout the paper {~,F,P} denotes a complete probability space con­

sisting of a set~, a a-algebra F, and a probability measure P. Let 

F = f G c F I G is a a-algebra that contains} 

- · l all the null sets of F 

If H, Ge F, then HvG is the smallest a-algebra in F that contains Hand G. 

For any set Ac Q, IA is the indicator function of A. For Ge F let 

{x :Q + R+I xis G measurable}. 

If x: ~+Rn is a random variable, then Fx E F denotes the a-algebra generated 

by x. All equalities are supposed to hold almost surely, unless mentioned 

otherwise. 

In the following the concept of a projection of one a-algebra on another 

is needed. This definition is essentially due to H.P. McKean [13,p.343]; see 

also [14,p.II. 14; 19]. 

2. I. DEFINITION. For H, G E !_ let the projection of H on G be the a-algebra 

with the understanding that all null sets of Fare adjoined to it. The operator 

a(•[·) :ExE_ + l will be called the projection operator for a-algebra's. 

Recall that F 1, F 2 e E_ are independent a-algebra '.c; if for any A1 e F1 , 

and A2 e F2 

+ + 
equivalently, if for any x 1 e L (F 1), x2 EL (F 2) 
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[15, IV. 4]. The notation (F 1,F2) EI will be used to indicate that F 1,F2 

are independent a-algebra's, and I c (~xx_) will be called the independence 

relation. 

2.2 DEFINITION. The conditional independence relation CI is a relation for 

a triple of a-algebra's F1,F2,G E F defined by the condition that for all 
+ - + 

x 1 EL (F 1), x2 EL (F 2 ) 

Then one calls F1,F2 conditional independent given G, or one says that G 

sp Zi tts F 1 , F 2 • 

Notation: (F 1,G,F2) E CI. 

Note the analogy between the conditional independence relation and the 

independence relation. 

In this paper attention will be concentrated on the following problem. 

2. 3 Problem. The invarianee problem for the conditional independence relation 

is, given certain operations to determine necessary and sufficient con­

ditions such that these operations leave the relation invariant. 

Below the above defined problem will be solved for several operations. 

In the following some elementary properties of the conditional indepen­

dence relation are derived that will be used in the sequel. 

2.4 PROPOSITION. Let F1,F2 , GE!_. The folZo~ing statements are equivalent: 

a. (F 1,G,F2) E CI; 

b. (F 2 ,G,F 1) E CI; 
+ 

c. for aU x 1 E L (Fl) 

E[x 1 !F2 vG] = E[x 1 !GJ; 

d • for a U x 1 E L + (F 1 ) is E [ x 1 I F 2 v G J G measurable; 

e. o(F 1 I F2 v G) c G; 

f • (Fl v G, G, G v F 2 ) E CI; 
+ 

g. for au z E L (F l V G) 
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Condition 2.4.g. is due to Mouchart and Rolin [14,th.2.I], and to 

Dahler [7,lemma 4]. Below the proof is given for the sake of completeness. 

PROOF. a$=> b. This follows from the symmetry in F 1,F2 of definition 2.2. 

a~ c. This is known, see [6,II.45]. 

c => d. This is obvious. 

d => e. This follows from the definition of cr(F 1 1F 2vG). 
+ 

e => c. Let x 1 EL (F 1). Then 

by e. 

c => f. Let x 1 E L+(F 1). Then c implies that 

hence (F 1,G,GvF2) E CI Using the equivalence of a and the above one ob­

tains (F2 vG,G,F 1) E CI and with the above (F 2 vG,G,GvF 1) E CI, and thus the 

result. 
+ 

f => g. From f follows by restriction that (F 1 vG,G,F2) E CI. Let z EL (F 1v G). 

Then 

E[E[z!GJIF 2J 

= E[E[z!F 2 vGJIF 2] by (F 1 vG,G,F2) E CI, 

= E[z!F2]. 

E[x1 x2gJ = E[x2 E[x 1 g IF 2J] 

= E[x2 E[E[x 1g!GJIF2JJ by g, 

= E[x2 E[x 1g!GJ] = E[x2 gE[x 1 IGJ] 

= E[g E [x 1 I G]E[x2 I G] J 

and the result follows from the definition of conditional expectation. 0 
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There follow two sufficient conditions for a triple of a-algebra's 

to be conditional independent. 

