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In this paper, we study an analytical model describing predatory behaviour.
It is assumed that the parameter describing the predator's behaviour is its
satiation. Using semigroup methods and compactness arguments we prove that
a stable satiation distribution is reached if t = », Furthermore, using a

Trotter-Kato theorem we justify the transition to the much simpler. problem

that is obtained if the prey biomass tends to zero.

1980 MATHEMATICS SUBJECT CLASSIFICATION: 92A15, 47D07.
KEY WORDS & PHRASES: satiation, functional response, forward equation, back-
ward equation, positive operator, semigroup, Trotter-Kato theorem,

weak * solution, first order PDE with transformed arguments.

'NOTE: This report will be submitted for publication elsewhere.

Report AM-R8407

Centre for Mathematics and Computer Science

P.0. Box 4079, 1009 AB Amsterdam, The Netherlands




£

sy

A

s
A

e

)

S

s

A

oo

o

i

:?‘:u

S

g

SRS

SR
A

Sl B

o
R

o

i

2

i
ks

S




INTRODUCTION

In his famous paper [9], HOLLING described a detailed simulatigg/model
for the prey-catching behaviour of the praying mantid Hierodula Crassa: One
of his main purposes was to gain information about the qualitative and quan-
titative behaviour of the functional response of an invertebrate predator.
(The functional response can be defined as the number (or total weight) of
prey eaten per unit of time per predator as a function of the prey (prey bio-
mass) density.)

In a series of papers [13,14,15] METZ & VAN BATENBURG presented an
analytic reformulation of the theory of predation as propounded by Holling.
They started by showing that Holling's assumptions implied that the preda-
tor's minimal state space is two-dimensional. More precisely: at every in-
stant the state of the predator can be described by two parameters, its
satiation (or gut content) S, and the maximum time T still to be spent

handling the prey. By the phrase "handling tbe prey" is meant pursuing it
and (in case of a succesful strike) eating it. As long as the predator is
searching for his meal, T = 0. A complete description of the predator's be-
haviour as a journey through this two-dimensional state space, can be found
in [14].

Metz & van Batenburg also described several wayé to simplify this
. rather complicated model. One possibility is to neglect handling time. The
resulting "gobbler" model is just simple enough to be amenable to detailed
analytical treatment and yet retains the essential stochastic features of
the full model. The simplification can be justified if the handling time
is relatively small in comparison with the searching time. In this paper
we shall restrict ourselves to the gobbler model.

One of the main features of the gobbler model is that its state space
is one~dimensional, the relevant parameter being the satiation S.
Between two captures S decreases continuously according to some ordinary
differential equation %%—= f(S) describing digestion, where we shall assume
that f(s) = -as, as this seems a realistic assumption from a biological
point of view. (See [6,14])

Prey capture is a random event resulting in an instanteneous transi-

tion S ++S + w, where w denotes prey weight (which is assumed to be constant).




This jump causes a term with non-local argument in the balance equation for

the S-distribution. (See section 1.,) The rate of prey capture depends (in a
decreasing manner) on the satiation. (In the case of Holling's pf;;ing man—
tid this is due to the fact that its search field decreases with increasing
satiation.) |

This paper, which is self-contained, deals with a number of mathemati-
cal questions raised in the papers of METZ & VAN BATENBURG [13,14,15]. These
questions are formulated in the first section.

Our starting point is the so-called backward equation which is the ad-
joint of the balance equation for the probability demsity, or forward equa-—
tion. This backward equation happens to be more tractable from a mathemati-
cal point of view, and it has a straightforward interpretation. In this
manner we are able to prove that a stable satiation distribution is reached
in the course of time.

Finally we refer to [4] where one uses techniques very similar to ours,
to analyse a problem which is completely different from a biological point

of view.
1. THE EQUATIONS AND THEIR INTERPRETATION

One of the equations proposed by METZ & VAN BATENBURG [13,14,15], as

‘part of their model for predatory behavicur was:

(1.1.a) 250

5t - %%{f(s)p(s,t))—xg(s)p(s,t)+xg(s—W)p(s-w,t),

where one should read xg(s-w)p(s-w,t) = 0 if s-w < 0. Here t denotes time,

s the predator's satiation, and p(s,t) is the {unknown) probability densi-

o,

ty of 8§, i.e.

52
J p(s,t)ds = P{sl < 8(t) < s2}
S

1

is the probability that S at time t is between S and Sye

(of the edible portion) of a prey, which is assumed to be constant for all

w is the weight

prey. £(s) is the digestion rate, which has been discussed in the Introduc—

tion and there it was assumed that f(s) = —as. By a scaling of the time we




may set a=1. x is the effective prey density and x.g{s) stands for the

rate of prey capture, if the predator's satiation is s. It is assumed that
there exists a value ¢ > 0 such that g(s) = 0 if s > ¢c. ¢ is called/Ebe sa-
tiation threshold. Accordingly we impose the boundary condition

(1.1.1) p(s,t) =0, s 2c + w.

Furthermore we supplement (1.1.a) with the initial condition

(1.1.¢) p(s,0) = B(S).

Because of the fact that (1.1.a) describes the state of one single predator,

we should have

ctw ctw
(1.2) 1 = j_ po(s)ds = J p(s,t)ds, t > 0.
0 0]

The second of these identities can be verified by integration of (1.1.a)
along the s-interval [0,c+w].

In this paper we shall make the following assumption on g:

(A) g is a Lipschitz- continuous function on [0,c+w],

g is non-increasing and g(s) = 0, if s = c.

METZ & VAN BATENRURG [14] showed that for Holling's mantid model
+ +
(1.3) g(s) = a(l- D"+ exp(-b'(1- 2907,

s . +
where ¢' < ¢ and a,b' are positive constants. The superscript means that

negative values are to be replaced by zero.

REMARK 1.1. If (1.1.a) is formally integrated from s to c+w, one obtains a
partial differential equation for the distribution function of S which
necessarily is of bounded variation. This feature will be exploited in

section 5.

In the literature (1.1) is called the forward equation. (See e.g. [2,5].)

&




The associated backward equation (or adjoint equation) is given by

oy BB g D) g (oynts, g (Inshn, ),
where xg(s)n(s+w,t) = 0 if s > ¢, and where we have substituted f(s) = -s.

The backward equation is easier to derive in a rigorous manner directly
from the constructive specification of the stochastic process and it is
easier to handle as well. The main reason for this is that the backward
equation has to be solved in the space of continuous functions, and the
forward equation in the space of Borel measures. Below we shall briefly
describe the duality relation between solutions of the forward and the back-

ward equation.

Let p(s,t;po) be the solution of (1.1), and let n(s,t;$) be the solu-

tion of (1.4), obeying the initial condition
(1.5) n(s,0) = ¢(s),

where ¢ is some continuous function on the interval [0,c+w]. (Here we have
tacitly assumed that these solutions do exist. This is proved in section 3.)

Then

. cfw' ct+w
(1.6) J p(s,t;po)cb(s)ds = J Po(s)n(s,t;¢)ds, t = 0.
0 0

As a matter of fact this relation defines the solution of the forward equa-
tion, if the solution of the backward equation can be found for all con-
tinuous initial functions ¢.

Our starting point will be the backward equation. We shall prove exis-
tence and uniqueness of solutions of (1.4)-(1.5), and study the large-time
behaviour of these solutions. Subsequently we shall interprete the results
in terms of the forward equation.

Let X = C[O,c+w] be the space of continuous functions on [0,c+w] en-—

dowed with the usual sup-norm. We can rewrite (1.4)-(1.5) as an abstract

Cauchy problem:

&




(1.7) = Am 00 =9¢cXx,

where the closed operator AW on X is defined by -
. v .

