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We consider. the planar map x' = y, y' = <j>(x,y) connected to the difference 

x 1 = ax (1-(1-b)x -bx 1) with a> 1, 0 < b < 1. The unstable manifold of n+ n n n-
the fixed point (O,O) is determined explicitly as an analytic curve. The 

stable manifold consists of an infinity of algebraic curves and forms the 

boundary of the escape region, the set of starting-points of orbits going 

to infinity. The case b =½is studied in more detail and most illustrations 

are for this case. For a> 3 there always exists an unstable 4-cycle. For 

this cycle the secondary unstable manifolds are also determined explicitly. 

Still for the case b =½a Feigenbaum scenario of repeated period-doubling 

has been observed. However, the convergence to Feigenbaum's universal con­

stant appears to be rather slow. 
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1. Introduction 
In this paper we consider some aspects of the logistic difference equation containing a delay term 

Xn +l =axn(l-½Xn -½Xn-1). 

This equation may be considered as the homotopic mean of the well-known equations 

Xn+l =axn(l-xn), 

and 

cf. [l] and [2]. 

The model (1.1) written in the form of an iterative planar map 

{
x' =y, 
y' =ay(l-½x -½y), 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

combines the bifurcation behaviour of both (1.2) and (1.3) and is of considerable interest in itself since 
it presents a case of strong resonance 1:4. The local bifurcation behaviour has been discussed elsewhere 
[3] and (4]. The equations (1.1), (1.2) and (1.3) are all members of the homotopic family 

Xn +l =axn(l-(1-b )Xn -bxn -1), 0:o;;;;b :o;;;;I. (1.5) 

The corresponding two-parameter map, called M, is 

{
x' =y 
y' =a;(l-bx -(1-b )y). (1.6) 

Its natural domain is the triangular region T bounded by x >0, y >0 and bx + ( 1 - b )y < I. Let P O be 
a starting point of a trajectory or orbit formed by the successive iterates P n = Mn P O then there are 
various possibilities. P n may be bounded forever inside T attracted by a fixed point, a cycle of finite 
period or by a limit cycle and perhaps by a strange attractor. Another possibility is that Pn escapes 
from T and disappears into infinity. This report is a first step towards obtaining insight into such 
phenomena of global bifurcation. In particular we consider the case where the non-trivial fixed point of 
(1.6) x =y = 1-1 / a is no longer stable. Further we take either b = ½ or b close to ½. This means 
that the special map (l.4) is our main object of study and that (1.6) is considered a perturbation of 
(1.4). However, this is mainly a matter of convenience since most considerations are valid for the gen­
eral case ( 1.6). 

If we consider the map (1.4) for a >3 from an experimental point of view by making plots like fig. 
2.3, 2.5 we observe the following behaviour. For a =3.1 there appears to be an attracting 4-cycle. If a 
increases to the critical value ac = 3.29789 the point plot shows a set of points scattered along a curve 
that looks like a part of a strange attractor, at least if the trajectory is started close to the origin, but 
the dominant feature is still that of an attracting 4-cycle. Plots for a larger value of a show that many, 
most or all trajectories leave T after a few iterations and disappear into infinity. Still, for a up to a 
second critical value a 2 =3.628 there exists a locally attracting 4-cycle. At this critical value the 4-
cycle bifurcates into a locally attracting 8-cycle which is stable up to a3 =3.667. This is merely the 
beginning of a Feigenbaum scenario for which a9 =3.674, the start of a 512-cycle is just detectable on 
a HP 85 personal computer. However, the attracting domains of the stable 2m -cycles seem to shrink at 
each period-doubling. Still for a value of a close- to 4 there appear to be patches of a strange attractor 
with very small and "strange" attracting domains. 

In the following sections we shall study the underlying theory needed for understanding the 
phenomena sketched above. It is merely a beginning of a theory and much has still to be done. We 
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hope that others may fill in the missing gaps and may develop a more complete theory. In particular we 
stress the importance of getting a better understanding of the Feigenbaum scenario as sketched in sec­
tion 5 and the limiting. behaviour of the invariant manifolds discussed in section 3. 

