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INTRODUCTION 

In his famous paper [9], HOLLING described a detailed simulation model ,,,,--
for the prey-catching behaviour of the praying mantid Hierodula Crassa., One 

of his main purposes was to gain information about the qualitative and quan

titative behaviour of the functional response of an invertebrate predator. 

(The functional response can be defined as the number (or total weight) of 

prey eaten per unit of time per predator as a function of the prey (prey bio

mass) density.). 

In a series of papers [13,14,15] METZ & VAN BATENBURG presented an 

analytic reformulation of the theory of predation as propounded by Holling. 

They started by showing that Holling's assumptions implied that the preda

tor's minimal state space is two-dimensional. More precisely: at every in

stant the state of the predator can be described by two parameters, its 

satiation (or gut content) S, and the maximum time T still to be spent 

handling the prey. By the phrase "handling the prey" is meant pursuing it 

and (in case of a succesfuJ. strike) eating it. As long as the predator is 

searching for his meal, T = O. A complete description of the predator's be

haviour as a journey through this two-dimensional state space, can be found 

1.n [14]. 

Metz & van Batenburg also described several ways to simplify this 

. rather complicated model. One possibility is to neglect handling time. The 

resulting "gobbler" model 1.s just simple enough to be amenable to detailed 

analytical treatment and yet retains the essential stochastic features of 

the full model. The simplification can be justified if the handling time 

is relatively small in comparison with the searching time. In this paper 

we shall restrict ourselves to the gobbler model. 

One of the main features of the gobbler model is that its state space 

is one-dimensional, the relevant parameter being the satiation S. 

Between two captures S decreases continuously according to some ordinary 

differential equation::= f(S) describing digestion, where we shall assume 

that f(s) = -as, as this seems a. realistic assumption from a biological 

point of view. (See [6,14)) 

Prey capture is a random event resulting in an instanteneous transi

tion S -+•S + w, where w denotes prey weight (which is assumed to be constant). 
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This jump causes a term with non-local argument in the balance equation for 

the S-distributi.on.. (See section 1.) The rate of prey capture depends (in a 
~ 

decreasing manner) on the satiation. (In the case of Holling's praying man-

tid this is due to the fact that its search field decreases with fncreasing 

satiation.) 

This paper, which is self-contained, deals with a number of mathemati

cal questions raised in the papers of METZ & VAN BATENBURG [13,14,15]. These 

questions are formulated in the first section. 

Our starting point is the so-called backward equation which is the ad

joint of the balance equation for the probability density, or forward equa

tion. This backward equation happens to be more tractable from a mathemati

cal point of view, and it has a straightforward interpretation. In this 

manner we are able to prove that a stable satiation distribution is reached 

in the course of time. 

Finally we refer to [4] where one uses techniques very similar to ours, 

to analyse a problem which is completely different from a biological point 

of view. 

1. THE EQUATIONS AND THEIR INTERPRETATION 

One of the equations proposed by METZ & VAN BATENBURG [13,14,15], as 

part of their model for predatory behaviour was: 

(1. I. a) ap(s,t) - a at - - as(f(s)p(s,t))-xg(s)p(s,t)+xg(s-w)p(s-w,t), 

where one should read xg(s-w)p(s-w,t) = 0 if s-w ~ O. Here t denotes time, 

s the predator's satiation, and p(s,t) is the (unknown) probability densi

ty of S, i.e. 

f
s2 

p(s,t)ds = P{s 1 < S(t) ~ s 2} 
sl 

is the probability that Sat time tis between s 1 and s 2. w iR the weight 

(of the edible portion) of a prey, which is assumed to be constant for all 

prey. :t(s) is the digestion rate, which has been discussed in the Introduc

tion and there it was assumed that f(s) =-as.By a scaling of the time we 
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may set a= 1. xis the effective prey density and x.g(s) stands for the 

rate of prey capture, if the predator's satiation is s. It is assumed that 

there exists a value c > 0 such that g(s) = 0 ifs~ c. c is called the sa-,,,.,,,-
tiation threshold. Accordingly we impose the boundary condition 

(1.1.b) p(s,t) = 0, S ~ C + W. 

Furthermore we supplement (I.I.a) with the initial condition 

(1. 1. c) p(s,0) = P(s). 
0 

Because of the fact that (I.I.a) describes the state of one single predator, 

we should have 

(I. 2) 

c+w 

I= f p0(s)ds 

0 

c+w 

= f p(s,t)ds, 

0 

t > 0. 

The second of these identities can be verified by integration of (I.I.a) 

along the s-interval [0,c+w]. 

In this paper we shall make the following assumption on g: 

(A) g is a Lipschitz- continuous function on [0,c+w], 

g is non-increasing and g(s) = 0, ifs~ c. 

METZ & VAN BATENBURG [14] showed that for Holling's mantid model 

(I .3) s + s + g (s) = a(l- -) • exp(-b'(I- -) ) 
C C' ' 

where c' < c and a,b' are positive constants. The superscript+ means that 

negative values are to be replaced by zero. 

REMARK I.I. If (I.I.a) is formally integrated from s to c+w, one obtains a 

partial differential equation for the distribution function of S which 

necessarily is of bounded variation. This feature will be exploited in 

section 5. 

In the literature (I.I) is called the forward equation. (See e.g. [2,5].) 
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The associated backward equation (or adjoint equation) is given by 

(I. 4) 
an(s,t) 

at 
an(s,t) 

= -s as -xg(s)n(s,t)+xg(s)n(s+w,t), 

where xg(s)n(s+w,t) = 0 ifs> c, and where "e have substituted f(s) = -s. 

The backward equation is easier to derive in a rigorous manner directly 

from the constructive specification of the stochastic process and it is 

easier to handle as well. The main reason for this is that the backward 

equation has to be solved in the space of continuous functions, and the 

forward equation in the space of Borel measures. Below we shall briefly 

describe the duality relation between solutions of the forward and the back

ward equation. 

Let p(s,t;p
0

) be the solution of (I.I), and let n(s,t;¢) be the solu

tion of (1.4), obeying the initial condition 

(1.5) n(s,O) = Hs), 

where¢ is some continuous function on the interval [O,c+w]. (Here we have 

tacitly assumed that these solutions do exist. This is proved in section 3.) 

Then 

(I. 6) 

c+w 

f p(s,t;p0)¢(s)ds = 

0 

c+w 

J P0(s)n(s,t;¢)ds, 

0 

t 2:: o. 

As a matter of fact this relation defines the solution of the forward equa

tion, if the solution of the backward equation can be found for all con

tinuous initial functions¢. 

Our starting point will be the backward equation. We shall prove exis

tence and uniqueness of solutions of (I.4)-(1.5), and study the large-time 

behaviour of these solutions. Subsequently we shall interprete the results 

in terms of the forward equation. 

Let X = C[O,c+w] be the space of continuous functions on [0,c+w] en

dowed with the usual sup-norm. We can rewrite (I.4)-(1.5) as an abstract 

Cauchy problem: 



(I. 7) 
dn - =An 
dt w ' 

n(O) = cp EX, 

where the closed operator A on Xis defined by 
w 

( I • 8) (Aw¢)(s) = -s :! - xg(s)¢(s)+xg(s)w(s+w), 

for all¢ in the domain of definition V(A) of A, which is given by w w 

( I. 9) V(A) 
w 

={¢EX I¢ is absolutely continuous and the function 

s + -s d¢ (s) defines an element o_ f X.} 
ds 

REMARK 1.2. The subscript w accounts for the dependence of A on the prey 
w 

weight w. As a matter of fact, the operator A also depends on the prey 
w 

density x, but this is not expressed explicitly in our notation. 
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In section 2 we shall investigate the spectrum of A, and in section 3 
w 

we shall concentrate on the Cauchy problem (1.7). 

In order to obtain more explicit results, METZ & VAN BATENBURG [13,14, 

15] formally took the limit w + 0, x + 00,, = xw remaining constant. It 

appears that in the limit the mantid's catching behaviour becomes deter

ministic. Moreover, the limiting equation can be solved explicitly. One of 

the questions that one should answer is whether solutions of the original 

equation (w>O) converge to solutions of the limiting equation (w=O) if w + 0. 