2. 5 PROPOSITION. Given FI , F 2 , G E F. 

a. If FI c G or F2 cG, then (F 1,G,F2) E CI. 

In particular (F 1,F 1,F2) E CI and (F 1 ,F2 ,F2) E CI. 

b. If (Fl,F2 vG) EI then (Fl,G,Fz) E CI. 

and the result follows from 2.4.c. 
+ b. Again for x 1 EL (F 1) 

by independence and [15,IV.4.2]. 

Several other elementary properties of the conditional independence 

relation follow. 

PROPOSITION. Let F1,F2 , GE F with G = {0,~} up to null sets of F. Then 

(F 1,F2) EI iff (F 1,G,F2) E CI. 

PROOF. The elementary proof is omitted. 

2.7 PROPOSITION. Let F1,F 2 ,G E !_. 

a. If (F 1 ,G,F2) E CI then (F 1 n F2) c G. 

b. /J.sswne that F 2 c F 1 • Then (F 1 ,G,F 2 ) E CI iff F 2 c G. In particular., 

(F 1,G, FI ) E CI, iff Fl c G. 

by 

• 

• 



hence A is G measurable. 

b. => By a. F 2 = (F 1 n F2) c G. <= This follows from 2.5.a. 

3. THE INVARIANCE PROBLEM 

In this section resulta for the invariance problem are derived. Some 

of these results have been stated without proof in [19]. 
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• 

The investigation of the invariance problem for the conditional in­

dependence relation as defined in 2.3 is initiated with the invariance with 

respect to F2 in (F 1, G,F2 ) E CI. Due to the symmetry of the conditional in­

dependence relation with respect to F 1 and F 2 , the invariance of the relation 

with respect to F 1 follows. 

3.1 THEOREM. Let F 1, F2 , F3 , GE F with F2 cF3 . 

One has (Fl,G,F3) E CI iff (Fl, G, F2) E CI 

and a(F 1 IF3 vG) c(F2v G). 

PROOF.=> (F 1,c,F3 ) E CI implies by restriction that (F 1,G,F2) E CI, and by 

2. 4. e 

o(F 1 jF3 vG) c G c(F 2 v G). 
+ 

<= Let x 1 EL (F 1). Then 

E[x 1 IF3 v G] 

= E[E[x 1 jF3 v G]jF 2 v G] by o(F 1 jF3 v G)c(F2 vG). 

=E[x 1 jF 2 vG] byF2 cF 3 , 

= E[x 11GJ, 
and the result follows from 2.4.c. 

3. 2 COROLLARY. Let FI, F 2 , F 3 , G E F · 

• 

a. One has that (F 1, G, F2 vF3) E CI iff (F 1,G,F2) E CI and (F 1,GvF2 ,F3) E CI. 

b. (F 1,c,F2) E CI and (F 1,GvF2,F3) E CI iff (F 1,G,F3) E CI and 

(F 1,GvF3 ,F2) E CI. 

c. Asswne that GcF 2. Then (F 1,G,F2) E CI iff o(F 1!F2) c G. 

d. Asswne that (F 1 vF2 v G,F3) EI. Then 

(F 1,G,F 2 vF3) E CI iff (F 1,G,F2) E CI. 

e. (Fl vF3 ,c,F2) E CI and (F 1,G,F3) E CI iff (F 1,G,F3 vF 2) E CI 

and (F3 ,G, F2 ) E CI. 
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PROOF. a. By 2.4. cr(F 1 JF2 vF3 v G) c (F 2 vG), and (F 1 ,F2 vG,F3 ) E CI are 

equivalent. The result then follows from 3.1. 

b. By a. both sides are equivalent with (F 1 ,G,F 2 vF 3 ) E CI. 

c. By 2.4. (F 1 ,G,F2) E CI iff cr(F 1 iF 2 v G) c G. From G cF2 then follows that 

a (F 1 IF 2) = cr (F I IF 2 v G) c G • 

d. ~ This follows by restriction. <a= (F 1 vF2 v G,F3 ) EI and 2.5.b imply 

that (F 1,GvF2 ,F3) e: CI. The conclusion then follows from a. 