2. Invariant manifolds 
The planar map 

{
x' =y, 
y' =ay(l-bx -(1-b)y), (2.1) 

derived from the delayed logistic difference equation 

Xn +I =axn(I-(1-b )Xn -bxn-1) (2.2) 

has the two fixed points 0(0,0) and F(l-1 / a,1-1 / a). The origin is stable for I a I <l. The multi­
pliers of F follow from 

X2-X(2-a -b +ab) + b(a -1) =0. (2.3) 

The stability region is determined by (cf. [4]) 

l<a <Min [ i=;: ,1 + ! ]- (2.4) 

The natural domain for which (2.1) or (2.2) are good models of population dynamics is determined by 
a> 1, 0,s;;;;b ,s;;;; 1 and x J' ET where T is the triangle 

T: x>0,y>0,bx + (1-b)y<l. (2.5) 

The map (2.1) may be considered as a Cremona transformation in the projective plane (cf. [4] sec­
tion 3). This yields for b:f:l a fixed point at infinity (0,1,0) in homogeneous coordinates. Near this fixed 
point the map (2.1) can be approximated by 

f x' =y, 
1,,, =-a(l-b)y2, (2.6) 

which shows that this point is always locally attracting. 

The map (2.1) has the inverse 

{ 

- .!.__ .1:±. ' _L_ 
x - b b x + abx' ' 

y =x'. (2.7) 

For this inverse map F is still a fixed point but O has become a singularity. However, (2.7) has a 
different fixed point at infinity (1-b,-b,0) in homogeneous coordinates. Locally (2.7) can be approxi­
mated by 

{ 

1-b 
x =--b-x' 

y =x' (2.8) 

which shows that this point is attracting for b < ½ and repelling for b > ½. In [3] we have shown that it 
is slowly attracting for b = ½. 

For the remainder of this section we take a> 1 and b'Fl. Then the origin having multipliers 0 and 
a is unstable with the x-axis as its stable invariant manifold. In fact all points of this line are mapped . 
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onto the origin by a single iteration step. The x-axis is invariant only for the direct map (2.1 ). If to the 
x-axis we add all its preimages we obtain a set of lines which as a set is invariant either in forward and 
backward direction. This set will· be studied in the next section. Here we note only that the preimage 
of y = 0 is the line bx + (1-b )y = 2 and that the next preimage is a hyperbole. 

For a > 1 an unstable manifold is attached to the origin as an analytic curve of the kind 

x =F(t), y =F(at) 

where F(z) is determined by the functional equation 

F(a 2z) =aF(az)(I-(I-b )F(az)-bF(z)). 

(2.9) 

(2.10) 

It is an old result going back to Poincare, Fatou and many others, that F(z) is an entire function that 
can be written in the form 

00 

F(z) =- ~ ck(-zl (2.11) 
k=I 

with C1 = 1. 
A format· substitution of this series expansion in the functional equation gives the recurrence rela­

tion 
k 

ak(ak - l)ck+I = ~ (bai- 1+(1-b )ak)cjck+l-j (2.12) 
j=I 

from which the coefficients can be obtained one after another. In particular for b = ½ we have 

a+l 2a2+a+l 
c1 = 1, c2= 2a( l), c3= 3 2 . (2.13) a - 4a (a -1) 

Using a computer it is easy matter to calculate F(t) even for quite large values oft by taking the first 
few terms of the series expansion of F(t / am) for a suitable m- making It/ am I <<1- followed by 
iterating (2.10) m times. In this way we have obtained graphs of the unstable manifold for a number 
of cases. From 

(2.14) 

we obtain by elimination of t 

(2.15) 

This is the beginning of another power series expansion but it is of limited use since its convergence is 
restricted .. At the value of x for which F(t) =0 it starts to diverge. We see that the curved manifold 
leaves the origin in a parabolic way. Explicitly 

y =ax -(b +(l -b )a)x2 +0(x 3). (2.16) 

What happens if a is increased from a = 1 onwards will be discussed as a description of a set of illus­
trations for the case b =½. In all of them we have used the scale -0.2, 1.4, -0.2, 1.4 unless stated other­
wise. 