In section 4, we shall deal with this question. In section 5 we shall give 

a rather detailed description of the relation between solutions of the for

ward and the backward equation. 

An important biological qunatity to be derived from the model is W, 

i.e. the total weight of prey caught per unit of time. The expectation EW 

of W.obeys the ordinary differential equation 

c+w 

(I. 10) 
dEW 

f g(s)p(s,t)ds. dt - xw 

0 
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REMARK 1.3. In [14,15] where one discusses the full stochastic model it is 

shown that 

dEN 
-- - X dt 

c+w 

f g(s)p(s,t)ds, 

0 

where N is the number of prey caught per unit of time. This is equivalent to 

(1.10) because W = wN. 

METZ & VAN BATENBURG [13,14,15] also derived an inhomogeneous partial 

differential equation from which the variance of W can be obtained: 

( l . l l . a) 
az(s t) a a~ = as (sz(s,t)) - xg(s)z(s,t) + xg(s-w)z(s-w,t) + 

c+w 

+ xg(s-w)p(s-w,t) - xp(s,t) f g(s)p(s,t)ds. 

0 

This equation must be supplemented with boundary and initial conditions: 

(l.11.b) z(s,t) = O, S 2'. C + W, 

(l.11.c) z(s,O) = 0. 

REMARK 1.4. It was explained in [13,15] how var(N) can be computed from 

z(s,t). A straightforward computation using the results of [13,15] shows 

that 

ddt var(W) = 2xw.cov[W,g(S)]+ wEg(S) 

dEW 
= 2xw.cov[W,g(S)]+ w dt 

00 

and cov[W,g(S)] = w J g(s)z(s,t)ds. 

0 

In section 6, we shall study (1.11). 

If we let t + 00 in (1.10), we find an expression for the functional 

response~ (~) (if we can prove convergence of the S-distribution towards 
w 

a stationary state) which is the total biomass of prey caught per unit of 

time p~r predator in the stationary situation. Here~= xw, i.e. the 



density of prey biomass. It seems hard to obtain analytic results on the 

qualitative behaviour of~ (~) in the most general case. However, it can 
w 
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be proved that for all~> 0, limw~O ~w(~) = ~0(~), where ~O can be.,,-9btained 

explicitly from the limiting equation studied in section 4. Furthermore we 

are able to compute~(~) explicitly in the rather unrealistic special case 
w 

that c ~ w. These results are given in section 7. 

2. THE EIGENVALUE PROBLEM 

In this section we shall investigate the spectrum of the operator A 
w 

defined by (1.8)-(1.9). It appears that the techniques which we shall use 

are in many regards similar to those in [8], where we studied the eigen

value problem associated with a model for cell growth. 

We use the following notation. For an operator L we denote by cr(L) and 

Po(L) the-spectrum and point spectrum of L respectively.p(L) is the resolvent 

set, and r(L) the spectral radius. N(L} and R(L) are the nullspace and range 

of L, and ind(L) = dim N(L) - codim R(L) is called the Fredholm index of L. 

(c.f. [12,18]) 

(2. I) 

Let 

(2.2) 

Leth EX. The inhomogeneous equation :X.l/J - A l/J = h can be rewritten as 
w 

:X.ip(s) + s !! + xg(s)ip(s) - xg(s)ip(s+w) = h(s). 

s 

E(s) = exp( I xg;o) da). 

w 

It is obvious that 

(2.3) 
YX ~ E(s) = s· E(s), 

where E(s) is continuous on [0,c+w], and satisfies E(O) > 0. Here 

(2.4) y = g(O). 
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Let 

(2.5) n = 0.. E «: I yx + ReA > O}. 

Suppose that A En. Substitution of 

(2.6) A 
~(s) = s E(s)$(s) 

in (2. I) yields 

~-,-
1
-- :: - xg(s)$(s+w) = h(s), 

s"--1E(s) 

or equivalently, 

(2. 7) d~ A-1 
ds - xg(s)s E(s)$(s+w) 

A A+yx~ It follows from (2.6) and (2.3) that ~(s) = s E(s)$(s) = s E(s)$(s). Now 

A En and the continuity of$ imply that ~(O) = O. Integrating (2.7) from 

0 to sand plugging (2.6) back into the result yields: 

s s 

(2.8) $ (s) -
X f A-1 1 I A-1 

A g(a)a E(cr)$(cr+w)dcr = A h(a)cr E(a)da. 
s E(s) J s E(s) 0 0 ... 

Let the linear operators TA and UA on X be defined by 

s 

(2.9) 
... X 

f (TAp)(s) = A s E(s) 
0 

A-1 g(a)cr E(cr)p(cr+w)dcr, 

s 

(2. I 0) (UAp)(s) 
I I = A s E(s) 

0 

A-I a E(a)p(a)da, 

for all p E X. 
.... 

It is obvious that TA and UA are bounded. Now (2.8) can be rewritten as 

(2. I I) 
.... 

$ - T $ = A 

The following result is straightforward. ,, 
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LEMMA 2.1. Let A En and h EX. Then l/1 EX is a solution of the inhomogeneous 
A 

equation Al/I - Awl/I .= h if and only if l/1 - TA l/1 = UA h. 

,.,.,,.-
Thus the inhomogeneous equation (2.1) involving the unbounded operator 

A 

Aw can be reformulated in terms of the bounded operators TA and UA. A closer 

look on (2.8) makes clear that it suffices to study this equation on the sub

interval [w,c+w], because knowledge of l/1 on this subinterval would enaole us 

to compute (TAl/l)(s) for alls E [O,c+w]. Let 

(2.12) x
1 

= C[w,c+w] 

A 

with the supnorm. For l/1 E XI we define TAI/I in the following way. Let l/1 EX 

such that ~(s) = l/l(s), s E [w,c+w], then (TAl/l)(s) := (TA$)(s), s E [w,c+w]. 

Observe that TA: XI+ XI is well-defined, i.e. TAI/I does not depend on the 

choice of ;j;. 
The following result can be established using the Arzela-Ascoli theorem 

(cf.[18]). 

Let 

(2.13) I: = { A E n I I E Po (TA) }. 

THEOREM 2.3. o(A) n n = Po(A) n n = I:. w w 

PROOF. Let A En. The homogeneous equation A l/1 = Al/I can be rewritten as 
w 

TAI/I= l/1. Let-I/I be the restriction of l/1 to [w,c+w], then TA¢=¢.;= 0 

would imply TAI/I= l/1 = O. As a consequence, if A E Po(Aw), then A EI:. 

Similar arguments yield that A EE implies that A E Po(Aw). Now suppose 

that A En n o(A ). The inhomogeneous equation Al/I - A l/1 = h, where h EX, 
w A W 

is equivalent to l/1 - TA~= UAh. Suppose that Ai Po(Aw), then we have 

Ii Po(TA) yielding that the equation l/1 - TAI/I= UAh can be solved on the 

interval [w,c+w]. Its solution is l/l(s) = ((I-TA)-1UAh)(s), s E [w,c+w]. 
A . 

Fors E [0,w] w: find l/l(s) = (TAl/l)(s) + (UAh)(s) where we have exploited 

the fact that (TAl/l)(s) can be computed on [O,w] if l/l(s) is known on 

[w,c+w]. 'This proves the result. 0 
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We shall need the following lemma in the proof of theorem 2.11. 

LEMMA 2.4. R(AI-A) is closed if A E Q. 
w 

PROOF. Suppose h E R(AI-A) and h • h, n • 00 • Let ijJ be such that 
n w n , n 

>..¢ - A ijJ = h. Lennna 2.1 yields that¢ - T,i/J = h. Let ijJ and h be the n w n n n /\ n n n n 
restriction of ijJ respectively h to [w,c+w]. Thus$ - T,$ = h. Hence 
~ n~ ~ n ~ n /\ n n 
h E R(I-T,) and h • h, n + 00 where h denotes the restriction of h to 

n /\ n 
[w,c+w]. From the compactness of TA we conclude that R(I-TA) is closed. 