(1.8) A W) (s) = -s 5= = xg(s)d(s)+xg(s)d(s+w),

for all ¢ in the domain of definition D(AW) of Aw’ which is given by

(1.9 D(Aw) = {y ¢ X | ¢ is absolutely continuous and the function
dy
ds

s > —s (s) defines an element of X.}

REMARK 1.2. The subscript w accounts for the dependence of AW on the prey
weight w. As a matter of fact, the operator AW also depends on the prey

density x, but this is not expressed explicitly in our notation.

In section 2 we shall investigate the spectrum of AW, and in section 3

we shall concentrate on the Cauchy problem (1.7).

In order to obtain more explicit results, METZ & VAN BATENBURG [13,14,
151 formally took the limit w »~ 0, x + «, £ = xw remaining constant. It
appears that in the limit the mantid’s catching behaviour becomes deter-
ministic. Moreover, the limiting equation can be solved explicitly. One of
the questions that one should answer is whether solutions of the original
equation (w>0) converge to solutions of the limiting equation (w=0) if w - O.
In section 4, we shall deal with this question. In section 5 we shall give
a rather detailed description of the relation between solutions of the for-
ward and the backward equation.

An important biological qunatity to be derived from the model is W,
i.e. the total weight of prey caught per unit of time. The expectation EW
of W.obeys the ordinary differential equation

c+w

dEw
(1.10) T

xw g(s)p(s,t)ds.




REMARK 1.3. In f]é,]S] where one discusses the full stochastic model it is

shown that
ctw —
dEN
& = % { g(s)p(s,t)ds,
' 0

where N is the number of prey caught per unit of time. This is equivalent to

(1.10) because W = wN.

METZ & VAN BATENBURG [13,14,15] also derived an inhomogeneous partial

differential equation from which the variance of W can be obtained:

(1.11.3) §E£§i£2-= g%—(sz(s,t)) - xg(8)z(s,t) + xg(s-w)z(s—w,t) +
ctw
+ xg(s-w)p(s-w,t) - xp(s,t) J g(s)p(s,t)ds.
0

This equation must be supplemented with boundary and initial conditiomns:

(1.11.D) z(s,t) 0, s 2c¢c+w,

I

(1.11.¢) z(s,0) 0.
REMARK 1.4. It was explained in [13,15] how var(N) can be computed from
z(s,t). A straightforward computation using the results of [13,15] shows

that

g%-var(w) = 2xw.cov[W,g(S) I+ wEg(8)

dEw
de °

2xw.covlW,g(S) I+ w

and cov[W,g(8)] = w J g(s)z(s,t)ds.
0

In section 6, we shall study (1.11).
If we let t =~ @ in (1.10), we find an expression for the functional
response @W(E) (if we can prove convergence of the S-distribution towards

a stationary state) which is the total biomass of prey caught per unit of

time per predator in the stationary situation. Here £ = xw, i.e. the




density of prey biomass. It seems hard to obtain analytic results on the

qualitative behavipur of @W(E) in the most general case. However, it can

be proved that for all £ > O, 1:'LmW+O

explicitly from the limiting equation studied in section 4. Furthermore we

@W(E) = @0(€), where @0 can be obtained

are able to compute @W(E) explicitly in the rather unrealistic special case

that ¢ £ w. These results are given in section 7.
2. THE EIGENVALUE PROBLEM

In this section we shall investigate the spectrum of the operator AW
defined by (1.8)-(1.9). It appears that the techniques which we shall use
are in many regards similar to those in [8], where we studied the eigen-
value problem associated with a model for cell growth. .

We use the following notation. For an operator L we denote by o(L) and
Po(L) the.spectrum and point spectrum of L respectively.p(L) is the resolvent
set, and r(L) the spectral radius. N(L) and R(L) are the nullspace and range
of L, and ind(L) = dim N(L) - codim R(L) is called the Fredholm index of L.
(c.f. [12,18])

Let h ¢ X. The inhomqgeneous equation Ay - Aww = h can be rewritten as

@) as) + s T xe()us) - xa()u(sHw) = h(s).
Let
S
2.2) E(s) = exp( J Egégl-dc).
w
It is obvious that
(2.3) E(s) = s' E(s),

where E(s) is continuocus on [0,c+w], and satisfies E(O) > 0. Here

(2.4) y = g(0).




Let

(2.5) Q@ =1{xe€ | yx + Rer > 0}.

Suppose that A ¢ Q. Substitution of
T

(2.6) $(s) = s E(s)Y¥(s)

in (2.1) yields.

1 do
S 5= — xg(s)¥(s+w) = h(s),
SK lE(s) ds

or equivalently,

2.7) g% - xg(s)s" TE(s)u(s+w) = h(s)s VE(s).

It follows from (2.6) and (2.3) that ¢(s) = SAE(S)¢(S) = SA+YXE(s)w(s). Now

A € 9 and the continuity of ¢ imply that ¢(0) = 0. Integrating (2.7) from
0 to s and plugging (2.6) back into the result yields:

] ]
(2.8) V(s) - = [ 8(0)o* ' E(0)p (o+w)do = —A—‘——J h(o)o" 'E(0)do.
s E(s) 6 s E(s)
0
Let the linear operators iA and UX on X be defined by

)
(2.9) (T,0) (s) = -—f———f £(0)0” " 'E(0)p (o+w)do,
s E(s) 0
S
(2100 (@,p)(s) = —— J o 'E(0)p (0)do,
s E(s) 0

for all p ¢ X.

It is obvious that EA and UA are bounded. Now (2.8) can be rewritten as

~

(2.11) [ wa = UAh'

The fo%lowing result is straightforward.




e e

LEMMA 2.1. Let A € QS and h € X. Then ¥ € X is a solution of the inhomogeneous

equation \b - A ¥ = h Tf and only if ¥ - ixw = U, h.

—
Thus the inhomogeneous equation (2.1) involving the unbounded operator

AW can be reformulated in terms of the bounded operators T and UK' A closer

A
look on (2.8) makes clear that it suffices to study this equation on the sub~-
interval [w,c+w], because knowledge of ¢ on this subinterval would enable us

to compute (%xw)(s) for all s e [0,c+w]. Let

(2.12) X = Clw,ct+w]
with the supnorm. For ¢ e X
such that‘@(s)

Observe that TA

| ve define wa in the following way. Let § € X

¥(s), s e [w,ctwl, then (T,¥)(s) := (1,9)(s), s € [w,cHwl.
X, > X is well-defined, i.e. wa does not depend on the

]

choice of @.
The following result can be established using the Arzéla-Ascoli theorem
(c£.[181).

LEMMA 2.2. T,: X, - X

S 1 18 compact.

Let

(2.13) I={Aen|1e Po(T,)}.

THEOREM 2.3. O(AW) n = PO(AW) nN=1=1.

PROOF. Let A ¢ Q. The homogeneous equation Aww = Ay can be rewritten as
wa = 1, LEtA¢ be the restriction of ¢ to [w,c+wl, then wa =P, P =0
would imply wa =1 = 0. As a consequence, if X ¢ PO(AW), then A ¢ I.
Similar arguments yield that A ¢ I implies that A ¢ Po(A,). Now suppose
that A € € n U(Aw). The inhomogeneous equation Ay - Aww = h, where h € X,
is equivalent to ¢ - le = Uxh. Suppose that A ¢ PG(AW), then we have

1 ¢ PG(TA) yielding that the equation ¥ ~- le = Ukh can be solved on the
interval [w,ctw]. Its solutionAis P(s) = ((I—TA)—IUAh)(sL s € [w,ctwl,
For s ¢ [0,w] we find Y(s) = (wa)(s) + (Uxh)(s) where we have exploited
the fact that (TAW)(S) can be computed on [0,w] if ¢(s) is known on

[w,c+wl. ‘This proves the result. [




AR
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We shall need the following lemma in the proof of theorem 2.11.

LEMMA 2.4. R(AI-A ) <s closed 1f X € Q.