Fig. 2.1, 2.2 a =2.9 
For 7-v32<a<3 the fixed point F(l-1/a,l_:_1/a) is a stable focus. Shown is an orbit starting 
close to O . Successive points converge to F along four branches of a spiral. The next picture shows 
the curved invariant manifold starting in O and ending in F after an infinite number of turns. All 
points of the previous plot are on the unstable manifold. If (2.9) is replaced by 

&• 



4 

X =F(a1), y =F(a1+1) 

the restriction of the planar map to the unstable manifold is merely the shift map. 

Fig. 2.3, 2.4 a =3.1 
The fixed point F has become unstable. Instead we have a stable 4-cycle formed by 0.9467, 0.5068, 
0.4293, 0.7079 and also an unstable 4-cycle formed by 0.8820, 0.6452, 0.4709, 0.6452. The point plot 
fig. 2.3 shows a single orbit with its starting-point chosen close to the origin. It looks as if four separate 
orbits are spiralling towards the secondary fixed points. This would really be the case for the iterated 
map M 4• Fig. 2.4 shows the corresponding unstable manifold of the origin, topologically a halfline on 
which M is a shift map. This curve approaches the 4-cycle apparently in a most complicated way, at 
least when seen in a two-dimensional plane. 

Fig. 2.5, 2.6 a =3.29789. 
For this critical value the unstable manifold of O becomes tangent at the stable manifold y =0 thus 
developing homoclinic tangency. In terms of the entire function F(t) we have a double zero for some 
value t =to and an infinite number of subsequent double zeros at all multiples ak t0, k = 1,2,3 .... This 
means that the invariant curve has an infinity of branches with cusps at the origin. The successive loops 
come ever closer to the four members of the attracting 4-cycle in a rhythmic four-beat pattern. 
It is instructive to watch a plotter making pictures like fig. 2.6 since this adds a sense of time, an aspect 
what is missing in those illustrations. If the parameter t of the invariant curve written in the form 
x =F(a1

), y =F(a1 +1
) is interpreted as time we have roughly a constant speed. However, on loops 

of higher order the speed can be very high whereas most time is spent in the vicinity of the members of 
the 4-cycle. Asymptotically jumps are made from one periodic point to the other. At each jump a 
highly complicated loop is traversed with an infinite speed, an effect escaping observation in actual 
experiments. 

Fig.2. 7 a = 3.675 
For a > 3.29789 the invariant curve intersects the stable manifold y =0. Accordingly we have an 
infinity of loops inside the fundamental triangle T and outside. The outer loops are all in the sector 
x <0, y <0. They appear to be attracted by the fixed point at infinity. In order to get a reasonable pic­
ture we have plotted x /(3-x -y),y /(3-x -y) on the scale -½, 1½, -1½, 2½. This brings the 
infinite fixed point in the position 0, -1. We note that a =3.675 is just beyond the Feigenbaum limit of 
the period-doubling sequence. 

:.. (,,.. ....... . 
·· ....... ---) . 

Fig. 2.1 
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3. Secondary invariant manifolds 
For b =½ the map (2.1) has always an unstable 4-cycle consisting of saddle points from which 

secondary invariant manifolds may emanate. Their form can be determined in very much the same 
way as in the previous section. 

Starting from the difference equation 

Xn+I =axn(l-½xn-½Xn-1), a>3, 

it is easily seen that an unstable 4-cycle is formed by the values 

with 

For the corresponding planar map 

2 2 
x 0 =ai, x 1= -, x 2=a2, x 3 = -, 

a a 

{
aa1 =a-l+v'(a+l)(a-3), 

aa2 =a-l-v'(a+l)(a-3). 

x' =y, y' =cf>(xv1) 

where 

cf>(x JI) =ax(l -½x -½y) 

this means a 4-cycle of the following points 

P o(a1,2 / a )• P 1(2 / a ,a2)• P 2(a2,2 / a )• P 3(2 / a ,a1)­

lf Jk is the Jacobian 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

taken at the cyclic point Pk the local matrix at PO is given by J JI 111J 0• If l\1 and l\2 are its eigen­

values a simple calculation shows that l\1l\2 = IT ( ~cp )k = 1. A slightly more complicated calculation 
k=l uX 

shows that 

l\1 +l\2 =(a+ l)(a -3)2 +2 

so that the eigenvalue equation can be written in the form 

(l\-1)2 =(a+l)(a-3)2>t. 