Therefore h E R(I-TA). Let$ E x
1 

be such that$ - TA$= h. We define ijJ by: 

i/J(s) = i{s), SE [w,c+w], 

s 

X f A-l ~ ijJ(s) = A g(cr)cr E(cr)ijJ(cr+w)dcr + (UAh)(s), 
s E(s) O 

s E [O,wJ.. 

It is clear that ijJ is a solution of ijJ - TA¢= h, hence Ai/J - Aw¢= h. D 

The following result is stated for the sake of completeness. We do not 

need it in our calculations. 

THEOREM 2.5. ~\Q c cr(A ). 
w 

PROOF. Let A be such that yx +Re>..< 0. Without loss of generality we may 

assume that A E R • Let p = - yx - A > 0. The homogeneous equation A ijJ = AijJ 
w 

can be solved on [w,c+w] within a finite number of steps. Let $(s) be the 

solution on [w,c+w]. Fors E [0,w] we must solve 

We obtain 

dijJ + xg(s)+>.. ijJ(s) = xg(s)~(s+w) 
ds s s 

ijJ(w) = ~(w). 

w 

ijJ(s) = ~(w). 
A s E(s) 

X f >..-l ---- g(cr)cr E(cr)ijJ(cr+w)dcr 
sAE(s) 

s 
w 

= ~ [sp~(w)-sp f g(cr)cr-p-IE(cr)~(cr+w)dcr], 
E(s) 

s 
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and it can be easily checked that this expression defines a continuous func

tion if p > 0. Therefore A E Pa(A) if ReA + yx < O. This, and the closedness 
w 

of the spectrum, yields the result. D 

The asymptotic behaviour of solutions of (1.4) fort+ 00 appears to be 

determined by the dominant eigenvalue of A, i.e. the eigenvalue with the 
w 

largest real part. As we did in [8], we use positive operator theory to 

characterize this dominant eigenvalue. We refer to the famous paper of KREIN 

and RUTMAN [II], and the monograph of SCHAEFER [17]. Let 

(2. I 4) 

(2.15) 

+ Then x
1 

defines a closed, convex cone in x
1

, and for all A E QR we have 

that TA is positive with respect to x7, i.e. 

In the sequel we need a stronger notion of positivity. 

DEFINITION [II]. An operator is called strongly positive if each nonzero 

element within the cone is mapped into the interior of that cone by some 

power of the operator. 

+ 
THEOREM 2.6. For aii A E QR' TA is strongly positive with respect to x1• 

PROOF. Let A E QR and* E x7, * # 0. There exists ans E (w,c+w) and an 

E > 0 such that *(s) > O, s E (s-s,s+E). Now suppose thats~ s-w and 

s E [w,c+w], then we have 

s 

J 
A-1 g(a)a E(a)*(a+w)da > 0. 

s-w-E 

Applying TA once more yields 

s ~ s - 2w. 
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Hence if pis the smallest 

(T~¢)(s) > O, s E [w,c+w], 

c+w integer satisfying p ~ -- , then we have 
w 

yielding that T~¢ E xi. • 
~. 

Now we can apply theorem 6.3 of [II], and we obtain the following result. 

Let X~ be the adjoint space of x1, and let (x7)* be the adjoint cone of x7. 
* (See e.g. [II].) With TA we denote the adjoint operator of TA. 

LEMMA 2.7. For aU A E QR' rA = r(TA) is an-algebrafcaUy simple eigenvalue of 
* • o+ + * both TA a:nd TA. Furthermore there eX'l-st a ¢A E x1 and FAE (X1) such that 

(2.16.a) 

(2.16.b) 

and ¢A is the only positive eigenvector of TA. Moreover, FA is strictly posi

tive, i.e. FA(¢) > o for aU ¢ E x7\{0}. 

Now ¢A is an eigenvector of Aw if and only if rA =I.We shall prove 

tnat A E QR is uniquely determined by this condition. Obviously 

(2.17) 

where the function 7 E x1 is defined by 1(s) = I, s E [w,c+w]. Clearly 
+ 

1 E XI and we conclude from lennna 2.7 that r(T0) = I. 

LEMMA 2.8. r(TA) is strictly decreasing in A E QR. 

PROOF. Suppose A,µ E QR and A>µ. A straightforward computation shows that 

o+ 
In particular (Tµ-TA)$A E XI. From the strict positivity of Fµ we conclude 

that <Fµ,(Tµ-TA)$A > > O, or equivalently 

,, 
Therefore rµ > rA, and this proves the lennna. D 



Now we shall interpret the results in terms of A. 
w 

THEOREM 2.9. A= 0 is an algebraically simple eigenvalue of A with posi
w 

tive eigenvector 1. A has no other positive eigenvectors. The eigeniJalue 
w 

A= 0 is strictly dorrrinant, i.e. A E a(A ), A IO=> Re A< 0. 
w 
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PROOF. From the geometric simplicity of the eigenvalue of TO we conclude 

that A= 0 is a geometric simple eigenvalue of A. Now suppose that A ijJ = 1 w w 
for some ijJ EX. Then lerrnna 2.1 yields that T0i)J - ijJ = u

0
7. Hence T0$ -$,= <t> 

where$ and <t> are the restrictions of ijJ respectively u0 7 to the interval 
o+ • 

[w,c+w]. We observe that q> E x1. The Fredholm alternative states that 

F0 (<t>) = O, where F
0 

is given by (2.16.b) for A= O. However F0 (<t>) > O, which 

is a contradiction. Therefore O is an algebraically simple eigenvalue of A. 
. w 

The proof of strict dominance of the eigenvalue A= 0 is similar to the proof 

of theorem 6.2 in [8]. D 

The following result, stated in [12], enables us to give a more complete 

description of a(A) n Q, 
w 

LEMMA 2.10 [12]. Suppose Lis a closed linear operator on a Banach space E 

having a dense domain. For all A E IC satisfying the following conditions 

(i) A is on the boundary of a(L), 

(ii) R(U-L) is closed, 

(iii) N(AI-L) has a finite dimension, 

we have ind(AI-L) = 0 and A is a pole of the resolvent. 

Now we can prove: 

THEOREM 2.11. a(A) n Q consists entirely of eigenvalues A satisfying 
w 

(i) A is a pole of the resolvent, 
/ 

(ii) ind(AI-A) = 0. 
w 

PROOF. Suppose that A E a(A) n Q is on the boundary of a(A ). Lennna 2.4 w w 
states that R(AI-A) is closed. From dim N(AI-A) = dim(I-T1 ) and the 

W W A 

compactness of TA we conclude that dim N(AI-Aw) < 00 ; Now lennna 2.10 states 

that A is an isolated eigenvalue of A. Hence every boundary point of 
w 

a(A) n Q is isolated. As a consequence there are two possibilities 
w •· 



14 

1) cr(A) n n = n, 
w 

2)· cr(A) n n contains only isolated eigenvalues. 
w 

However, the existence of the dominant eigenvalue A= 0 excludes4:he first 

possibility. This proves the result. D 

REMARK 2.1. We can also state our results in terms of normal eigenvalues 

and essential spectrum (in the sense of Browder) (See e.g. [4,19].) Let L be 

a closed linear operator on a Banach space. A E cr(L) is called a normal 

eigenvalue of L if 

(a) A is an isolated element of cr(L), 

(b) Ran(AI-L) is closed, 

(c) The generalized eigenspace corresponding to A is finite-dimensional, i.e. 

It can be proved that every normal eigenvalue is an isolateq pole of the 

resolvent of finite order. We denote the set of normal eigenvalues with 

cr (L). The essential spectrum cr (L) of Lis defined by cr (L) = cr(L)\cr (L). 
n e e n 

Now, our results can be reformulated as 

cr(A) n n = a (A), . n 

«:!\Q = a (A). 
e 

Our next step is the derivation of the so called characteristic equation 

which provides us with a tool to compute all eigenvalues of A which are 

elements of n. We shall not go into detail. The interested reader is re

ferred to [8]. 

For all A E Q, the operator TA can be decomposed in the following way. 