PROOF. Suppose.hn € R(AI—AW) and hn > h, n > o, Let wn be such that

A¢n - Awwn = hn. Lemma 2.1 yields that wn - len = En. Leth,bn azd hn be the
festrlctlon of wn~respict1ve1y hn to Ew,c+w]. Thus wn - len = hn' Hence

hn € R(I—TA) and hn > h, n > ©» where h denotes the restriction of h to
[w,c+w]. From the compactness of T

we conclude that R(I—TA) is closed.
Therefore he R(I—TK). Let $ € X

A

i be such that ﬁ - Tkﬁ = h. We define Y by:

W(s) = V(s), s € Lw,ctwl,
s
v(s) = “XE——— J g(G)OA_lE(U)$(O+W)dU + (Uxh)(s), s € [0,wl.
s E(s) 0

~

It is clear that ¢ is a solution of ¢ - wa = h, hence A} - Aww =h., U

The following result is stated for the sake of completeness. We do not

need it in our calculations.
THEOREM 2.5. €\Q < o(AW).

PROOF. Let A be such that yx + Rel < 0. Without loss of generality we may
‘assume that A ¢ R. Let p = - yx - A > 0. The homogeneous equation Aww = A
can be solved on [w,c+w] within a finite number of steps. Let @(s) be the

solution on [w,c+w]. For s € [0,w] we must solve

B, @O ) - EVE -y 2 ).

ds

We obtain

w
P(s) = (w). }\1 - )\X J g(o)o}\ulE(c)zF(cw)do
s E(s) s E(s) Z
w
= o [Py (w)-sP J 2(0)o PR (0)¥ (o+w)dol,
E(s)

S
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and it can be easily checked that this expression defines a continuous func-
tion if p > 0. Therefore A € PO(AW) if Red + yx < 0. This, and the closedness

of the spectrum, yields the result. [J o

The asymptotic behaviour of solutions of (1.4) for t = « appears to be
determined by the dominant eigenvalue of A s i.e. the eigenvalue with the
largest real part. As we did in [8], we use positive operator theory to
characterize this dominant eigenvalue. We refer to the famous paper of KREIN

and RUTMAN [11], and the monograph of SCHAEFER [17]. Let

+
(2.14) X; =1y e X | ¥(s) 2 0, w £ s < ct+w},
(2.15) QR =0n R,
+ .
Then Xl defines a closed, convex cone in Xl’ and for all A ¢ QR we have
that TA is positive with respect to XT, i.e.

+ . +
wa € Xl if P € Xl'

In the sequel we need a stronger notion of positivity,

DEFINITION [11]. An operator is called strongly positive if each nonzero

element within the cone is mapped into the interior of that cone by some

power of the operator.

THEOREM 2.6. For all X € § -;

TN 8 strongly positive with respect to X

+ -
PROOF. Let X € QR and P € Xl’ $ # 0. There exists an s € (w,c+w) and an
e > 0 such that ¢(s) > 0, s € (s~e,s+ec). Now suppose that s = s-w and
s € [w,ctw], then we have
s
A-1
g(o)o” "E(o)y(o+w)do > O.

~W-€

X

(T,¥) (8) 2 ———
A sAE(s) s

Applying TA once more yields

@) >0, 53 - o
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e s . . . +
Hence if p is the smallest integer satisfying p 2 Eﬁﬂ s, then we have

(wa)(s) >0, s € [w,e+w], yielding that Tiw € %1. 0
. . /0

Now we can apply theorem 6.3 of [11], and we obtain the following result.

. : + . . +

Let XT be the adjoint space of Xl’ and let (Xl)* be the adjoint cone of XI'

(See,e;g. [111.) With T; we denote the adjoint operator of TX'

LEMMA 2.7. For all » € Q,, ©, = r(TA) s an-algebrateally simple eigemvalue of

R’ "X
both T, and T:. Furthermore there exist a wA € %T and FA € (XT)* such that

A

(2.16.a) Ty, =r

ATA Awk

*
(2.16.D) TXFA = rAFA

and by s the only positive eigenvector of T,. Moreover, F s strictly posi-—

A
tive, Z.e. FA(¢) > 0 for all ¢ € XT\{O}.

Now wl is an eigenvector of AW if and only if r, = 1. We shall prove

A

that A QR is uniquely determined by this condition. Obviously

(2.17) T, =1,

‘where the function 7 € Xl is defined by 1(s) = 1, s € [w,c+w]. Clearly

1 e XT and we conclude from lemma 2.7 that r(TO) =1,

LEMMA 2.8. r(TA) 18 strictly decreasing in A € QR.
PROOF. Suppose A,u € QR and A > u. A straightforward computation shows that
ot ot
(TU—TA)XI < Xl'

+ .
In particular (Tu_TK)wA € il' From the strict positivity of F]J we conclude

that <Fu’(Tu_TX)wX > > 0, or equivalently

r <F a0y > > 1y <F L0

Thereféze ru > Ty and this proves the lemma. ]
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Now we shall interpret the results in terms of Aw'

THEOREM 2.9. A = 0 s an algebraically simple eigenvalue of Aw,with posi—
tive etgenvector 1. A, has no other positive eigenvectors. The eigeﬂﬁalue
A = 0 Zs strictly dominant, Z.e. A € c(AW), A #0=Re A < 0. '

PROOF. From the geometric simplicity of the eigenvalue 1 of T0 we conclude

that A = 0 is a geometric simple eigenvalue of AW. Now suppose that Aww

1]
-

for some ¥ ¢ X. Then lemma 2.1 yields that %Ow -y = U07. Hence TOE - af—

l
o

where $ and ¢ are the restrictions of § respectively UOT to the interval
+
[w,c+w]. We observe that ¢ ¢ il'

FO(¢) = 0, where F

The Fredholm alternative states that
0 is given by (2.16.b) for A = 0. However FO(¢) > 0, which
is a contradiction. Therefore 0 is an algebraically simple eigenvalue of AW.
The proof of strict dominance of the eigenvalue A = 0 is similar to the proof

of theorem 6.2 in [81. [

The following result, stated in [12], enables us to give a more complete

description of O(AW) n Q.

LEMMA 2.10 [12]. Suppose L is a closed linear operator on a Banach space E
having a dense domain. For all A e € satisfying the following conditions
(1) A s on the boundary of ao(L),

(ii) R(AI-L) 78 closed,

(iii) NQAI-L) has a finite dimension,

we have ind(AI-L) = 0 and A is a pole of the resolvent.

Now we can prove:

THEOREM 2.11. o(AW) n Q consists entirely of eigenvalues )\ satisfying
(1) A Zs a pole of the resolvent,
(ii) ind(AI-AW) = 0.

PROOF. Suppose that A ¢ U(AW) n Q is on the boundary of O(Aw). Lemma 2.4
states that R(XI-AW) is closed. From dim N(AI—AW) = dim(I—Tx) and the
compactness of TA we conclude that dim N(AI—AW) < o3 Now lemma 2.10 states

that A is an isolated eigenvalue of Aw. Hence every boundary point of

G(AW) n @ is isolated. As a consequence there are two possibilities
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1) c(AW) n o =q,
2)- O(AW) n 9 contains only isolated eigenvalues.
However, the existence of the dominant eigenvalue A = 0 excludes The first

possibility. This proves the result. []

REMARK 2.1. We can also state our results in terms of normal eigenvalues

and essential spectrum (in the sense of Browder) (See e.g. [4,19].) Let L be
a closed linear operator on a Banach space. A ¢ o(L) is called a normal
eigenvalue of L if

(a) A is an isolated element of o(L),

{(b) Ran(AI~L) is closed,

(c) The generalized eigenspace corresponding to A is finite-dimensional, i.e.

. e k
dlm(kg1 N(AI-L) ) < oo,

It can be proved that every normal eigenvalue is an isolated pole of the
resolvent of finite order. We denote the set of normal eigenvalues with
cn(L). The essential spectrum ce(L) of L is defined by oe(L) = o(L)\cn(L).

Now, our results can be reformulated as

o(A) n Q= Un(A),

C\Q = ce(A).

Our next step is the derivation of the so called characteristic equation
which provides us with a tool to compute all eigenvalues of A which are
elements of Q. We shall not go into detail. The interested reader is re-

ferred to [8].