Example 
For a =3.5 we have the 4-cycle 

84 42 24 48 
< 7' 7)•( 7' 7)•( 7' 7)•( 7' 7) 

with 

l\1 =(25+3v'41) / 16 =2.7631, l\2 =(25-3v'41) / 16 =0.3619. 

The stable 4-cycle in this case is 

1.2337, 0.3063, 0.2466, 0.6244 

rather close to the unstable cycle 

(3.6) 
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1.1429, 0.5714, · 0.2857, 0.5714. 

In a similar way as in the previous section the unstable manifold at Pk(xk>xk+i) can be described by 

X =Fk(t), y =Fk+1(t) (3.7) 

where the Fk are entire analytic functions satisfying the equations 

F2(t) =<f,{_Fo(t),F1(t)), 

FJ(t) =#F1(t),F2(t)), 

Fo(At) =#F2(t),F3(t)), 

F1(At) =q,(_FJ(t),Fo(At)), 

where A is the largest eigenvalue of (3.6) and where 

Fk(0) =xk. 

The actual calculation of the coefficients, of these functions is straightforward. Writing 

Fk(t) =xk +pkt +qkt2+ ... , k =0,1,2,3, 

(3.8) 

(3.9) 

we may substitute these series expansions into (3.8). By equating equal powers of t we obtain equa­
tions from which the coefficients can be determined successively. At the first step we obtain a homo­
geneous set of four linear equations which can be solved if A satisfies the eigenvalue equation. Taking 
p 0 =I the coefficients p 1,P2,PJ can be calculated. At each subequent step four higher coefficients can 
be determined by solving an inhomogeneous set of four linear equations. Actually when working on a 
computer it is sufficient to determine only the first few coefficients, say up to quadratic terms. Then the 
expansions can be used when t is small. For large values oft we may use the iteration scheme (3.8) a 
number of times in order to reduce the argument by as many powers of A as is needed: 

In this way we have worked out the case a =3.5 in fig.3.1. The scale is -0.2, 1.4, -0.2, 1.4. The pic­
ture may speak for itself. Contrary to what one might believe the invariant curves are not simple arcs 
or spirals connecting the unstable cyclic point to its stable companion. They have the appearance of lit­
tle strange ,attractors with an infinity of folds. 

In fig.3.2 a point plot is given for the case a =3.678 using the scale -0.2, 1.4, -0.2, 1.4. It is difficult 
in this case to find a trajectory which does not escape into infinity. However, there appear to be four 
local attracting regions. The previous plot suggests that their topological structure might be very com­
plicated. 

In fig.3.3 a blow-up is given of the area 0.58, 0.62, 1.28, 1.32 at one of these patches. The plot shows 
the usual pattern of a strange attractor. 



9 

=-

Fig. 3. I Secondary unstable manifolds for a" 3.5 

-

,,,,,... .. --

Fig. 3.2 

.. . . . :" 
.•··· .. 

..... ··. : :.:·.:· .. .. :·.: .. · . .. , ' . ·, '•• 

\ -~ ·, 
. L.: 

~: _,. 
/.: ·. 

Fig. 3.3 



10 

4. Escape regions 
Our main interest is the behaviour of the mapping M 

Jx' =y, 
l/ =ay(l-½x -½y), a>l, 

(4.1) 

for points of the basic triangular region 

T: x >0,y >0, x +y <2 

The global mapping properties of M can be read off from diagrams such as given in fig. 4.1 and fig. 4.2 
for the special case a = 3.5. The object plane is partitioned in twelve parts separated by the lines 

x =0, x =2,y =0,y =2, x +y =2 

and numbered from 1 to 12. Fig. 4.2 shows the corresponding images according to the following list 

x=0 y=ax(l-½x) 
x=2 y=-½ax2 

y=0 x=y=0 
y=2 x=2 
x+y=2 y=0. 