C 

"':(.) l A-1 
g(cr)cr E(cr)~(cr+w)dcr 

C 

x f A-1 --- g(cr)cr E(cr)~(cr+w)dcr, 
sAE(s) 

s 



which we rewrite as 

(2. 18) 

where 

(2. I 9) e~(s) = A , s E [w,c+w], 
s E(s) 

(2.20) f c A-I 
<HA,¢>= x O g(cr)cr E(cr)¢(cr+w)dcr 

defines a bounded linear functional on x
1

, and 

C 

(2. 21) (NA¢)(s) = A-x f g(cr)crA-lE(cr)¢(cr+w)dcr 
s E(s) s 

defines a compact operator on x
1

• Moreover NA is nilpotent, i.e. 

(2.22) Np= 0 i.. , 

c+w 
where pis the smallest integer such that p ~ -- . Let 

w 

(2.23) k= 1, .•• ,p, 
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A A 
then c 1, ..• ,ep ate linearly independent vectors in x1. By iteration of (2.18) 

we obtain 

(2.24) 

implying that all eigenvectors of TA can be 
' A . of e 1, .•• ,e • Now suppose that TA¢=¢ for 

A p A 
¢ = ¢1e 1 + ••• + ¢pep for some ¢i E ~, i = I, •.. ,p. Substitution of this ex-

written as a linear combination 

some A E Q and¢ E x1, then 

pression in (2.18) and using (2.23) leads to the following identity: 

(2.25) 
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which is called the characteristic equation. 

THEOREM 2.12. 11. E .cr(Aw) n Q if and only if <J¾_,e~ + .•• + 

vertical strip inside Q, {11. 1~ 1 ~ Re 11. ~ ~2} where ~
1 

~ 

finitely many elements of a(A ) • 
w 

A similar result is proved in [8]. 

A. 
e > = 1 • .-Every closed p 
~2, contains at most 

From theorem 2.12 we conclude that there exists an E > 0 that 

(2.26) cr(A) n {11. I Re A.~ -E} = {O}. 
w 

We end this section with a brief study of the adjoint operator of A. 
w 

* In the Appendix we shall prove that the adjoint operator Aw defined on 

(2.27) x* = {'l' I 'l' is a bounded variation function on [0,c+w] and 

'l'(c+w) = O}, 

is given by 

s 

(2. 28) d'l' 
= s ds (s) - X J g(cr)d'l'(cr), 

s--w 

having a domain 

(2.29) * * do/(s) * V(A) = {'l' EX I 'l' is absolutely continuous ands • s -~~EX}. 
w ds 

* define For 'l' E X and cp E X we 

c+w 

<'!' ,cj>> = J cp (s)d'l'(s). 

0 

The following result is straight forward. 

THEOREM 2.13. If'!' is an eigenvector of A* corresponding to an eigenvalue 
w 

11. E St, then 'l' satisfies 

c+w 

(2.30) 'l' (s) A. = -s J 
s 

-A.-1 cr 

(J 

( I 
cr-w 
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If A# o then ,(o) = o. 
If- A = 0 then , (O)- < 0 and , is increasing. 

* REMARK 2.2. Notice that for, EX we have <,,7> = -,(o). 

Because of the algebraic simplicity of the dominant eigenvalue A= O, 

and theorem 2. 11 we have the following invariant decomposition of X. 

(2.31) 

and N (A ) = fo. • 1 I a. E t}. 
w 

Let P be the projection on 

let~ be the eigenvector of 
w 

N(~) corresponding with this decomposition, and 

A* associated·with the dominant eigenvalue 
w 

A= 0, and normalized by the 

(2.32) Piji = <, , iji> • 1 • 
w 

condition, (O) = -1, then 
w 

Observe that P7 = <, 1>•1 = -, (0)•7 = 7. w' w 

3. THE BACKWARD EQUATION 

Here we shall examine the initial value problem (I .4)-(1.5), or 

equivalently (1.7). We obtain existence and uniqueness results by proving 

that A generates a strongly continuous semigroup on X. The method of proof 
w 

is very similar to the one used by DIEKMANN et al in [4], where they in-

vestigate the evolution of a size-structured cell population reproducing 

by fission. (In [4] however, the forward equation is studied.) The idea is 

to integrate the partial differential equation along its characteristics 

and to use a variation-of-constants formula, and this will give us the 

solution as· a series. 

In the second part of this section, we prove a sort of asymptotic 

compactness result for the semigroup, which enables us to cha.racterize 

the behaviour of the solutions for large t. 

A as defined by (1.8) - (1.9) can be written as the sum of a closed 
w"' 

and a bounded operator. 
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(3.1) 

where 

(3. 2) 

(3. 3) 

A = B + C, 
w 

= di/J (Bi/J) (s) -s ds - xg(s)ljJ(s), 

(Cl/J)(s) = xg(s)ljJ(s+w), 

where the domain D(B) of Bis given by 

V(B) = {l/J c XI ljJ is absolutely continuous and 

s + s :: is continuous}. 

A straightforward computation shows that B generates a strongly continuous 

semigroup s0 (t) given by 

(3.4) 
-t 

(S
0

(t)1/J)(s) = E~(:) ) ljJ(se-t), s c [0,c+w], t::::: o. 

Now a standard perturbation lennna (see e.g. [16]) yields that A = B + C 
w 

generates a strongly continuous semigroup as well. 

THEOREM 3.1. A generates a strongly continuous semigroup T (t). 
w w 

One can prove this in the following way. 

C . d C h . h f b ' dn d ons1. er n as t e 1.n omogeneous part o t .. e equation dt = Bn + Cn, an 

apply the variation-of-constants formula. It follows that n(t) has to be a 

solution of the integral equation 

(3.5) 

t 

n(t) = So(t)~ + f So(t-T)Cn(T)dT. 

0 

The result follows from a standard contraction and continuation argument. 

REMARK 3.1. In [16] one uses the Hille-Yosida conditions to prove the re

sult. 

NGW iteration gives us the solution n(t) = T (t)~ as a series 
w 



(3.6) T (t)</> = 
w 

00 

I 
n=O 

s (t)</>, 
n 

t ::=:: O, 

where this series converges in the operator norm. S (t) is determined by 
n ~ 

the recurrent relation 

(3. 7) 

t 

sn+l(t)</> = f So(t-T)CSn(T)q>dT, 

0 

n = 0,1,2, •.. 

1 9 

For the initial value problem (1 .4)-(1 .5) this means that there does exist 

a unique solution in the following sense. Let the differential operator D 

on C(:ntx[O,c+w] • JR) be given by 

(Dn)(s,t) = lim ½ (n(seh,t+h)-n(s,t)), 
h• O 

then the initial value problem 

(Dn)(s,t) = -xg(s)n(s,t) + xg(s)n(s+w,t), n(s,O) = qi(s) 

has a unique solution. In other words the solution n(s,t) = (T (t)</>)(s) is 
w 

differentiable along the characteristics of the partial differential equa-

tion (1.4). If moreover qi E V(A), then the solution is differentiable ins 

and t separately. 

We are especially interested in the behaviour of the solutions n(s,t) 

for large t. The characterization of this behaviour would be relatively 

easy if T (t) were compact after finite time. (See [4].) Unfortunately 
w 

s
0

(t) which contributes to Tw(t) for all t ::=:: O, never becomes compact. 

However, we can prove that this contribution becomes smaller and smaller. 

-yxt LEMMA 3.2. 11s
0

(t)II ::c::: Ce , t ::=:: O, for some positive constant C not de-

pendinr: on t . 

PROOF . Let </> E X, II </> II ::c::: 1 • 

= 

-t 
E(se ) "'( -t) I 

E(s) 'I' se 

Yx -vxt~ -t 
s e ' E (se ) -t I ------- qi(se ) ::c::: 

s yxE(s) 

-yxt Ce 
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~ where we have used (2.3) and the fact that E(s) is bounded from above and 

below. D 

LEMMA 3.3. U(t) := I:=l Sn(t) is compact for all t ~ 0. 

PROOF. A simple calculation shows that 

t 

I t+T E(se-t+T) E(se-t+we-T) -t -T 
(S

1
(t)<j>)(s) = x g(se- ) -~--.----- <j>(se +we )dT. 