For all A € Q, the operator T, can be decomposed in the following way.

A
C
(wa)(s) = —X-’E——— J g(O)cx_lE(O)w(MW)do
s E(s) 0
c
- 7}5— J' g(O)oA“]E(c)w(ww)dc,
‘ s "E(s) s
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which we rewrite as

' A
(2.18) TA¢ = <H)\,1p>e1 + wa’ —
where
(2.19) e?(s) = —Xl———-, s € [w,ctwl,
s E(s)
(2.20)  <H,¥> = x 5 g(@)0" E()¥(o+w)do

defines a bounded linear functional on Xl’ and
c
A—
(2.21) M9y (s) = [ g(o)o 1E(O)¢(O+W)do
s E(s) s

defines a compact operator on Xl' Moreover NX is nilpotent, i.e.

(2.22) N, =0,

where p is the smallest integer such that p 2 S%E . Let
A s

(2.23) e = NA ers k=1,...,p,

A AL . . . . .
then e],...,ep are linearly independent vectors in Xl' By iteration of (2.18)

we obtain
. A -2 2 A
(2.24) pr = A,Tp 9> e +<H ,TE Preeyte L a<Ey Pocel

implying that all eigenvectors of T, can be written as a linear combination

of e},...,e} . Now suppose that Ty¥ = ¥ for some A ¢ @ and ¥ ¢ X,, then

Y = wle? R wpe; for some wi € €, i =1,...,p. Substitution of this ex-

pression in (2.18) and using (2.23) leads to the following identity:

ek + + eA> = 1
g teee b .

(2.25) <HK’




i6

which is called the characteristic equation.

THEOREM 2.12. A € G(AW) n Q<f and only i1f <Hl,e? S e;> = 1. Bvery closed

vertical strip inside 9, {A lgl < Re ) < g,} where £, < &,, contains at most

finitely many elements of O(AW).

A similar result is proved in [8].

From theorem 2.12 we conclude that there exists an & > 0 that
(2.26) a(AW) n{A | Re A = €} = {0}.

We end this section with a brief study of the adjoint operator of AW.

In the Appendix we shall prove that the adjoint operator A; defined on

(2.27) x* = (v | ¥ is a bounded variation function on [0,c+w] and

Y(ct+w) = 0},
is given by

s .
(2.28) (A;W)(s) = s g%-(s) - X J g(o)d¥ (o),
s~w
having a domain
dy

{Y e X" | ¥ is absolutely continuous and s - sA—Eéil e X'},

*
(2.29) D(a)
For ¥ ¢ X" and ¢ ¢ X we define

<¥,6>

ct+w
J ¢ (s)d¥(s).
0

The following result is straight forward.

THEOREM 2.13. If ¥ s an eigenvector of A; corresponding to an eigenvalue

A € Q, then ¥ satisfries
ctw

o
(2.30) ¥(s) = -5 J g A1 ( J xg(n)dW(n)>d0-

S ag-w
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If ) # OIthen ¥ (0)
If*x = 0 then Y(0)

0.

0 and ¥ is increasing.

A

REMARK 2.2. Notice that for ¥ ¢ X we have <Y, 1> = -¥(0).

Bécause of the algebraic simplicity of the dominant eigenvalue A = 0,

and theorem 2.11 we have the following invariant decomposition of X.
(2.31) X = N(AW) ® R(AW),

and N(A ) = {a+] | o € €}. _
Let P be the projection on N(Aw) corresponding with this decomposition, and
let WW be the eigenvector of A; associated with the dominant eigenvalue

A= 0, and normalized by the condition WW(O) = ~1, then
(2.32) Py = <Ww,w>-1.

Observe that P] = <WW,1>-7 = —WW(O)-T =1.

3. THE BACKWARD EQUATION

Here we shall examine the initial wvalue problem (1.4)-(1.5), or
equivalently (1.7). We obtain existence and uniqueness results by proving
that AW generates a strongly continuous semigroup on X. The method of proof
is very similar to the one used by'DIEKMANN et al in [4], where they in-
vestigate the evolution of a size-structured cell population reproducing
by fission. (In [4] however, the forward equation is studied.) The idea is
to integrate the partial differential equation along its characteristics
and to use a variation-of-constants formula, and this will give us the
solution as a series.

In the second part of this section, we prove a sort of asymptotic
compactness result for the semigroup, which enables us to characterize

the behaviour of the solutions for large t.

Aw as defined by (1.8) - (1.9) can be written as the sum of a closed

and a bounded operator.
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(3.1) A =B+g,

where. | —
(3.2) (B1) (s) = =5 $& - xg ()0 (s),

(3.3) (CY) (s) = xg(s)P(s+w),

where the domain D(B) of B is given by

DB) = {y e X [ y is absolutely continuous and
s +s W g continuoustl.
ds
A straightforward computation shows that B generates a strongly continuous

semigroup So(t) given by

E(se” ©)

E(S) W(SG—t), S € [O,C'*‘W], t = 0.

(3.4) (8 ()W) (s) =
Now a standard perturbation lemma (see e.g. [16]) yields that AW =B+ C

generates a strongly continuous semigroup as well.
THEOREM 3.1. AW generates a strongly continuous semigroup Tw(t).

One can prove this in the following way.
Consider Cn as the inhomogeneous part of the equation g%—= Bn + Cn, 2nd
apply the variation-of-constants formula. It follows that n(t) has to be a
solution of the integral equation
t
(3.5) n(t) = SO(t)¢ + J So(t—T)Cn(T)dT.
0

The result follows from a standard contraction and continuation argument.

REMARK 3.1. In [16] one uses the Hille-Yosida conditions to prove the re-
sult.

New iteration gives us the solution n(t) = TW(t)¢ as a series




R
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(3.6) T ()¢ = ) S ()¢, t =0,
W n
n=0
where this series converges in the operator norm. Sn(t) is determingg/by
the recurrent relation
' t
(3.7) Sn+1(t)¢ = J So(t-T)CSn(T)¢dT, n=0,1,2,...
0
For the initial value problem (1.4)-(1.5) this means that there does exist
a unlque solution in the following sense, Let the differential operator D
on C(]Rx[O ctw] - R) be given by

(Dn) (s,t) = lim ¢ (n(se”,t+h)-n(s, 1)),

h+0

then the initial value problem
(Dn) (s,t) = =xg(s)n(s,t) + xg(s)n(s+w,t), n(s,0) = ¢(s)

has a unique solution. In other words the solution n(s,t) = (Tw(t)¢)(s) is
differentiable along the characteristics of the partial differential equa-
tion (1.4). If moreover ¢ € D(A), then the solution is differentiable in s

and t separately.

We are especially interested in the behaviour of the solutions n(s,t)
for large t. The éharacterization of this behaviour would be relatively
easy if TW(t) were compact after finite time. (See [4].) Unfortunately
So(t) which contributes to Tw(t) for all t = 0, never becomes compact.

However, we can prove that this contribution becomes smaller and smaller.

~yxt
3

LEMMA 3.2. HSO(t)H < Ce > 0, for some positive comnstant C not de-

pending on t.

PROOF. Let ¢ ¢ X, lol < 1,

(T8 ()1 = | BEs ) )’ 6 (se ™|
ty -t
g VX TV E(se ) ¢(se~t)| < Ce—yxt

| = | sT*E(s)
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where wevhave used (2.3) and the fact that E(s) is bounded from above and
below. 0O -

LEMMA 3.3. U(t) := ).

n=1 Sn(t) 18 compact for all t = 0.