e. (F 1 vF3 ,G,F2) e: CI <=-{(F3 ,G,F2) e: CI and (F 1,GvF3 ,F 2) e: CI}, while 

{(F 1,GvF3 ,F2) e: CI and (F 1,G,F3 ) E CI}~ (F 1,G,F3 vF2)E CI, by applying 

a. twice. 

f. F3c (Fz vG) implies o(FI IF3 vG) c(Fz vG). 

The result then follows from 3.1. • 
Result 3.2.a. is also derived in [14, Th.2.5] and [5]. Special cases of 

3.2.f. are given by [7; 9, J .b; 14, Cor. 2.6]. 

3.3 THEOREM. Let Fl,F2,Gl,G2 E f with G2 CG]. One has (Fl,Gl,F2) e: CI and 

cr(F 1JG 1) cc2 iff (F 1 ,G2 ,F 2) E CI and cr(F 1 JF 2 vG 1) c(F 2 vG2). 

PROOF. o(F 1 JG 1) = o(F 1 JG 1 vG2) by G2 cG 1 and by 3.2.c. 

cr(F 1 JG 1) = cr(F 1 1G 1 vG2) cG2 iff (F 1,G 2 ,G 1 ) E CI. Similarly 

cr(F 1 JF2 vG 1) c(F2 vG2) iff (F 1,F2 vG2,F2 vG 1) E CI. By 3.2.a. both sides of 

the theorem are equivalent with (F 1,G2 ,G1 vF2) E CI. D 

3.4. COROLLARY. Let F1,Fz,F3,G1,G2, e: [. 

a. One has (Fl,GI,F2) E CI and (Fl,Gl vFz,F3) E CI iff (Fl,GJ vG2,F2) e: CI 

and (F 1,G 1,G2) E CI. 

b. One has (Fl,GI,F2) E CI, (Fl,GI vFz,G2) e: CI, and (Fl,G2,GI) e: CI iff 
(F 1,G2 ,F2) E CI, (F 1,G2 vF2 ,G 1) e: CI, and (F 1,G 1,G2 ) e: CI. 

c. If (F 1,G 1,F2) E CI and F 1 cF3 , then (F 1,cr(F3 iG 1),F 2) E CI. 

d. (Fl'cr(F 1 IF2), F2) E CI and (F 1,cr(F2 iF 1),F2) E CI. 

e. If (F 1,G 1,F2) E CI and cr(F 1 iG 1) = G2 c(F2 vG 1) then (F 1,c2 ,F2) E CI. 

f. If (F 1,G 1,F2) E CI then (F 1,cr(G 1 1F 1),F2) E CI. Henee cr(F 2 JF 1) co(G 1 iF 1). 

g. Assume that (Fl vF2 vGI,G2) e: I. Then (Fl,Gl vGz,Fz) E CI iff (Fl,Gl,F2)E CI. 

h. (F 1,cr(F2 JF 1)vcr(F 1 JF2), F2 ) E CI. 



PROOF. a. By 3.2.a. both sides are equivalent with (F 1 ,G 1, c 2 vF2) E CI. 

b. By applying a. twice one obtains 

{
(F 1,G2,¥2) E CI, 

(F 1 ,G2 vF2 ,G 1) E CI. 

c. F 1 cF3 implies that o(F 1 !G) c o(F3 !G) c G. The result then follows from 

3.3. 
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d. By 2.5.a (F 1,F 2 ,F2) E CI, and from c. follows that (F 1,a(F 1 1F2),F2 ) E CI. 

By symmetry (Fl ,a(F2 jF I) ,F 2) E CI. 

e. F2 c (F 2 vG 1) and 2.5.a. imply that (F 1,c 1 vF2 ,F 2) E: CI. Furthermore, by 

2.4.c., a(F 1 iF2 vG 1) = o(F1 1c 1) cG2 c(F2 vG 1). Now apply 3.3. with G1 

replaced by F2 vG 1 to obtain (F 1,c2 ,F2) E CI. 

f. Take in e. G2 = o(G 1 1F 1)va(F2 Jc1). Then(F 1,a(G1 1F 1)vcr(F2 1c 1),F 2)cCI. 