For an orbit starting in f there are the following three possibilities 

i. After a finite number of steps the orbit ends at the origin. 

ii. The orbit stays in T forever. 

iii. The orbit eventually escapes into infinity. 

The set of all starting points P (x ,y) for which the nth image P n coincides with the origin for the 
first time will be denoted by Cn . A simple observation shows that 

C 1 is the line y =0 

C2 is the line x +y =2 

C 3 is the hyperbole 

X = (2-y)(ay -2). 
ay 

All further lines are obtained by taJcing the inverse map: Cn+I =M-1Cn. 

(4.2) 

H P ET is a starting-point of an orbit which escapes into infinity there is an index n (n ;;;;i.3) such 
that Mn- 2p is outside T for the first time. Figures 4.1 and 4.2 show that Tis left along the regions 
marked by 2• 3• 12 and that the orbit stays in 12 thereafter. Thus for Pn =Mn P we have 
Xn <0,yn <0. ll in (4.1) x <0 andy <Owe see that 
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also y' <0 and that ly' I >a ly I so that any orbit with a start in 12 escapes into infinity. The set of all 
starting-points P ET for which Mn P is in that region for the first time is denoted as En , the nth 
escape region. Obviously En is bounded by Cn n T. The first escape region E 3 is bounded by a hyper­
bolic arc of C 3 and the side :x =0 as sketched in fig. 4.3. 

B 

D , 

.,, -

0 

Fig. 4.3 

We shall prove that for I <a <3.20484 this is the only escape region. This means that all further preim­
ages of y =0 are outside I_. In order to prove this statement it is sufficient to determine the values of a 
for which the domain T - E 3 is mapped into itself. A condition for this is that the parabole 
y =ax(I-½x) and the hyperbolic arc C3nT do not intersect. Using the computer we find that they 
become tangent for a =3.20484. For larger values of a, however, the situation can .be quite compli­
cated with escape regions of arbitrary high index being present in T. In fig. 4.4 we have given a 
geometrical display of the escape numbers at 19X 19 starting-points in a rectangular section 

0.499<x <0.699, l.184<y <1.384 

for a =3.6265. 
Points with an escape number n ;;;.,. 100 are indicated by H. Those points are good candidates for 
starting-points of orbits which stay in T forever. The centre is chosen as a stable periodic point with 
period 4. The resulting diagram suggests a most complicated structure of escape regions. In contrast fig. 
4.5 gives with a slightly lower value a = 3.5 with 

0.524<x <0.724, l.134<y < 1.334 

a much - but not essentially - simpler result. 
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11 11 11 16 12 7 7 7 7 7 12 8 2 2 2 2 2 2 2 