PROOF. A simple calculation shows that

t
: . ~t+T -t -T _
(5,(0)9)(s) = x J g(se =) E(E? ) E(se twe ) oo Cive Tyar.
s) —t+7
0 E(se +w)

One can apply the Arzela-Ascoli theorem (cf. [18]1) to establish the compact-
ness of Sl(t)’ provided that the derivative of g is bounded. Because of as-
sumption (A) this is indeed the case. Using recurrence relation (3.7), it
follows immediately that Sn(t) is compact for all mn = 1. This and the con-
vergence of the serie (3.6) with respect to the norm topology yields the re-
sult. [I

Now let
(3.8) v := min{e,yx},

where € is characterized by (2.26). Let P be the projection on N(Aw), given
by (2.32).

THEOREM 3.4. For all n > 0 there exists a constant K(n) > 0 such that
(3.9) IT_()-Pol < K(me” TV 14l

for all ¢ ¢ X and t 2 0.

PROOF. Let X ¢ € be such that Re X > -yx, hence |ext| > e_YXt. Obviously
T, (6) = "D = 5y(t) + U(®) - 1, where U(E) = [ S _(t). Lemma 3.2
yields that r(SO(t)) < e_YXt.Therefore S
Tw(t)—eAtI = (5,(6)=e" D) (T+(5, ()" D) (). Now from the fmvertibility

of So(t)—eAtI and the compactness of (So(t)—eAtI)_ U(t) we conclude that

O(t) - e""1 is invertible. Thus
1

. et o (T_(£)) P Po (T, (t)).
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If A € € is such that Re X £ —yx then ) ¢ O(Aw), according to theorem 2.5.

Noﬁ, using the spectral mapping results
/

B ¢ 51 () and Po(T () ¢ PO | 10y

(see e.g. [16]) we conclude that
U(Tw(t)) = {0} u {etA | Re X <= YxX V)€ PG(AW) n Q}

for all t =2 0. In section 2 we found the following decomposition of X,
X =N(A) ® R(A).

Let fw(t) be the restriction of TW(t) to R(AW). Then Ew(t) defines a strong-

ly continuous semigroup on R(AW) having infinitesimal generator zw, where Zw
is the restriction of Aw to R(Aw). It follows that O(KW) G(Aw)\{O} and
U(fw(t)) = O(Tw(t))\{l}. Therefore r(iw(t)) = e_vt, t 2 0. Now a result of
Hale ([7, lemma 7.4.2]) yields: for all n > 0 there exists a constant

K(n) > 0 such that for all ¢ ¢ R(AW) and t = 0:

IT ()¢l < k(e TV Ergl, :

Let ¢ € X, then T _(t)¢ = Tw(t)(P¢+(I—P)¢) = P¢+§W(t)(I—P)¢.

Hence
IT (69 - Pol < K(me TV ()0l < g(m)e VM4, O

We can state our main result now,

COROLLARY 3.5. Let n(t,s) be the solution of (1.7), then

ctw

tim n(t,*) = ¢(s)d?w(s).7

f>o0

in the sup-norm.

&
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i

REMARK 3.2, Notice that Tw(t)l ], t 2 0. A semigroup satisfying this

property is sometimes called a Mackov-semigroup. (See e.g. [3])
—

4, THE GUZZLER LIMIT

As we did mention in the Introduction METZ & VAN BATENBURG [147 started
from a more general model than we did., The forward equation (1.1) was ob—-
tained from this general model by a limit transition accounting for very
small handling times., They even went one step further by letting the prey
weight w tend to zero while letting prey density x tend to «, in order to
arrive at a rather simple equation. Note that it is necessary to let simul-
taneously increase the prey density x. (Otherwise there would be nothing
left to eat.) In this section we shall give a rigorous justification of this

limit transition. We assume that

(4.1) £ = xw
and
4.2) ¢ =ct+w

remain constant, It follows from the interpretation that & stands for the

. . . *
total prey biomass in the predator's environment, and that c¢ denotes the
maximum gut content. Although this is not explicit in our notation, the prey

capture rate may depend on w. We assume that

(4.3) g(s) +~g0(s), w > 0, uniformly in s € [O,c*], and go is

Lipschitz continuous.,

A formal Taylor expansion of the backward equation (1.,4) around w = 0,

neglecting higher order terms yields

on on on
3E~(s,t) 8 -8 5;'(S’t) + xwg(s) 5;—(s,t).

&

If we let w > 0, we obtain




N
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Gty B (s,0) = (Bgy()-s) 3= (s,0),

where we have used (4.1) and (4.3). We call (4.4) the limiting backward
—

equation. The associated forward equation is given by

3

4.5.2) 2B (s,0) = - 5= ((Egy(e)-s)p(s,0)),

supplied with the boundary conditions

*

(4.5.6) p(s,t) = 0, s £0 and s 2c¢ ,

REMARK 4.1, We have to add the boundary condition p(s,t) = 0 if s < 0, which
is not present for w > 0, because the characteristic curves associated with

(4.5.a) are directing inwards at s = O,

An important feature of (4.4) and (4.5.a) is the absence of 'jump terms':
the catch of prey has become a deterministic process. The mantid's satiation

now obeys the ordinary differential equation

(4.6) £ = egy(s) -s.

Observe that (4.6) has a unique solution because the expression at the

right hand-side defines a Lipschitz continuous function because of (4.3).

E.go : catch

-f : digestion

fig.l: 1In the guzzler limit prey catch £.g  has become
a deterministic process. The satiation s of the
the predator tends to 8§, and the functional re-
spons tends to & ( see section 7).

0
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(4.4) is'writteﬁ abstractly as

‘ . ,
4.7 —%-= Aon, e
where AO is given by
(4.8) (A9 (s) = - (s-gg.(s)) L

<9 0 &0 ds

having a domain.

D(AO) = {y ¢ X | v is absolutely continuous and the function
s b (s—ggo(s)) é%éil is an element of X}.

In this section we shall justify the formal limit transition by éhowing
that (for identical initial data) solutions of g% = Awn, where AW is given
by (1.8) - (1.9) converge to solutions of (4.7) if w > 0. Let

*

4.9) q(s) = Ego(s)—s, 0<s=<ec,

and let s be the (unique) solution of q(g) = 0, (Notice that assumption (A)

guarantees that § is uniquely determined.) Now let

Qz(s)

1
[ ]

[aW
Q

[«

A

(]

A

(2}

(4.10)

QQ(S)

|
1
W e O
[a ¥
Q
w)
A
w
A
0
*
L]

Observe that QK’ Q, are well-defined and C] on [0,8) and (§,c*] respective-
ly. The solution of (4.4) supplied with the initial conditiomn n(s,0) = ¢(s)

is given by

n(s,t) = $(Q, (£+Qp(s))),
41D n(s,t) = 6(8) , s =8,
ns,t) = 6(Q, (£+Q, (s))),

o
A
(]
A
[5)
-

w)
A
Y]
IA
(¢]
.
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where Qzl and Q;l denote the inverse functions of Qﬂ and Q& respectively. It
follows directly that the mapping ¢ + n(-,t), where n(s,t) is given by (4.11),
defines a strongly continuous semigroup on X which we denote with Ieit).

The following result is straightforward.
THEOREM 4.1. lim_ T (£)¢ = ¢(8).7, ¢ € X.

THEOREM 4.2, For all ¢ € X we have 11mw+w Tw(t)¢ = To(t)¢, and this limit is

uniform for t in bounded intervals.

PROOF. We use a Trotter—Kato type theorem to establish this result. Let D
be the subspace of X consisting of C]—functions. First we shall prove that
for every £ ¢ D there exists an element ¥ € D such that (I—Ao)w = f, Let
Q(s) := QK(S)’ s < §, Q(s) := Qm(s), s > 8, It follows immediately that

s

' -Q(0)
__Q) [ £@)e
v(s) e 1 ———ETBS——-d0
8
defines a solution of P(s) - q(s)-%g = f(8). Suppose that q(s) = a(8-s),
then
Y P
_ 1 f(o)]o-81
lP(S) OL]S_’S‘IP :{ (O’-§) do,
5
where p = é, If £ ¢ D, then

£(o) = £(8) + (0-8)f'(8) + o(lo-8])
for ¢ in a neighbourhood of §, Substituting this in the expression for vy,
we find that for s in a neighbourhood of §

_ era £'(8) - -

Y(s) = £(8) + S 1) (s-8) + o(ls-81).