By 3.4.d.(F 1,cr(G 1 1F 1),G1) E: CI, hence (F 1 ,a(G 1 1F 1),o(F2 1G 1)) E CI. Com­

bining these results with 3.2.a. yields (F 1,a(G 1 1F 1), F2 va(F2 !c 1)) E CI, 

hence (F I ,o(G I iF 1), F2) E: CI. This and 3.2.c. give a(F2 1F 1)ca(G 1!F 1). 

g. (Fl vF2 vG 1,G2) EI and 2.5.b. imply that (F 1 ,G 1 vF2 ,G2) E CI and 

(F 1,c 1,G2 ) E CI. The result then follows from a. 

h. By d. (F 1,o(F2 jF 1), F2 ) E CI. Then 

o(F 1 jF2 vo(F2 jF 1) va(F 1 jF2)) = o(F 1 1F2 vo(F2 IF 1)) 

c o(F2 jF 1) c(o(F2 !F 1)vo(F 1 1F2)), and the result follows from 2.4. D 

3.5. PROPOSITION. Let F 1, F2 , F3 , F4 , G1, G2 E: F. Assume that 

(F 1 v F 2 v c 1 , F 3 v F 4 v G 2 ) E I. Then (F 1 v F 3 , c 1 v c 2 , F 2 v F 4 ) E CI iff 

(F],Gl,F2) E CI and (F3,G2,F4) E CI. 

PROOF.~ By restriction (F 1 ,G1 v G2 ,F2) E CI, and by 3-4.g. (F 1,G 1,F2) E CI. 

By symmetry one obtains (F3 ,G2 ,F4 ) E CI. 

<=. By 3.2.d. (F 1,c1,G2 vF3 vF2 vF4) E CI, and by 3.2.a. 

(F 1,G1 vc2 ,F3 vF 2 vF4 ) E CI. Similarly one proves (F3 ,G 1 vG2 ,F 1 vF2 vF4)cCI, 

hence(F G vG F vF) E CI. The result then follows from 3.2.e. D 
3' I 2' 2 4 
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Next the invariance of the conditional independence relation with res­

pect to a measure transformation is investigated. In the following there 

are two probability measures on {O,F}, denoted by P0 ,P 1• Expectation with 

respect to these measures is denoted by E0 (·), respectively E1 (•). If P0,P 1 

are equivalent probability measures on {n, F1 v F2 v G}, then by the Radon­

Nikodym theorem there exists a F1 v F2 v G measurable random variable 

p: O+R+ with E0[p] = I, such that for all A E F1 vF2 vG 

The reader is reminded of the formula 

valid for any random variable x: n + R such that E0 1xpl < 00[11, 24.4]. 

The conditional independence relation with respect to the probability measure 

P0 ,P 1 is denoted by CI(P0) respectively CI(P 1). 

3.6. THEOREM. Let F1,F2,G E £, a:nd P0,P 1 be two equivalent probability mea­

sures on {n,F}. Assume that {n,F,P0} a:nd {n,F,P 1} are both aomplete. Let 

p :n + R+ be the Radon-Nikodym derivative dP 1/dP0 with respeat to F1 vF2 vG. 

Assume further that (F 1,G,F2) E CI(P0). Then (F 1,G,F 2) E CI(P 1) iff there 

exist pl E L+(F 1vG), p2 E L+(F2 vG) suah that p = pl .p 2 a.s. The deaompo­

sition p = p 1 • p 2 is non-unique in general. 

The result of 3.6 is related to one of the equivalent definitions of 

a sufficient statistic. The definition is that the statistic z is sufficient 

for the estimation of x given y if for the joint density p 1 of x and y there 

exist positive functions p2 and p3 such that 

[ Bahadur, l ; Rao, l 6, p. 131]. 