11 u 11 11 11 12 7 7 7 7 7 12 8 2 2 2 2 2 2 

11 11 17 11 11 11 H 7 7 7 7 7 26 8 2 2 2 2 2 

11 16 15 15 15 H 11 11 13 7 7 7 7 45 8 2 2 2 2 
11 28 15 32 H 19 15 11 11 12 7 7 7 7 16 8 2 2 2 

11 15 19 23 49 79 23 19 16 11 12 7 7 7 7 16 8 2 2 

11 24 23 35 23 23 23 23 29 15 11 20 7 7 7 7 22 8 2 

11 16 23 23 28 H H H 27 39 19 11 16 7 7 7 7 20 8 

11 11 19 23 44 31 31 43 H H 23 71 28 11 7 7 7 7 36 

11 11 20 23 H 35 83 H H H H 35 43 25 11 7 7 7 7 

11 11 15 H H 23 35 H 57 27 39 H H 32 15 11 7 7 7 

26 11 15 31 39 19 23 H 43 19 20 66 H H 37 19 11 13 7 

12 11 16 27 23 19 19 H H 15 16 16 15 19 H 35 31 11 12 
13 11 11 23 19 19 19 H 23 29 11 11 11 11 15 27 H 23 11 

7 16 11 15 19 78 15 48 31 38 11 11 11 11 11 11 19 H H 

7 21 11 15 29 59 15 23 55 52 11 11 11 49 32 11 11 15 H 

7 12 11 16 23 H 15 44 50 15 11 11 20 12 46 12 16 11 11 

7 22 11 11 36 23 15 15 H 15 11 11 16 13 6 6 6 17 56 

7 7 20 11 22 19 20 15 39 24 11 11 16 13 6 6 6 6. 6 

Fig. 4.4 Escape numbers for a= 3.6265 1n 0.499, 0.699, l. U~Lr, 1.3fll1 

11 11 11 11 11 11 60 13 7 7 7 7 H 8 18 2 2 2 2 
18 29 28 H 16 11 11 21 21 7 7 7 7 H 8 18 2 2 2 
16 15 15 15 15 15 21 11 11 12 7 7 7 7 H 8 33 2 2 

16 15 20 19 19 19 15 24 11 11 12 7 7 7 7 H 8 19 2 
16 15 19 35 H H 47 19 15 17 11 16 7 7 7 7 H 8 14 

16 15 25 43 H H H H H 20 20 11 H 7 7 7 7 H 8 

H 15 23 H H H H H H H 24 15 11 20 7 7 7 7 H 

11 15 23 H H H H H H H H 47 15 11 H 18 7 7 7 

11 15 H H H H H H H H H H H 24 17 11 22 7 7 

11 15 19 H H H H H H H H H H H 26 16 11 H 7 

11 H 19 H H H H H H H H H H H H H 2111 11 12 
11 16 24 H H H H H H H H H H H H H 8111 15 11 

11 41 15 H H H H H H H H H H H H H H H 15 
11 11 15 H H H H H H H H 27 19 19 19 H H H H 

11 11 15 H H H H H H H H 28 39 15 15 15 19 H H 
33 11 20 H H H H 31 H H H 24 15 2111 16 16 38 15 31 

21 11 34 19 35 31 H H 32 H H 23 15 20 11 11 11 11 2111 

H 11 3111 20 H H H H H H H H 15 32 11 11 11 11 u 
3121 11 11 15 H 49 H 28 19 23 H H 28 H 11 u 11 11 11 

. - -

1 ip.:. !1.5 Escane numhcrs for a= 3.5 rn 0.524 0.724, 1.134, l.334 
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Fig. 4.6 Escape regions for a= 3.5 

Fig. 4. 7 Preimaees in the~. n-plane for a• 3.5 



The preimages Ck of y = 0 can be parametrised as 

X =q,k(t), y =ff>k-1(t) 

where 

and generally 

ct,o(t) =0, 

l/>1(t) =t, 

'1>-i.(t) =2-t, 

15 

(4.3) 

(4.4) 

The overall behaviour of lf>k (t) is characterised by clusters of zeros and asymptotes. Each lf>k (t) inherits 
the asymptotes from previous functions and has further asymptotes at the zeros of lf>k _ 1(t ). A typical 
cluster of zeros is e.g. 

k =3 t =1.429 
4 1.3132 
5 1.30284 
6 1.3027026 
7 1.30270218 
8 1.302702169 

This beh.aviour can be understood by using a little perturbation analysis. Let lf>k _ 1(t) have the zero 
tk - I and let '?k (t) has a neighbouring zero tk then locally 

Ck(t -tk) 
lf>k (t ):::::1---. ( 4.5) 

t -tk-1 

Considering ( 4.4) for t close to tk and tk + 1 we obtain the relations ck :::::12 and 

2a2 
A ~ k 
IJ.k+I~ A , 

a1J.k-l 
(4.6) 

where 

(4.7) 

This shows that 

log ,;k I =½k2 log ! +O(k). (4.8) 

The recursion (4.4) can be used to obtain the first few preimages Cn of y =0. In this way in fig. 4.6 the 
escape regions En have been obtained for a = 3.5 up to n = 8. It is a matter of interest to have some 
information on the shape of the escape boundaries Cn outside T. In fig. 4. 7 we have plotted the first 
few Cn in the (E,11)-plane where 

I I 
~ =-2-· 11 =-2-· -x -y 

(4.9) 

It is not difficult to show that all points of x =2,-with the trivial exception x =2Jl =0, belong to either 
the extended escape region E 2 or to E 3• This means that for n ;;;.,:4 Cn has no points on x =2 and 
y =2. Therefore all curves Cn for n ;;;.,:4 become closed curves in the ~.11-plane in the region bounded by 
C 1,C 2,C 3• Returning to the x J7-plane we see that all preimages of y = 0 are in the region 
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{ 

(2-y)(ay -2) ...-;x .,;;;2-y 
ay 

2-y ...-;x ...-; (2-y)(2-ay) 
-ay 

for o...;y ...-;2, 

(4.10) 
fory ...-;o. 