Thus for this special choice of g, it follows that D ¢ (IfAO)D. The same
result can be proved for arbitrary q obtained from (4.9). (Here we have
used the Lipschitz—continuity of g.) Moreover, it follows that for all

¥ € D we have 1imW_)0 “Aww—Aowﬂ = 0, where we have used (4,3). Now the

Trotter-Kato theorem (See [16, chapter 3, theorem 4.5]) yields the result. []




26

A straightforward computation shows that G(AO) ={1e€ | Re A < 0},

The eigenvector of A  corresponding to the eigenvalue A = 0 is |, The ad-

0
joint operator A; has the eigenvector -
(4.12) WO(S) = ~H(8-s)

corresponding to the eigenvalue A = 0, Here H denotes the Heaviside function,

i,e, H(x) = 0, x < 0, H(x) = 1, x > 0.
5. THE FORWARD EQUATION

In section 3 we solved the backwardtequation (1.4). The solutions were
seen to be represented by a strongly continuous semigroup Tw(t)' Solutions
of the forward equation (1.1) are to be regarded as linear functiomnals on the
space X of continuous functions and they are called weak * solutions. (cf.

[1]) The idea becomes more clear if we integrate(l.l.a) from s to c+w. We ob-

tain ]
G..a)  BEB L2 ) x| glo)dr(o,0),
ot 9s
s—w
where P(s,t) = —f§+w p(o,t)., Now P(-,t) is a bounded variation function-

normalized by the condition

(5.1.b) P(s,t) o, s 2 ctw,

i.e. P(-,t) ¢ X*, t > 0, where X is given by (2.27). Equation (5.1) has to

be supplemented with the initial condition

(5.2) P(s,0) = PO(S),

J'C+W

where Po(s) =— po(c)dc, and po(-) is given by (1.1l.¢c). (5.1) = (5.2)

can be rewritten as

dP * _
(5.3) e AWP, P(0) = PO,

&

where A$ is given by (2.28) - (2.29). The solution of (5.3) which we denote
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by P(s,t;PO) is characterized by the following relation (see (1.6)):

_ ct+w _ ctw
(5.4) J ¢(s)dP(s,t;P0) = J n(s,t;¢)dPO(s), ¢ € X, e
0 0

where n(-,t;¢) = Tw(t)¢ is the solution of the backward equation (1.4).

Up till now we did not mention what topology X" is endowed with. The
sense in which solutions of the integrated forward equation (5.1) should be
interpreted, namely being linear functionals on the space of continuous
functions X, yields that we should work with the weak * topology on X",
This topology is characterized if we define what convergence of a sequence

.o : .
in X means: let {Wn}n be a sequence in X*, and let ¥ ¢ X . We say that

elN
Wn + ¥ in the weak * topology of X* if for all b e X

ctw c+w
¢(s)de(s) - J b (s)d¥(s), n +» ».
0 0

(See e.g. [1,181.)

Now let us return to our forward equation (5.1), Condition (1.2) can

be rewritten as

c+w
(5.5) J dPO(s) =1,
0
If PO satisfies (5.5), then so does the solution P(-,t;PO) of (5.3) for all

t 2 0, (see (1.2)). Now we shall reformulate theorem 3.4 in terms of
P(-,t;PO). Let WW be the eigenvector of A; associated with the dominant

eigenvalue 0. (See section 2.)

COROLLARY 5.1. Let v be given by (3.8) and let n > 0 be arbitrary. If P
satisfies (5.5) then

0

P(-,t3P)) = ¥+ O(e_(\’_e)t), £t > o

in the weak * topology of X",

We define the family of operators Tg(t) by

&
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).

. * )
(5.6} Tw(t)PO = P(-,t;PO

Then T;(t) is the adjoint operator of Tw(t) for all t = 0, and T;ff) defines

a wegk * semigroup on X* (see [11), i.e,
. * * R
(1) T (eDT (£)) = T (t,+t,),
.o *
i) T (0) =1,
(iii) lim <T;(t)W,¢> = <¥,4>, for all ¢ ¢ X, ¥ ¢ X',

t+0
AW is the weak % infinitesimal generator of the weak % semigroup T (t), i.e.
W

T;(t)—I . .
lim < ——— ¥, ¢> = <A ¥,¢>, for all ¢ ¢ X and ¥ € D(A).
£40 t w W

More details can be found in the book of BUTZER & BEHRENS [11].

Also theorem 4.1, characterizing the asymptotic behaviour of the

limiting backward equation‘—E = AOn, can be reformulated in terms of bounded

. . dt . . * .
variation functions. As above we can associate a weak * semigroup To(t) with

the solutions of the integrated limiting forward equation (4.5).

COROLLARY 5.2. Let ¥, be given by (4.12). If P, satisfies (5.5) then
. * -
lim_ T ()P, = ¥

0° with respect to the weak * topology of X",

This means that solutions of the non-integrated limiting forward equa-

tion (4.5) converge in distribution~sense to the delta function §(s-8).

From theorem 4,2 it can be easily seen what happens to solutions of the
forward equation (1.1) if the prey weights w become very small.

., . * - .
COROLLARY 5.3. Let P satisfy (5.5). Then llquO TW(t)PO To(t)P0 in the

weak * topology of X*, and this limit is uniform for t in bounded intervals.

So far, it is not clear whether the result of corollary 5.3 is also

valid for t - «, If this is true then it follows from the corollaries 5.1

and 5.2 that Ww - ¥

0 if w » 0., This can indeed be proved.
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THEOREM 5.4. lim

L0 <‘PW,¢> = <‘P0,¢> for all ¢ € X.

. _ N
PROOF, Let t > 0 be fixed. Then Tw(t)‘{‘W = WW. If ¢ € X, gl <1, then

ctw ctw
|<Ww,¢>[ = | J ¢(s)dww(s)| < | J dww(s)l =1,
0 0
where we have used that WW is increasing, WW(O) = -1, WW(C+W) = 0. (See

section 2.) Therefore WW is an element of the closed unit ball in X*, for all
w > 0. Alaoglu's theorem (see [18, theorem III.10.2]) states that this unit
ball is weak * compact. As a consequence the set {WW ] w > 0} has at least
one limit point within the closed unit ball. Let ¥ be such a limit point.
Then there exists a sequence {w, } such that w, - 0 1if k » © and ¥

k ke N -k w 7 X
k » = with respect to the weak % topology of X ., Now

* * * . * *
[<Ty ()% = x:¢4>] = I<T0(t)x-TWk(t)x+TWk(t)x—TWk(t)wwk+ka-x,¢>I =

l<X’To(t)¢‘ka(t)¢>+<x-ka,TWk(t)¢>+<ka-x,¢>l <

l<wwk,TO<t)¢—ka(t>¢>l+I<x—wwk,TO<t)¢—¢>|

< uTo(t)¢—TWk(t)¢n+|<X-ka,T0(t)¢-¢>|-

If we let k #+ «, then this expression tends to zero, from which we conclude
*

Thus <x,TO(t)¢> = <y,¢> for all ¢ ¢ X, and this relation is valid for all

t 2 0, Now letting t - = and using theorem 4.1 we find

<X, 9> = ¢(8)<y, 1> = lim ¢(8)<¥_ , 1> = ¢(8).
koo Y

Therefore y = WO’ and this result is independent of the choice of the se~

quence {wk }kelN .

This yields the result. []
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6. THE INHOMOGENEOUS EQUATION

Here we shalllstudy the inhomogeneous equation (1.11) which we first
rewrite in terms of bounded variation functions. Let
e+w
Z(s,t) = j z{(o,t)do.
s
Integration of (l.11.a) from s to c+w yields that Z must obey
, 5

6.1) 82 g8 4 J g(0)dz(o,t) + H(s,t),

s—w ‘

where H(t) = H(t,+) is the bounded variation function given by

ctw c+w ' c+w
(6.2) H(t,s) = -x J g(o)dP(o,t) + x j g(o)dP(o,t)- J dP(o,t),
S=W 0 s

where P(s,t) is the solution of (5.1) - (5.2), i.e. P(s,t) = (T;(t)PO)(S),

and PO satisfies (5.5). Obviously

(6.3) <H(t),1> = 0.