+ 
PROOF.<=. By 2.4 (F 1 vG,G,GvF2 ) E CI(P0). Let x 1 EL (F 1). Then 

E I [ x l j F 2 v G ] = E O [ x I pl p 2 I F 2 v G ] / E O [ p I p 2 I F 2 v G] 

P2 Eo[x1P1IF2vG] / P2 Eo[p,IF2vG] 

=Eo[x1P1IGJ /Eo[pljGJ 

because p 1 ({p 2 = O}) :o; P 1 ({p = O}) = 0, and by (F 1 vG,G,GvF2) E CI(P0), 

hence E 1[x 1 jF2 vG] is G measurable and the result follws from 2.4.d. 

~ Define 

P1 = Eo[plFI vG], 

P2 = Eo[plF2vG] / Eo[pleJ. 

Let A1 E (FI v e), A2 E (F v G). Then one has 

EO[IAJ IA2 pl p2] 

= Eo[Eo[IA1 P1 rA2 P2leJJ 

= Eo[Eo[IAJ 

= Eo[Eo[IA 
1 

= EO[El[IA 
I 

= EO[El[IA 
I 

= EO[El[IA 
I 

pl leJ EO[IA P2IGJ] by (Fl vG,G, GvF2) E CI(Po), 
2 

PIG] E0 [IA PIG] / E0 [plGJ] by the definition of p 1,p 2 , 
2 

leJ E 1[1A lcJ E0 [plcJJ 
2 

IA lcJ E0 CplcJJ by (F 1,c,F2 ) E cr(P 1) 
2 

IA IGJ p] = El[IA IA]. 
2 1 2 

An application of the monotone class theorem then yields that for all 

A E (FI v G) v ( G v F 2) = FI v F 2 v G 

Eo [ I A p I p 2 ] = E I [ I A ] ' 

4. THE PROJECTION OPERATOR 

1 I 

D 

In this section some results for the projection operator are derived. 

These results have been used in [18,19]. 

4.1. PROPOSITION. Let F 1,F2 ,F3 , G E F. 

a. If F 1c F2 then o(F 1 IF 2 ) = F 1• 

b. If F 1 :, F2 then o(F 1 IF2 ) = F2 • 

c. If (F 1,G,F 2) E CI then o(F 1 jF2 vc) = o(F 1 je). 
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d. cr(F I lo(F I jF2)) = cr(F 1 IF2) • 

e. cr(F 1 jo(F2 jF 1) vo(F 1 jF2)) = cr(F 2 IF 1). 

f. If (Fl,G,Fz) E CI then 

o(o(GjF 1)jF2) = o(F 1 jF2). 

g. o(o(F2 jF 1)jF2)= o(F 1 jF2). 

h. o(cr(F 1 jF2)1 cr(F2 1F 1)) = cr(F2 IF 1). 

1.. If F1 cF3 then F1 vo(F2 jF3) = o(F 1 vF2 1F3). 

j. o(o(F2 jF 1) vcr(F 1 IF2) jF 1) = o(F21F 1). 

It follows from 4.1.a. that for any F1,F2 E F cr(o(F 1 IF2) IF2) = o(F 1 IF2). 

Thus for any F2 E F, is o(•IF2) the projection operator onto F2 . The results 

4. l.d,g,h,i have also been derived in [14,Cor. 4.9, Th. 4.10], but are men­

tioned here for the sake of completeness. 

a.b. This 

c. For x 1 

is obvious from the definition of the projection of F1 on F2 • 
+ EL (F 1), (F 1,G,F2) E CI implies that 

E[x 1 IF2 v G] = E[x 1 j G]. 

The result then follows from consideration of the generators of the two o­

algebra's. 

d. By 3.4.d. (F 1,F 12 ,F2) E CI, and the result follows from c. 

e. Again (F 1,F21'FZ) E CI, and by restriction (F 1,F21 ,F 12) E CI. Then 

cr(Fl jF21 vFJ2) 
= o(F 1 IF21 ) by (F 1,F21 ,F 12) E CI and c, 

= F21 by F21 c Fl and b. 

f. o(GjF 1) c F1 implies by a. that 

o(o(GjF 1) jF2) c F12 • (F 1,G,F2) E CI and 3.4.f. imply (F 1,o(GjF 1),F2) e: CI. 