E(s) E(se-t+T+w) 
0 

One can apply the Arzela-Ascoli tPeorem (cf. [18]) to establish the compact

ness of s
1 
(t), provided that the derivative of g is bounded. Because of as

sumption (A) this is indeed the case. Using recurrence relation (3.7), it 

follows immediately that S (t) is compact for all n ~ 1. This and th~ con-n 
vergence of the serie (3.6) with respect to the norm topology yields the re-

sult. D 

Now let 

(3. 8) v : = min { £, yx} , 

where£ is characterized by (2.26). Let P be the projection on N(A ), given 
w 

by (2 .32). 

THEOREM 3.4. For all n > 0 there exists a constant K(n) > 0 such that 

(3. 9) IIT (tH-P<l>II s K(n)e-(v-n)t llqill 
w 

for all <I> EX and t ~ 0. 

EROOF. Let A E ~ be such that Re A> -yx, hence leAtl > e-yxt. Obviously 

T (t) - eAt(I) = s0 (t) + U(t) - eAtI, where U(t) = \
00 

1 
S (t). Lemma 3.2 w ln= n 

yields that r(S
0

(t)) s e-yxt.Therefore s
0

(t) - eAtI is invertible. Thus 

T (t)-eAtI = (S0 (t)-eAtI)(I+(S
0

(t)-eAtI)-lU(t)). Now from the invertibility 
w At At -1 

of s0 (t)-e I and the compactness of (S0 (t)-e I) U(t) we conclude that 

eAt E cr(T (t)) => eAt E Pcr(T (t)). 
w w 



If A E ~ is such that Re A~ -yx then A E a(A ), according to theorem 2.5. 
w 

Now, using the spectral mapping results 

ta(A,,,) 
e ;: a (T (t)) 

w 
and Pa(T (t)) 

w 
;: etPa(A,,,) u {0} 

(see e.g. [16]) we conclude that 

a(T (t)) = {0} u {etA I Re A~ - yx v A E Pa(A) n ~} 
w w 

for all t ~ 0. In section 2 we found the following decomposition of X. 

X = N(A) ~ R(A ). 
w w 
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.... 
Let T (t) be the restriction of T (t) to R(A ). Then T (t) defines a strong-w w w w 
ly continuous semigroup on R(A) having infinitesimal generator A, where A w . w w 
is the restriction of A to R(A ). It follows that a(A) = a(A )\{0} and 

,.._ W W A -vt w W 
a(T (t)) = a(T (t))\{I}. Therefore r(T (t)) = e , t ~ O. Now a result of w w w 
Hale ([7, lemma 7.4.2]) yields: for all n > 0 there exists a constant 

K(n) > 0 such that for all~ E R(A) and t ~ 0: 
w 

.... 
Let~ EX, then T (t)~ = T (t)(P~+(I-P)~) = P~+T (t)(I-P)~. w w w 
Hence 

IIT (t)~ - P~II :s; K(n)e-(v-n)tll (I-P)$ll :s; K(n)e-(v-n)tll ~II. 0 
w 

We can state our main result now. 

COROLLARY 3.5. Let n(t,s) be the solution of (1.7), then 

lim n(t, •) = 
t4<X> 

in the sup--norm. 

c+w 

J 
0 

Hs)dlJI (s). 7 
w 
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REMARK 3.2. Notice that T (t)7 = 1, t ~ O. A semigroup satisfying this 
w 

property is sometimes called a Markov-semigroup. (See e.g. [3]) 

4. THE GUZZLER LIMIT 

As we did mention in the Introduction METZ & VAN BATENBURG [14] started 

from a more general model than we did. The forward equation (I.I) was ob

tained from this general model by a limit transition accounting for very 

small handling times. They even went one step further by letting the prey 

weight w tend to zero while letting prey density x tend to 00 , in order to 

arrive at a rather simple equation. Note that it is necessary to let simul

taneously increase the prey density x. (Otherwise there would be nothing 

left to eat.) In this section we shall give a rigorous justification of this 

limit transition. We assume that 

(4. I) ~ = xw 

and 

(4. 2) * C = C + W 

remain constant. It follows from the interpretation that~ stands for the 

* total prey biomass in the predator's environment, and that c denotes the 

maximum gut content. Although this is not explicit in our notation, the prey 

capture rate may depend on w. We assume that 

(4. 3) * w + 0, uniformly ins E [0,c ], and g
0 

is 

Lipschitz continuous. 

A formal Taylor expansion of the backward equation (1.4) around w = 0, 

neglecting higher order terms yields 

an an an 
at (s,t) Rf -s as (s,t) + xwp,(s) as (s,t). 

If we let w + O, we obtain 



(4.4) cln 
clt (s,t) 

cln = (~go(s)-s) as (s,t), 

where we have used (4.1) and (4.3). We call (4.4) the limiting backward 
~ 

equation. The associated forward equation is given by 

(4.5.a) cl.P (s' t) = 
at 

a 
as ((~g

0
(s)-s)p(s,t)), 

supplied with the boundary conditions 

(4.5.6) p(s,t) = O, s:,; 0 and * S ~ C • 
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REMARK 4.1. We have to add the boundary condition p(s,t) = 0 ifs:,; 0, which 

is not present for w > 0, because the characteristic curves associated with 

(4.5.a) are directing inwards at s = O. 

An important feature of (4.4) and (4.5.a) is the absence of 'jump terms': 

the catch of prey has become a deterministic process. The mantid's satiation 

now obeys the ordinary differential equation 

(4.6) ds 
- = ~g (s) -s. 
dt 0 

Observe that (4.6) has a unique solution because the expression at the 

right hand-side defines a Lipschitz continuous function because of (4.3). 

4>0 

S --- C 

fig. I: In the guzzler limit prey catch (.go. has become 
a deterministic process. The satiations of the 
the predator tends to s, and the functional re
spons tends to 4>0 ( see section 7). 
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(4.4) is written abstractly as 

(4. 7) 

where A
0 

is given by 

(4. 8) (A
0
$)(s) = - (s-,g (s)) d$ 

0 ds 

having a domain 

D(A
0

) ={$EX I $ is absolutely continuous and the function 

s 1+ (s-~g (s)) d$(s) is an element of X}. 
0 ds 

In this section we shall justify the formal limit transition by showing 

that (for identical initial data) solutions of ddn =An, where A is given 
t w w 

by (1.8) - (1.9) converge to solutions of (4.7) if w + O. Let 

(4.9) * 0 :,; S :,; C , 

and lets be the (unique) solution of q(s) = O. (Notice that assumption (A) 

guarantees thats is uniquely determined.) Now let 

(4. IO) 

s 

Q,e(s) = J q~:) , 
0 

* C 

J 
dcr 

q (cr) 
s 

0:,; s < s, 

s < s :,; * s • 

Observe that Q,e, Q4 are well-defined and c1 on [0,s) and (s,c*] respective

ly. The solution of (4.4) supplied with the initial condition n(s,O) = $(s) 

is given by 

n (s, t) 
-I 

= HQ,e (t+Q,eCs))), 0 :,; s < s, 

(4. I I) n(s,t) = $Cs) s = s, , 
n (s, t) 

-I 
s * = $ (Q4 (t+Q4 (s)))' < s :,; C ' ,, 
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-1 -I . . where Ql ·and~ denote the inverse functions of Ql and Q~ respectively. It 

follows directly that the mapping~+ n(•,t), where n(s,t) is given by (4.11), 

defines a strongly continuous semigroup on X which we denote with T-elt). 

The following result is straightforward. 

THEOREM 4.1. lim T0 (t)~ = ~(s).7, ~EX. t~ 

THEOREM 4.2. For aZZ ~EX we have lim T (t)~ = T0(t)~, a:nd this Zirrrit is 
w~ w 

uniform for t in bound.ed intervals. 