From (1.11.b)-(1.11.,c) it follows that (6.1) has to be supplied with the

boundary and initial conditions
(6.4.a) Z(s,t) = 0, s = ct+w

£ s £ ¢ctw,

(6.4.b) Z(s,0) =

[
o

)
(=]
A

Now we can rewrite (6,1), (6.4) as an abstract Cauchy problem.

dz _  * _
(6.5) I = sz + H(t), Z(0) = 0,
Taking the innerproduct of (6.5) with an arbitrary element ¢ € D(Aw) we

find the ordinary differential equation:

(6.6) ° 4 <Z(t),¢> = <Z(t),Aw¢> + <H(t),9>, <Z(0),¢> = 0,

dt
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The solution of this equation is given by
. t
(6.7) <7(t), 4> = J <H(1),T_(t-0)¢>dr. P
0
The remainder of this section is devoted to the study of the large-time be-
haviour of this solution. We need the following result. Let the bounded

variation function Hw be given by

ctw ctw ctw
(6.8) Hw(s) = -x f g(c)d?w(a) + x J g(c)dTW(o)~ J dWW(c).
S=W 0 s

LEMMA 6.1. Let v be given by (3.8). For all n > QO there exists a constant
L() > 0 such that for all ¢ € X

ctw ctw
| J ¢(s)dH(s,t) - f ¢(s)dHW(s)| < L(n)e_(v_n)tﬂ¢ﬂ,
0 0
ctw ctw
PROOF. l I ¢(s)dH(s,t) - f $(s)aH_(s)] =
0 0
ctw ctw
| J ¢ (s) *{xg(s~w)dP(s-w,t) — xdP(s,t) - J g(0)dP(o,t)}
0 0
ctw ctw
- J ¢(s) {xg(s-w)dWw(s—W)-xdTW(s)- J g(c)dWW(c)} .
0 0
Corollary 5,1 states that for every ¢ ¢ X
ctw ctw
| I $(s)dP(s,t) - J ¢(s)dww(s)| < K(n)e'(”'e)tu¢n,
0 0

for some positive constant K(n). This and the .continuity of g yield the

result., [

THEOREM 6.2. Let for all ¢ € X, <Z2(t),¢> be defined by (6.7). Then

. -1
1im <Z(t),¢> = <HW,—AW (I-P)¢>,

>0

SRR
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where P is the projection on N(AW) given by (2.32).

PROOF, Let ¢ € X and ¢ its projection on R(AW), i.e. ¥ = (I-P)¢. Then

t t
<Z(t), 9> = J <H(T),Tw(t*T)(P¢+w)>dT = j <H(T),Tw(t—r)w>dT,
0 0

where we have used that <H(T),Tw(t—T)P¢> = <H(T),<Ww,¢>-7> = 0, because of

(6.3). Hence

t t
<Z(t),¢> = j <HW,TW(t—T)w>dT + j <H(T)—HW,TW(t—T)¢>dT.
0 0
Let n > 0, Lemma 6.1 and theorem 3.4 yield that
t t
lf <H(1)-H_,T (t-1)p>dt| < J Lme” UM (e-ryyldr
ww w
0 0

t
< R(m)L() J e~ (MT M ET g = kLMY ee” TV By,
0

Finally
t t
-1
f <HW,TW(t—T)w>dT = <HW,J TW(T)wdT> > <HW,—A v>,
0 0

if t >~ », where we have used a standard result from semigroup theory. (See
e.g, [16].)

This proves the theorem. []

We shall give a more comprehensible reformulation of this result. Let

Z e X* be defined by

AZ = -®
wW W W
<z ,1> =0,
w

(Existence of ZW is guaranteed by the Fredholm Alternative (<HW,7>=O). The

& - - 4
second condition guarantees uniqueness,)
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Let Z(s,t) be the weak * solution of (6.1), defined by (6.7).

COROLLARY 6.3. Z(s,t) + Z (s), t > = in the weak * topology of X.

REMARK 6.1. It doesn't make sense to study the inhomogeneous equation that
is obtained if‘one lets w -~ 0 in (1.11). To understand this, one should re-
member that the solution z of (1.11) is needed to calculate the wvariance
var (W) of prey catch W per unit of time (see remark 1.4). However, if

w + 0 then the catching process becomes deterministic, yielding that

var(W) vanishes, and hence Zw(s) -0 1if w-~> 0.
7. THE FUNCTIONAL RESPONSE

In this paper we define the functional response @W(E) as the total
weight of prey caught per unit of time per predator, where £ = xw is the

density of prey weight in the mantid's environment,

REMARK 7.1, Observe that @W is a function of two independent variables,
£ and w. One might also choose x and w or £ and x. However in practical
cases, w can be chosen a constant and the functional response is a func-—
tion of £ only. In many cases biologists prefer to work with x instead of
£. In our case £ is a better choice because later on, we shall take the
limit, w =+ 0, x - « such that § = xw remains constant, and we want to;.

#

examine what happens to the functional response in this case.

@W(E) can be calculated from

ctw

7.1 0 (&) =¢ J g(s)dy_(s),
0 A

where WW is the (positive) eigenvector of A; corresponding to the dominant
eigenvalue A = 0, normalized by the condition

ctw
(7.2) <‘1’w,7> = [ a¥_(s) = 1.

0

In experiments, @W(g) is found to be increasing and concave and to

have a finite limit for £ - «, We have tried to prove these properties by
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means of analytical methods, but we have not succeeded so far. However, if
. * .

we .let w tend to zero, keeping & = xw and ¢ = c+w constant, then we find

that WO(S) = =H(s~-§). From (7.1) we find that for w = 0 the functional re-

sponse @0(5) is given by

(7.3) 9,(8) = £g,(8) = 8,

where § is the unique solution of
Ego(s) = s, (see fig. 1)

It is clear that § depends on &, and a straightforward computation shows
.. . . - x

that @0(5) is increasing. Moreover 11mg+m @0(5) = ¢ C.

+ + ) ]

) , the meaning that negative

_ Syt P (-
v (1 c*) and @O(E) 8 FEE

jn

EXAMPLE, If g(s) is linear, g(s) = v(I-

no

values are replaced by zero, then gO(s)

The usefulness of QO(E) is demonstrated by the following result, which

says that @0(5) approximates @W(E) for small w,

THEOREM 7.1. For all € > 0 we have
1lim @ (§) = &, (&).
w0 d 0

PROOF. (7.1) says that @W(g) = £<?ﬁ,g>. Hence

e ()-0p(@) | = el<¥ ,e> - <¥o.gp>| = gl<v ggs + <V v ,g>

< gﬂg-goﬂ + g|<waw0,g5]

.

and this tends to zero if w = 0 because of (4.3) and theorem 5.4, 1|

REMARK 7.2, It follows from the proof of theorem 7.1 that

8 (8)  2,(E)

>

- € £
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in the sup-norm.

~ We were able to compute @W(E) for a special case, namely c <w, Bio—~
logically, this means that the predator's gut can contain at most two preys.
After consuming a prey, the predator will not show prey catching behaviour

until (part of) the previous meal is digested. Now let

(7.4) v =3

w ds lyw(s)’

Then s > sww(s) defines an L]—function. (2.30) yields

2 (s,(s)) - xg(e)y () + mg(s—y (s=w) = O,

sy_(s)
If we substitute 8(s) = —E%ET—-Where E is given by (2.2) in the first two
terms we obtain )

do 1
e xg(s=w). E(s) ¢W(s-w).