Diagrams like fig. 4.4 and 4.5 give an impression of the complexity of the escape regions of higher 
order and of the complementary invariant set of orbits that stay in T forever. In order to obtain some 
more information we consider what happens at the boundary OB of fig. 4.3. 
As a increases more and more escape regions enter T along the boundary OB in a tongue-like fashion. 
We consider a point of OB as the starting-point of an orbit which either stays in T forever or leaves T 
after m steps. Thus to each point of OB we may associate an escape number m possibly oo. More 
precisely we denote by Im the set of all points (OJ'o) for which Ym <0 and Yk >0 for k <m. Of course 
Im is open and consists of a finite number of open intervals. We may state the following important 
property. 
Theorem 4.1 
Im and In (m=l=n) cannot have a common boundary point. 
Proof Let P_(y 0) be a possible boundary point of both Im and In with m <n. Consider a small interval 
E(Y0_t:<y<y0 +t:) and consider its iterate Mm+IE which brings P to the ori~ and E nin to an£­
neighbourhood of the origin still inside T. Close to the origin we have x = y, y' :=::::ay • If y is 
sufficiently small then after n - m iterations we are still inside T but this contradicts the assumption of 
a finite n. • 

This theorem shows that there exists a non-empty closed set of starting-points the orbits of which 
stay forever inside T. For values of a in the interval (3.5,4) this set looks like a Cantor set. In fig. 4.8 
we have shown the results of a computer experiment in which for a =3.1 for 200 points of OB the 
escape number (1 <m ~50) is plotted. The graph pictures a transsection through the various escape 
regions. 

A•3.7 

Fig. 4.8 Escape numbers along x = 0, O < y < 2 for a = J. 7 
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5. A Feigenbaum scenario 
The two-step iterative sequence 

(5.1) 

has the non-trivial fixed point x1 = 1-1 / a which becomes unstable when a passes the critical value 
3; In [3] we have considered the corresponding map 

fx' =y, 
l/ =ay(l-½x -½y), (5.2) 

and shown the existence of a stable 4-cycle and an unstable 4-cycle bifurcating from x 
The unstable cycle of (5.1) exists for all a >3 as 

~ l _ L+ v(a + l)(a -3) ~ l _ _!__ v'(a + l)(a -3) 
' , ' . a a a a a a 

For a =3+µ withµ positive and sinall the stable cycle can be approximated by 

x1(l +Ci vµ),x1(l +C2Yµ),x1(l-C1 vµ),x1(l-C2Yµ) 

with 

Ci =Vl-1/v2, C2 =Vl+l/v2. 

As a numerical check we takeµ =0.0001 with the exact values 

0.670286, 0.675512, 0.662904, 0.657872 

in excellent agreement with (5.4). 

=y =1-1/a. 

(5.3) 

(5.4) 

(5.5) 

The stable cycle stays stable up to the value a 2 =3.628. Next it bifurcates into an 8-cycle which is 
stable up to a 3 =3.667. This is the beginning of a long sequence, presumably infinite, of pitchfork 
bifurcations characterised by a multiplier becoming - 1. Let am be the value at which a 2m -cycle bifur­
cates into a 2m + 1-cycle then the following table can be constructed 

m am am+i--am 
1 3 6.27630 x10- 1 

2 3.62762975649 3.89682 x10-2 

3 3.66659796056 5.92358 x10-3 

4 3.67252153677 1.15475 x10-3 

5 3.67367628354 2.46812 x10-4 

6 3.67392309602 5.28993 x10-5 

7 3.67397599537 1.13356 x10-5 

8 3.67398733095 2.42803 x10-6 

9 3.67398975898 5.20025 x10-1 

10 3.67399027900 1.11374 x10-1 

11 3.67399039038 2.38529 x10-s 

12 3.67399041423 5.10857 x10-9 

13 3.67399041934 

Before this table is discussed we shall first describe the numerical procedure by means of which 
accurate values of am can be obtained in a relatively simple way. 