PROOF. We use a Trotter-Kato type theorem to establish this result. Let D 

be the subspace of X consisting of c1-functions. First we shall prove that 

for every f ED there exists an element ijJ ED such that (I-A
0

)iJJ = f. Let 

Q(s) := Ql(s), s < s, Q(s) := Q~(s), s > s. It follows immediately that 

s 

I f(o)e-Q(o) 
---''--'---- do 

q(o) 
ip(s) = -eQ(s) 

s 
defines a solution of ijJ(s) - q(s) :: = f(s). Suppose that q(s) = a(s-s), 

then 

where p 

ijJ(s) = --
a ls-sip 

s 

I f(o)Jo-sJP 
(o-s) do, 

s 

a• If f ED, then 

f(o) = f(s) + (o-s)f'(s) + o(lo-sl) 

for o in a neighbourhood of s. Substituting this in the expression for 1/J, 

we find that for sin a neighbourhood of s 

ijJ(s) = f(s) + f' (s) (s-s) + o(ls-s!). 
a (p+ I) 

Thus for this special choice of q, it follows that D s (I-A0)D. The same 

result can be proved for arbitrary q obtained from (4.9). (Here we have 

used the Lipschitz-continuity of g.) Moreover, it follows that for all 

tJ, ED we have limw-+O 11Awlf,-A0tµII = 0, where we have used (4.3). Now the 

Trotter-Rato theorem (See [16, chapter 3, theorem 4.5]) yields the result. D 
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A straightforward computation shows that cr(A
0

) ={XE t I Re X ~ O}. 

The eigenvector of.A
0 

corresponding to the eigenvalue X = 0 is 7. The ad-

joint operator A; has the eigenvector .,,,,----

(4. I 2) '¥O (s) = -H(s-s) 

corresponding to the eigenvalue X = O. Here H denotes the Heaviside function, 

i.e. H(x) = O, x < 0, H(x) = I, x > O. 

5. THE FORWARD EQUATION 

In section 3 we solved the backward equation (1.4). The solutions were 

seen to be represented by a strongly continuous semigroup T (t). Solu.tions 
w 

of the forward equation (I.I) are to be regarded as linear functionals on the 

space X of continuous functions and they are called weak* solutions. (cf. 

[I]) The idea becomes more clear if we integrate(l.l.a) from s to c+w. We ob-

tain 

(5.1.a) 3P(s,t) = 
at 

3 
s 3s (P(s,t)) -x 

s 

J g(cr)dP(cr,t), 

s-w 

where P(s,t) = -Jc+w p(cr,t). Now P(•,t) is a bounded variation function
s 

normalized by the condition 

(5.1.b) P(s,t) = O, s ~ c+w, 

i.e. P(•,t) Ex*, t ~ 0, where x* is given by (2.27). Equation (5.1) has to 

be supplemented with the initial condition 

(5. 2) 

where fc+w P0 (s) =- s p0 (cr)dcr, and Po ( •) is given by (1.1.c). (5. I) - (5. 2) 

can be rewritten as 

(5. 3) 
dP * P(O) dt = AP, = PO, w 

where A* is given by (2.28) - (2.29). The solution of (5.3) which we denote 
w 



by P(s,t;P0) is characterized by the following relation (see (1.6)): 

c+w c+w 

(5.4) f $(s)dP(s,t;P0) = f n(s,t;$)dP0 (s), $EX, 

0 0 

where n(•,t;t) = T (t)$ is the solution of the backward equation (1.4). 
w 
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Up till now we did not mention what topology x* is endowed with. The 

sense in which solutions of the integrated forward equation (5.1) should be 

interpreted, namely being linear functionals on the space of continuous 

* functions X, yields that we should work with the weak* topology on X. 

This topology is characterized if we define what convergence of a sequence 

in * {'l' } ]N be a X means: let n nE sequence in * X , and let * 'l' E X • We say that 

+ 'l' in * if for 'l' the weak * topology of X all $ E X n 
c+w c+w 

f Hs)d'l'n (s) + f $(s)d'l'(s), n + co. 

0 0 

(See e.g. [1,18].) 

Now let us return to our forward equation (5.1}. Condition (1.2) can 

be rewritten as 

(5. 5) 

c+w 

f dP0 (s) = 1. 

0 

If P
0 

satisfies (5.5), then so does the solution P(•,t;P
0

) of (5.3) for all 

t 2:: O. (see (1.2)). Now we shall reformulate theorem 3.4 in terms of 

P(•,t;P
0
). Let 'l'w be the eigenvector of~ associated with the dominant 

eigenvalue O. (See section 2,) 

COROLLARY 5.1. Let v be given by (3.8) and let n > 0 be arbitrary. If P
0 

satisfies (5.5) then 

P(• t·P) = 'l' + 0(e-(v-£)t), t + = 
' ' 0 w 

* in the weak* topology of X. 

We define the family of operators T* (t) by 
w 
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(5 .6) 

Then T*(t) is the adjoint operator of T (t) for all t ~ 0, and T*--ft) defines w - w w 
a weak* semigroup on x* (see [I]), i.e. 

(i) 

(ii) 

* * * Tw(tl)Tw(t2) = Tw(tl+t2)' 

T* (O) = I, 
w 

(iii) lim 
t+O 

* * <T (t)'¥,$> = <'¥,$>, for all$ Ex,'¥ EX. 
w 

* is the weak * infinitesimal of the weak semigroup T (t), A generator * w w 
* T (t)-I 

* V(A*). lim < w '¥,$> = <A'¥,$>, for all $EX and'¥ E 
t+O t w w 

More details can be found in the book of BUTZER & BEHRENS [I]. 

i.e. 

Also theorem 4.1, characterizing the asymptotic behaviour of the 

limiting backward equation:~= A
0
n, can be reformulated in terms of bounded 

variation functions. As above we can associate a weak* semigroup T;(t) with 

the solutions of the integrated limiting forward equation (4.5). 

COROLLARY 5.2. Let '¥0 be given by (4.12).-If P
0 

satisfies (5.5) then 

limt'?<lO T;(t)P0 = '¥0, with respect to the weak* tooology o.f x*. 

This means that solutions of the non-integrated limiting forward equa

tion (4.5) converge in distribution-sense to the delta function o(s-s). 

From theorem 4.2 it can be easily seen what happens to solutions of the 

forward equation (I.I) if the prey weights w become very small. 

* * COROLLARY 5.3. Let Po satisfy (5 .• 5). Then limw+O T~(t)Po = To(t)Po in the 

weak* topology of x*, and this Zimit is uniform fort in bounded intervals. 

So far, it is not clear whether the result of corollary 5.3 is also 

valid fort+ 00 • If this is true then it follows from the corollaries 5. I 

and 5.2 that '¥w + '¥
0 

if w + O. This can indeed be proved. 



THEOREM 5.4. limw~ <'¥ ,cp> 
w 

PROOF. Let t > 0 be fixed. 

c+w 

I<'¥ ,c!>>I = w f 
0 

where we have used that 'I' 
w 
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= <'l'o,c!>> for aU cp E X. 

* II cp II Then T (t)'l' = '¥ If cp E X, ~ I, the~ w w w 
c+w 

cp(s)d'l' (s)I ~ I f d'l' (s) I = I , 
w w 

0 

is increasing, 'I' (O) = -I, 'I' (c+w) = O. (See 
w w 

section 2.) Therefore 'I' is an element of 
w 

. . * the closed unit ball in X, for all 

w > O. Alaoglu's theorem (see [18, theorem III.1O.2]) states that 

ball is weak * compact. As a consequence the set {'I' I w > O} has 
w 

this unit 

at least 

one limit point within the closed unit ball. Let X be such a limit point. 

Then there exists a sequence {wk}kEJN such tha1 wk+ 0 if k + 00 and '¥Wk+ X, 

k + 00 with respect to the weak* topology of X • Now 

If we let k + 00 , then this expression tends to zero, from which we conclude 

* TO (t)x = X• 

Thus <x,TO(t)cp> = <x,c!>> for all cp EX, and this relation is valid for all 

t ~ O. Now letting t + 00 and using theorem 4.1 we find 

<x,c!>> = cp(s)<~,7> = lim cp(s)<'l'w ,1> = cp(s). 
k• oo k 

Therefore x = '¥
0

, and this result is independent of the choice of these

quence {wk}kEJN. This yields the result. 0 
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6. THE INHOMOGENEOUS EQUATION 

Here we shall study the inhomogeneous equation (1.11) which~ first 

rewrite in terms of bounded variation functions. Let 

c+w 

Z(s,t) = f z(cr,t)dcr. 

s 

Integration of (I.II.a) from s to c+w yields that Z must obey 

(6. I) 
az az at=sas-x 

s 

j g(cr)dZ(cr,t) + H(s,t), 

s-w 

where H(t) = H(t,•) is the bounded variation function given by 

c+w c+w 

(6. 2) H(t,s) = -x f g(cr)dP(cr,t) + x I 
s-w 0 

where P(s,t) is the solution of (5.1) 

and P
0 

satisfies (5.5). Obviously 

(5. 2), 

(6. 3) <H ( t) , 1 > = 0. 

c+w 

g(cr)dP(cr,t)• f dP(cr,t), 

s 

i.e. P(s,t) 

From (I.II.b)-(1.11.c) it follows that (6.1) has to be supplied with the 

boundary and initial conditions 

(6.4.a) Z(s,t) = 0, s ~ c+w 

(6.4.b) Z(s,O) = 0, 0 ~ s ~ c+w. 