Integration from s to c+w and the fact that ww(c+w) = 0 yield

ctw
8(s) = x J g (o-w) Eﬁ%j-ww(o—w)dc
s
and we obtain
ctw
(7.5) y (s) = 2L) J 5—(-‘-;-'(—‘-;% ¥ (o-w)do.
s

From (7.2) we conclude that
ctw
(7.6) [ ww(s)ds =1,
0
Observe that (7.4)-(7.6) are also valid if ¢ > w. Now the functional re-

sponse can be computed from

ctw

7.7y -~ ®W(E) =g J g(c)ww(c)do.
0
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With respect to ww(s) we can prove the following: ww(s) is continuous on

(0,c+wl,
. _—
P (s) = O(SYX_I), s ¥+ 0, ¢ e L [0,e+w], ¥ (s) =20 a.e. on [0,c+w].
w w 1 W
Now let us assume that c < w, then E(s) = 1, ¢ < s < ct+w, From (7.5) we
find that ww(s) = N, E(s) if 0 < s < w for some constant N, For w < s < c+w
we have
. ctw
_ X _ E (o-w) N
b (s) == j g(o-w)N —— do = = (1-E(s-w)).
. .

Now N should be computed from (7.6).

w c+w
1=N{JE(S) ds + J 1-E(smw) 46}
s )
0 W
ctw c
_ ds 11
=N { J Y + [ E(s)(; S+W)ds}
c
c
- ctw E(s)
= N {1Og——E—+W [mdS}.
c+w 0 i
Now QW(E) =g J g(S)wW(S)ds =
c 0
EN j g(s) E(SS) ds = wN(1-E(0)) = wN
0

if £ > 0, and @W(E) =0 1if £ =0,

Thus we have proved the following result,

THEOREM 7.2, If ¢ < w then

i
o)
o,

"~
Ty

1
)

8, (£)

(7.8)

c
w(log (CZW)+W f E(s) ds)_] if € > 0.
) .

3 (8)

s (s+w)

Observé that @W(E) given by (7.8) is increasing and concave. Moreover
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(7.9)  1lim © (&) = —
E>oo - W' log C%?b

REMARK 7.3. From probabilistic considerations it follows that (7.9)"is also

valid if ¢ > w, (See [15].)

Acknowledgement, I would like to thank Odo Diekmann for some valuable sug-

gestions. Especially I would like to thank Hans Metz for many stimulating

and inspiring discussions,.
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APPENDIX

In this appendix we shall prove that the ad

given by
S
* _ v
(N (AWW)(S) =s g5~ X f g(c)d¥ (o)
s—w
having a domain
2 D(A;) = {¥ ¢ X | ¥ is absolutely con

s > s ég-e X'},
ds

Let A ¢ R, X > 0 be arbitrary., Then

1. %

. -
(3) D(a7) = RUOI-A)" ).

Theorem 2.1 says that Ay - Aww = h if and only 1

and U, are given by (2.9) and (2.10) respectively, Let X

ctw c+w
LEMMA A, 1. (U;F)(s) = - J gl‘lE(g)/ J ;%%%%%>
S o

for all F € X",

PROOF. Let ¢ ¢ X and F ¢ X . Then

ctw
<F,U,¢> = J (U)\¢)(S)dF(S)
0
ct+w s
= J —3T1—~— {J GA—IE(G)¢(O)dG}dF(S)
b S E(s) 0

|

0

ap"§(0)¢(o)do}dF(s)

| =1
SPE(S)

. . * .
joint operator A of A 1is
w w

tinuous and

£y - T P = HXh, where T

*

A A

be given by (2.27).

do,
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where we have used (2.3) and where p = A+yx. Because this integral is ab-

solutely convergent, we can apply Fubini's theorem and change order of in-

tegration, —
ctw ctw
a0 | M @] [ EE o,
A x Ik
0 s E(s)
ctw ctw
= <G, 9>, where G(g) = - J CA—IE(G)/ J _%Eﬁﬂl \ do.
: s g " E(n)
*
We also have <F’UA¢>=<UAF’¢> and therefore U;F = G, which yields the re-
sult, [
. e B
Obviously (AL Aw) = (I Tk) Ux, hence
TN ok -1
(4) ((A1-p) )" = U, (I-T)) .
From (3) and (4) it is clear that
* *
5) DAY = RWY).
* def * . .
THEOREM A.2. D(A) =V =" {¥ e X | ¥ <s absolutely continuous and
s+ s —Eﬁil-is an element of X},

ds

PROOF. (i) Suppose ¥ ¢ D(A;), then ¥ ¢ R(U;). Let F e X' be such that
U*F = ¥, It follows from lemma A.l that

A
c+w ctw
¥(s) = - f UA_]E(G)( J —%Eﬁﬂl>dc.
5 SN E(n)

A straightforward computation shows that ¥ is absolutely continuous on
[e,ctw] for every € > 0. Moreover, using Fubini's theorem it follows direct-
ly that ¥ is continuous on [0,c+w]. This yields that ¥ is absolutely con—

tinuous on [0,c+w]. Obviously

ctw
s s¥'(s) = SAE(S) J —;%E—(ﬂ')— s
n E(n)

]
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and the fight—hand expression defines an element of X*. Thus D(A;) c V,

(ii) Now suppose that ¥ ¢ V. We shall prove that there exists an element

F € X' such that U;F = ¥, Let —
ctw
dy
(6) » F(s) = -s e [ (A+xg(0))d¥ (o).
s

Clearly F ¢ X*° From lemma A.1 we know that

ctw /c+w \
* _ A—1 d¥(n)
(U}\F) (s) = J g E (o) J ﬁm}dO.
S ag

First we compute the expression

ctw oy CHV
J dF(n) _ _F(n) } N J F(n).(x+xg(n) )dn
Dontemy lEmde ) B (n)-
ctw
- _.EE(E)_ + J F(n)(——;g_—}-](-g—(—n)—>dn, if o > O.
o E(o) n E()-
If we substitute (6), we obtain
c+w ct+w
(7) [ g 2@ L [ usgmavin
A E(n) o 'E(o) o E(o)
ctw
- J n¥'(n). _%E%ﬁﬁll dn
5 n E(n)
ctw ctw
- J —%§§§fﬂl ( { (A+xg(5))dW(£)>dn.
E(n) ’
n

Again, Fubini's theorem says that we may change order of integration in the
last expression at the right—hand side

ctw c+w

J Lexeln) ( J (v+xg (£))d¥ (£))dn =

E
m) -
ctw

£
J (A+xg(£))([ ;%{?ifﬁ% dn>dT(€) -

(o) o
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. ctw ctw
! (g (£))d¥ (€) - f 23 ) gy (r).
¢ E(o) & ETE(E)
Substitution in (7) yields -
ct+w
J dF(n) _ _¥'(0)
nEM o E@)
Consequently
ctw
- 1
WP () = - f I ME(0) D 4o = w(s).
o "E(o)
s
Therefore V¥ € R(U;) = U(A;). 0

Now suppose that ¢ € D(AW) and Y € ﬂ(Az). Then ¥ is absolutely con-

tinuous. Let ¥(s) = %g, then ¥ is an Ll-function.
cHw
<Y,A ¢> = J (Aw¢)(8)dW(S)
0

ct+w

(-s %ﬁg - xg(s)¢(s) + xg(s)o(s+w))P(s)ds

ctw

- s¢(s)w(s)J
0

ctw
r

+ ¢(S){§% (sp(s))— xg(s)¥(s) + Xg(S—W)w(s-W)}ds

= ¢(s)dG(s), where

0
ctw
G(s) = - { (é%(sw(S)) - xg(s)P(s) + xg(s—w) ¥ (s~w))ds
s

ds
w s

S S
= sp(s) - x J ()0 (o)do = s &L - x I 2(c)d¥ (o).

s

W
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.
Hence <W,AW¢> = <G, 9> = <AWW,¢>.

Thus
V S
(A;‘I’) (8) = G(s) =8 — - x [ g(o)d¥(o).
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