Again by 3.4.f. (F 1,o(o(GjF 1) jF2) ,F2) E CI. From this and 3.2.c. follows that 

F12 c o(o(GjF 1) jF2). 

g. By 2.5.a. (F 1,F2 ,F2) E CI, and the result follows from f. 

h. F21 = o(F 12 jF 1) by g. 

= o(F12IF1 vF21) = o(F12IF21) by (Fl,F2l'F12) E CI. 

i. By assumption F1 c o(F 1 vF2 jF3), and also o(F2 jF3) c o(F 1 vF2 jF3), hence 

F1 v o (F2 jF3) c o(F 1 vF2 jF3). Let x 1 E L+(F1), x2 E L+(F2). Then 



E[x 1x2 jF3 ] = x 1 E[x2 [F3J 

is F1 va(F2 [F3) measurable. A monotone class argument shows that for all 

y E L+(F 1 vF2 ) E[y[F3 J is F 1 v a(F2 jF3 ) measurable, hence 

a(F 1 vF2 jF3 ) c F 1 va(F2 jF3). 
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J· By i a(F21 vF 12 !F 1) = F21 va(F 12 jF 1) = F21 by g. D 

5. THE a-ALGEBRAIC REALIZATION PROBLEM 

A problem formulation and a brief discussion of the a-algebraic realiza­

tion problem follow. 

5. l. DEFINITION. The minimal conditional independence relation CI. for a 
min 

triple of a-algebra's F1,F2 , GE Fis defined by the conditions 

l .(F 1 ,G, F2 ) E CI; 

2. if HE F, H c G, and (F 1, H, F2) E CI, then H = G. 

Notation: (F 1 , G, F2) E Cimin" Then one says that F1,F2 are minimal condi­

tional independent given G, or that G splitts F1,F2 minimally. 

5.2. Problem. The a-algebraic realization problem is given {~,F,P} and 

F1 , F2 E ! to solve the following subproblems. 

a. To show existence of a GE F such that (F 1 ,c,F2) E CI .. 
- min 

b. To classify all GE!_ such that (F 1 ,G,F2) E Cimin and G c (F 1 vF2); and 

to provide an algorithm that constructs all those a-algebra's G. 

The existence subproblem of 5.2 is trivial. It is known that 

(F 1,o(F 1 jF2),F2) E Cimin and that (F 1,a(F2 jF 1),F2) E Clmin [McKean, 13, p. 

343, property e; Mouchart, Rolin, 14, Th. 4.1]. Moreover, if G cF 1 ,then 

(F 1 ,G,F2) E Cimin if£ G = a(F2 1F 1). 

There remains thus the classification subproblem of 5.2. In this sub­

problem one can distinguish three major questions: I. what are necessary and 

sufficient conditions for a a-algebra G such that (F 1,c,F2) E CI . ?; 
min 

2. what is the classification of such a-algebra's G; 

3. how to construct an algorithm that produces all such G's? 

As to the first question, assume that (F 1,G,F2) E CI. A necessary con­

dition for F1,F2 to be minimal conditional independent given G is that 
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This follows directly from 3.4.c. However this condition is not sufficient, 

see [19, Example 4.4]. This question is still open. 

The questions of classification and algorithm construction have not 

been solved, A step in the construction of minimal G's is given by 3.4.c., 

if (F 1,G,F2) E CI then (F 1,cr(F 1 jG),F2) E CI. Based on the analogy with the 

Hilbert space framework a partial result is given by [19, Th. 4.11]. 

The structure of all a-algebra's G such that (F 1,G,F2) E CI . is rather 
min 

puzzling. For G = cr(F 1 jF2) or G = o(F2 !F 1) one has (F 1,G,F2) E Cimin' Under 

a condition (F 1,G,F2) E Cimin and Ge (F 1 vF2) imply that 

G c(cr(F2 jF 1) vcr(F 1 !F2)). However this is not true in general. Also 

cr(o(F2(F 1)jo(F 1!F2)) = o(F 1 IF2) by 4.1.h., but his property does not hold 

for all minimal G's. Additional information and results are given in [18,19]. 
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