Now we can rewrite (6.1), (6.4) as an abstract Cauchy problem. 

(6. 5) 
dZ 
-= 
dt 

A*z + H(t), 
w 

Z(O) = O. 

Taking the innerproduct of (6.5) with an arbitrary element¢ E V(A) we 
w 

find the ordinary differential equation: 

(6.6) ' 
d 

dt <Z(t),¢> = <Z(t),A ¢> + <H(t),¢>, <Z(O),¢> = O. 
w 



The solution of this equation is given by 

t 

(6. 7) <Z(t),c/>> = I <H(T),Tw(t--T)c/>>dT. 

0 
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The remainder of this section is devoted to the study of the large-time be

haviour of this solution. We need the following result. Let the bounded 

variation function H be given by 
w 

(6. 8) 

c+w 

Hw(s) = -x f 
s-w 

g(a)d'¥ (a) 
w 

c+w 

+ X I 
0 

c+w 

g(a)d'¥w(a)• f 
s 

d'¥ (a). 
w 

LEMMA 6.1. Let v be given by (3.8). For all n > 0 there exists a constant 

L(n) > 0 such that for all cp EX 

PROOF. 

c+w 

I I c/>(s)dH(s,t) -

0 

c+w 

I f c/>(s)dH(s,t) -

0 

c+w 

I c/>(s)dH (s) I 
w 

0 

c+w 

I c/>(s)dH (s)I = 
w 

0 
c+w c+w 

f c/>(s) " { xg (s-w)dP (s-w, t) - xdP (s, t) • f g (a)dP (a, t)} 

0 0 

c+w 

- f 
0 

c+w 

cp(s) { xg(s-w)d'¥ (s-w) - xd'l' (s) • I 
w w 

0 

g(a)d'l' (a)}j. 
w 

Corollary 5.1 states that for every cp EX 

c+w c+w 

I I c/>(s)dP(s,t) - I c/>(s)d'l' (s) I 
w 

0 0 

for some positive constant K(n). This and the continuity of g yield the 

result. D 

THEOREM 6.2. Let for all c/> EX, <Z(t),c/>> be defined by (6.7). Then 

lim <Z(t),c/>> 
t~ 

-I 
= <H ,-A (I-P)c/>>, 

w w 
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where Pis the projection on N(A) given by (2.32). 
w 

PROOF. Let~ EX and¢ its projection on R(A ), i.e.¢= (I-P)~._;rhen 
w 

t 

<Z(t),~> = I 
0 

t 

<H(T),Tw(t-·T) (P~+¢)>d-r = f 
0 

<H(-r),T (t--r)¢>d-r, 
w 

where we have used that <H(-r),T (t-T)P~> = <H(T),<o/ ,~>•7> = O, because of 
w w 

(6.3). Hence 

t 

<Z(t),~> = I 
0 

t 

<H ,T (t--r)¢>d-r + I 
w w 

0 

<H(-r)-H ,T (t--r)¢>dT. 
w w 

Let n > O. Lennna 6.1 and theorem 3.4 yield that 

t t 

1J <H(-r)-H ,T (t--r)¢>d-rl 
w w s J 

0 0 

t 

s K(n)L(n) f e-(v-n)Te-(v-n)(t-T)U¢Hd-r = K(n)L(n)te-(v-n)tU¢U. 

0 

Finally 

t 

I <H ,T (t-T)¢>dT 
w w 

0 

t 

= <H ,f T (T)¢dT> 
w w 

0 

-1 
-+ <H ,-A ¢>, 

w 

if t-+ 00 , where we have used a standard result from semigroup theory. (See 

e.g. [16].) 

This proves the theorem. n 

We shall give a more comprehensible reformulation of this result. Let 

* Z EX be defined by 
w 

A*z = - H 
w w w 

<Z , 1> = O. 
w 

(Existence of Z is guaranteed by the Fredholm Alternative (<H, 1>=0). The 
w w 

second'condition guarantees uniqueness.) 



33 

Let Z(s,t) be the weak* solution of (6.1), defined by (6. 7). 

* COROLLARY 6.3. Z(s~t) • Z (s), t • 00 in the weak* topology of X. 
w 

REMARK 6.1. It doesn't make sense to study the inhomogeneous equation that 

is obtained if one lets w • 0 in (1.11). To understand this, one should re

member that the solution z of (1. 11) is needed to calculate the variance 

var(W) of prey catch W per unit of time (see remark 1.4). However, if 

w • 0 then the catching process becomes deterministic, yielding that 

var(W) vanishes, and hence Z (s) • 0 if w • 0. 
w 

7. THE FUNCTIONAL RESPONSE 

In this paper we define the functional response~(~) as the total 
w 

weight of prey caught per unit of time per predator, where~= xw is the 

density of prey weight in the mantid's environment. 

REMARK 7.1. Observe that~ is a function of two independent variables, 
w 

~ and w. One might also choose x and w or~ and x. However in practical 

cases, w can be chosen a constant and the functional response is a func

tion of~ only. In many cases biologists prefer to work with x instead of 

~. In our case~ is a better choice because later on, we shall take the 

limit, w • 0, x • 00 such that~= xw remains constant, and we want to 

examine what happens to the functional response in this case. 

(7.1) 

~(~)can be calculated from 
w 

~ (0 = ~ 
w 

c+w 

J 
0 

g(s)do/ (s), 
w 

where o/ is the (positive) eigenvector of A* corresponding to the dominant 
w w 

eigenvalue A= 0, normalized by the condition 

(7.2) <o/ ,1> = 
w 

c+w 

J 
0 

do/ (s) = 1. 
w 

In experiments, ~(~)is found to be increasing and concave and to 
w 

have a finite limit for~ • 00 • We have tried to prove these properties by 
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means of analytical methods, but we have not succeeded so far. However, if 

* we let w tend to z~ro, keepings= xw and c = c+w constant, then we find 

that o/0 (s) = -H(s-s). From (7.1) we find that for w = 0 the functronal re

sponse @
0

(s) is given by 

(7.3) 

wheres is the unique solution of 

sg
0 

(s) = s. (see fig. I) 

It is clear thats depends on s, and a straightforward computation shows 

that @0 (s) is increasing. Moreover lims~ @0 (s) = c* = c. 

. ( ) ( s)+ + . linear, gs = y I- - , the meaning EXAMPLE. If g(s) is 

values are replaced 
C S + 

by zero, then g0 (s) = y(I- c*) and @0 (s) 

that negative 
= s - yc*s 

- c*+ys· 

The usefulness of @0 (s) is demonstrated by the following result, which 

says that @0 (s) approximates @w(s) for small w. 

THEOREM 7.1. For aZZ s > 0 we have 

PROOF. (7.1) says that@ (s) = s<o/ ,g>. Hence w w 

= s I< , g-g ., + <o/ -, g > I 
w' 0 w O' 0 

and this tends to zero if w + 0 because of (4.3) and theorem 5.4. 0 

REMARK 7.2. It follows from the proof of theorem 7.1 that 
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in the sup-norm. 

We were able to compute~(~) for a special case, namely c ~ w. Bio-
w ~ 

logically, this means that the predator's gut can contain at most two preys. 