Let us assume that the planar map (5.2) denoted as P' = M (P) has the stable 2m -cycle 
S 1,S 2, ••• , S 2m then each member of the cycle is an ordinary fixed point of the iterated map M 2

m. Its 

multipliers Ai,A2 which are the same for all points of the cycle are the eigenvalues of the matrix J 
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formed as the product of 2m local matrices of F at the successive cyclic points 

J =J(S2mV(S2m-1) .. J(S2)./(S1)- (5.6) 

The general situation is as follows. If a increases slightly one of the multipliers runs along the real axis 
from + I to -1 whereas the other multiplier stays close to zero. For a =am we have, say, A1 = -1 
and I A2 I < < 1. Writing J as 

we define 

(5.7) 

At the bifurcation point we have 

p+q+l =0. (5.8) 

This suggests the following numerical procedure. If for a given value of a E(am-ham) we have 
obtained the cycle S 1,S 2, ... ,S 2m we compute the elements of J and determine the value of p + q + I 
using (5.7). In principle for each value of a we get such a value thereby obtaining a function </>(_a). 
Obviously the desired value a =am is a zero of this function. This criterion appears to be extremely 
sensitive. The last stage, the finding of the root of </>(_a) =0, does not give any problems. The only 
time-consuming part is the determination of a sufficiently accurate cycle S 1,S 2, ... S 2m for a given value 
a. We have used the following procedure. 

Let us assume that a is already sufficiently close to am so that A1~-l and IA21<<1. We write 
A1 = -1 +t. Let P I be an approximation of the cyclic point S I then after 2m elementary iterations we 
arrive at q,1 which is also close to S 1. Another 2m steps bring us at R 1. In this way we have three suc­
cessive approximations of S 1. The deviations are locally linear compositions of powers of A1 and A2. 
This suggests approximations of the following form 

{

x(P1) =x(S1)+a+ ... 

x((/)1) =x(S1)-a(l-t)+ .. . 

x(R1) =x(S1)+a(l-t)2+ .. . 

and similarly for they-values. 

From this a much better estimate of x (S 1) is obtained as 

1 
:i"(x (P 1) + 2x (Q 1) + x (R 1)), 

etcetera. 

The next problem is the determination of the elements of the matrix J. We have of course 
2m 2m 

q = IT detJ(Sk) = II(ay(Sk) /2) 
k=I k=I 

(5.9) 

(5.10) 

(5.11) 

but p cannot be determined in a similar way. However, the elements of J can be determined recur-
sively by using · 

(5.12) 



which gives the iterative scheme 

Ak+l =Ck, 

Bk+l =Dk, 

ck+l = -½aykAk +a(I-½xk -yk)Ck, 

Dk+I =-½aykBk+a(I-½xk-yk)Dk. 

H this scheme is used for k = I up to k = 2m - 1 with the start 
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(5.13) 

A1 =0, B1 =1, C1 =-½ayi, D1 =a(l-½x1-y1) (5.14) 

the elements of J can be determined. Since q can be computed either by (5.11) or as AD -BC we 
have a simple numerical check. 

Inspection of the table suggests a Feigenbaum sequence of the kind 

(5.15) 

where 8 =4.6692 is Feigenbaum's constant. In order to test this hypothesis the following table is made 

m (am+1-am)/(am+2-am+1) 
1 16.10620 
2 6.57849 
3 5.12976 
4 4.67864 
5 4.66570 
6 4.66667 
7 4.66863 
8 4.66907 
9 4.66917 

10 4.66920 
11 4.66920 

The convergence to 8 appears to be rather slow in contrast to the very good convergence observed 
in a similar table for the well-known iterative map x' =ax(l-x). 
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