After consuming a prey, the predator will not show prey catching behaviour 

until (part of) the previous meal is digested. Now let 

(7.4) ,1, = dd 'l' (s) • 
'l'w s w 

Thens+ sl/Jw(s) defines an L1-function. (2.30) yields 

d
d (sl/J (s)) - xg(s)l/J (s) + xg(s-w)l/J (s-w) = O. 
s w w w 

Sl/J (s) 
w If we substitute 6(s) = -...,.....,..._where Eis given by (2.2) in the first two E(s) 

terms we obtain 

de 
-= 
ds 

l 
- xg(s-w). E(s) l/Jw(s-w). 

Integration from s to c+w and the fact that l/J (c+w) = 0 yield 
w 

c+w 

e (s) = X f 
s 

and we obtain 

c+w 

(7.5) l/J (s) = xE(s) 
w s f 

s 

From (7.2) we conclude that 

c+w 

(7. 6) f 
0 

$ (s)ds = 1. 
w 

g(cr-w) $ (cr-w)dcr. 
E (cr) w 

Observe that (7.4)-(7.6) are also valid if c > w. Now the functional re

sponse can be computed from 

c+w 

(7. 7) I 
0 

g (cr)l/J (cr) dcr. 
w 
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With respect to ljJ (s) we can prove the following: ljJ (s) is continuous on 
w w 

~ 

ljiw(s) = O(syx-l), s + 0, ljiw E L1[0,c+w], ljiw(s) ~ 0 a.e. on [O,c+w]. 

Now let us assume that c ~ w, then E(s) = 1, c ~ s ~ c+w. From (7.5) we 

find that ljJ (s) = N. E(s) if O ~ s ~ w for some constant N. For w ~ s ~ c+w 
w s 

we have 

c+w 

ljJ (s) 
w =; I ( )N E(cr-w) g cr-w cr-w 

dcr = ! (1-E(s-w)). 
s 

s 

Now N should be computed from (7.6). 

w c+w 

= N { I E~s) ds + I 1-E(s-w) ds} 
s 

0 w 

c+w c 

=N{I dss+J 
1 1 E(s) (- - -)ds} s s+w 

C 0 

C 

c+w = N {log -- + w 
C I E(s) 

s (s+w) ds}. 

Now <I> ( ~) 
w 

C 

c+w 

= ~ J 
0 

0 

g(s)lji (s)ds 
w 

= 

sN f g(s) E(s) ds = wN(l-E(O)) = wN 
s 

0 

if~> 0, and <I>(~)= 0 if~= O. 
w 

Thus we have proved the following result. 

THEOREM 7.2. If c ~ w then 

<I> (0 = 
w 0 if ~ = 0 

(7.8) C 

<I> (~) = w(log (c+w) I E(s) --+w s(s+w) w C 

0 

ds)-l if~> o. 

Observe that <I> (s) given by (7.8) is increasing and concave. Moreover 
w 
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(7.9) 

REMARK 7.3. From probabilistic considerations it follows that (7.9)----fs also 

valid if c > w. (See [15].) 
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APPENDIX 

~ 
In this appendix we shall prove that the adjoint operator A of A is 

w w 
given by 

s 

( 1) (A:~)(s) = s :: - x f g(cr)d~(cr) 

s-w 

having a domain 

(2) 1J(A *) = {~ * I is absolutely continuous E X ~ and w 

d~ * s + s -E X }. 
ds 

Let A E JR, A> 0 be arbitrary. Then 

(3) 

Theorem 2.1 says that A~ - Aw~= h if and only if~ - TA~= UAh. where TA 

and UA are given by (2.9) and (2.10) respectively. Let x* be given by (2.27). 
c+w c+w 

LEMMA A.l. (U~F)(s) = - f crA-lE(cr)( f n1~~~~)da9 

* for aU F E X • 

s 

* PROOF. Let¢ EX and FE X. Then 

c+w 

<F,UA¢> = f (UA~)(s)dF(s) 

0 

c+w s 

cr 

I l {f A-1 L = a E(cr)~(cr)dafdF(s) A 
0 s E(s) 0 

c+w s 

I {f crp-lE(cr)~(cr)dcr}dF(s) 
spE(s) 

0 0 

= 
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where we have used (2.3) and where p = A+yx. Because this integral is ab

solutely convergent, we can apply Fubini's theorem and change order of in

tegration. 

c+w c+w I aA-lE(a)<j>(a){ I 
0 a 

dF(s) L 
A fda, 

s E(s) 

c+w 

= <G,<I>>, where G(s) = I 
s 

dF(n)\) 
A da. 

n E(n) 

* We also have <F ,UA </>>=<UAF ,</>> * and therefore UAF = G, which yields the re-

sult. 0 

(4) ((H-AJ-1)* = 

From (3) and (4) it is clear that 

(S) 

THEOREM A.2. V(A*) = V d~f {'¥Ex* I 'Pis absolutely continuous and 
w 

s 1+ s d'P(s) is an element of x*}. 
ds 

PROOF. (i) Suppose 'PE V(A;), then 'PE R(U~). Let FE x* be such that 

* UAF = '¥. It follows from lemma A.1 that 

c+w c+w 

'P (s) = J aA-lE(a)( I 
s a 

dF(n)\d 
A ) a. 

n E(n) 

A straightforward computation shows that 'Pis absolutely continuous on 

[£,c+w] for every£> O. Moreover, using Fubini's theorem it follows direct

ly that 'Pis continuous on [O,c+wJ. This yields that 'Pis absolutely con

tinuous on [O,c+w]. Obviously 

s'P' (s) dF(n) 
A , 

n E(n) 
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* * and the right-hand expression defines an element of X. Thus V(A) c V. 
w 

(ii) Now suppose that If' E V. We shall prove that there exists an element 

* F E X such that * UAF = If'. Let 

c+w 

(6) F(s) d'l' I (Hxg(o) )d'l' (o). = -s - -ds 
s 

* Clearly FE X. From lennna A.I we know that 

c+w c+w 

(U~F)(s) = - I 011.-]E(o)( I n~:~~~)do. 

s 

First we compute the expression 

c+w 

a 

c+w 

f 
dF (n) 
A 

Tl E(n) 

F(n) r+w 
= A I + 

n E(n)~o f F(n).(11.+xg(n) \dn 
\,n 11. + 1 E ( n) } 

a 

-F(o) 
A a E(a) 

a 

If we substitute (6), we obtain 

(7) 

c+w 

I 
a 

dF(n) 
A 

n E(n) 

c+w 

If'' (o) 1 =----+---
011.-]E(o) 011.E(o) 

- I 
a 

c+w 

n'l''(n). 11.+xg(n) dn 
n11.+lE(n) 

- I 
a 

if O > o. 

c+w 

I ( 11. +xg ( n ) ) d If' ( n) 

a 

Again, Fubini's theorem says that we may change order of integration in the 

last expression at the right-hand side 

,, 

c+w 

I 
a 

c+w 

I 
a 

c+w 
11.+xg(n) ( J 

11.+lE( ) \ 
n n n 

(11.+xg(~))d'l'(~))dn = 



c+w c+w 

I (tt+xg (0 )d'P (0 -I 
a 

Substitution in (7) yields 

c+w 

I 
Consequently 

'P (s) • 

* Now suppose that$ E V(A) and 'PE V(A ). Then 'Pis absolutely con-w w 
tinuous. Let iji(s) = ::, then ljJ is an L

1
-function. 

c+w 

<'P ,Aw$> = f (A $) (s)d'P(s) 
w 

0 

=T (-s d$ - xg(s)~(s) + xg(s)$(s+w))iji(s)ds 
ds 

0 

= -

c+w 

lc+w 
s$(s)lji(s) Jo 

+ I $(s){d: (slji(s))- xg(s)iji(s) + xg(s-w)iji(s-w)}ds 

0 

c+w 

= I ~(s)dG(s), where 

0 

c+w 

G(s) = - f d (d/sw(s)) - xg(s)lji(s) + xg(s-w) ljJ (s-w))ds 

s 

s 

= slji(s) - x J g (er)$ (er) dcr g(cr)d'P(cr). 

s-w s-w 

41 
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* Hence <V,A ~> - <G,~> =<AV,~>. w w 
Thus 

s 

* d\Jf I (Aw\Jf)(s) = G(s) = s ds - x 

s-w 
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