

Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science

P. Groeneboom, D.R. Truax

A monotonicity property of the power function of multivariate tests

Department of Mathematical Statistics

Report MS-R8406

April

The Centre for Mathematics and Computer Science is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A MONOTONICITY PROPERTY OF THE POWER FUNCTION OF MULTIVARIATE TESTS

P. GROENEBOOM

Centre for Mathematics and Computer Science, Amsterdam

D.R. TRUAX

University of Oregon

Let $S = \Sigma_{k=1}^n \ X_k X_k^\intercal$, where the X_k are independent observations from a 2-dimensional normal $N(\mu_k, \Sigma)$ distribution, and let $\Lambda = \Sigma_{k=1}^n \ \mu_k \mu_k^\intercal \Sigma^{-1}$ be a diagonal matrix of the form λI , where $\lambda \geq 0$ and I is the identity matrix. It is shown that the density ϕ of the vector $\widetilde{\ell} = (\ell_1, \ell_2)$ of characteristic roots of S can be written as $G(\lambda, \ell_1, \ell_2) \phi_0(\widetilde{\ell})$, where G satisfies the FKG condition on \mathbb{R}^3_+ . This implies that the power function of tests with monotone acceptance region in ℓ_1 and ℓ_2 , i.e. a region of the form $\{g(\ell_1, \ell_2) \leq c\}$, where g is nondecreasing in each argument, is nondecreasing in λ . It is also shown that the density ϕ of (ℓ_1, ℓ_2) does not allow a decomposition $\phi(\ell_1, \ell_2) = G(\lambda, \ell_1, \ell_2) \phi_0(\widetilde{\ell})$, with G satisfying the FKG condition, if $\Lambda = \operatorname{diag}(\lambda, 0)$ and $\lambda > 0$, implying that this approach to proving monotonicity of the power function fails in general.

1980 MATHEMATICS SUBJECT CLASSIFICATION:

KEY WORDS & PHRASES: monotonicity of power functions, noncentral Wishart matrix, characteristic roots, orthogonal groups, Euler angles, correlation inequalities, hypergeometric functions of matrix arguments, FKG inequality, pairwise total positive of order two.

NOTE: This report first appeared as the Preprint MSRI 016-83, February 1983, of the Mathematical Sciences Research Institute, Berkeley, California.

Report MS-R8406

Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands .

1. INTRODUCTION

It is shown in Perlman and Olkin (1980) that any test of the hypothesis $\mu=0$ versus $\mu\neq 0$ with acceptance region $\{g(\widetilde{\ell})\leq c\}$, where g is nondecreasing in each argument, is unbiased. Furthermore they make the conjecture that the power function of such a test is nondecreasing in each component λ_i of the vector of noncentrality parameters $\widetilde{\lambda}$ and suggest that this result could be proved by showing that the density ϕ of $\widetilde{\ell}$ can be written $\phi(\widetilde{\ell})=G(\widetilde{\lambda},\widetilde{\ell})\phi_0(\widetilde{\ell})$, where G is pairwise TP_2 (totally positive of order 2) in the pairs (ℓ_1,ℓ_j) , $i\neq j$, and (λ_i,ℓ_j) , $1\leq i$, $j\leq p$ (loc. cit. Proposition 2.6 (ii) and Remark 3.2).

We show in this note that the suggested TP_2 property does not hold in general (see section 4), but that the following partial result of this type does hold: if the dimension of the observations equals 2 and $\widetilde{\lambda}=(\lambda,\lambda)$, then the density ϕ of $\widetilde{\ell}$ can be written $\phi(\widetilde{\ell})=G(\lambda,\widetilde{\ell})\phi_0(\widetilde{\ell})$, where G satisfies the FKG condition on \mathbb{R}^3_+ (we use the notation $\mathbb{R}_+=\{\mathbf{x}\in\mathbb{R}:\mathbf{x}\geq 0\}$). This means

$$(1.1) \qquad G(\lambda_1, \widetilde{\ell}) G(\lambda_2, \widetilde{\ell}_2) \leq G(\lambda_1 \wedge \lambda_2, \widetilde{\ell}_1 \wedge \widetilde{\ell}_2) G(\lambda_1 \vee \lambda_2, \widetilde{\ell}_1 \vee \widetilde{\ell}_2),$$

for $(\lambda_i, \tilde{\ell}_i) \in \mathbb{R}^3_+$, i = 1,2. Here we use the conventions $x \wedge y = \min(x,y)$, $x \vee y = \max(x,y)$, if $x,y \in \mathbb{R}$ and $x \wedge y = (x_1 \wedge y_1, \dots, x_n \wedge y_n)$, $x \vee y = (x_1 \vee y_1, \dots, x_n \vee y_n)$, if $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$. Since in our case the function G is strictly positive on \mathbb{R}^3_+ , proving that G satisfies the FKG condition on \mathbb{R}^3_+ is euivalent to proving that G is pairwise TP_2 on \mathbb{R}^3_+ (cf. Perlman and Olkin (1980), Remark 2.3). This means that the power function is monotone "on the diagonal" in the 2-dimensional case. We believe that this property holds generally (i.e. also for dimensions higher than 2), but were not able to adapt our method of proof to the higher dimensional case.

The key lemmas in our approach are given in Section 2. They give

integral inequalities for diagonal elements of an orthogonal matrix under densities of an exponential type with respect to Haar measure on the orthogonal group. These lemmas are similar in spirit to correlation inequalities for spin configurations in Kelly and Sherman (1968).

The results in Section 3 follow easily from the Lemmas in Section 2 by using the integral representation of the hypergeometric function $_0F_1(\frac{1}{2}n;\frac{1}{4}\Lambda,L)$, where $\Lambda=\mathrm{diag}(\lambda_1,\lambda_2)$, $L=\mathrm{diag}(\ell_1,\ell_2)$, which is given in James (1961). If $\Lambda=\lambda I$, with $\lambda\geq 0$, this integral reduces to an integral over the orthogonal group O(n) (instead of a repeated integral involving the orthogonal groups O(2) and O(n)). The density $\phi(\tilde{\ell})$ of the characteristic roots ℓ_1 and ℓ_2 of XX' can then be written $\phi(\tilde{\ell})=G(\lambda,\tilde{\ell})\phi_0(\tilde{\ell})$, where $G(\lambda,\tilde{\ell})=0F_1(\frac{1}{2}n;\frac{1}{4}\lambda I,L)\exp(-\lambda)$ and ϕ_0 is the density under the null hypothesis $\mu=0$. The TP_2 properties of the function $_0F_1(\frac{1}{2}n;\lambda I,L)$. The monotonicity result for the power function follows from this by using the FKG inequality due to Fortuin, Ginibre and Kasteleyn (1971). For an exposition on the FKG inequality and its uses we refer to Kemperman (1977) and Perlman and Olkin (1980).

2. INTEGRAL INEQUALITIES FOR DIAGONAL ELEMENTS OF AN ORTHOGONAL MATRIX

<u>LEMMA. 2.1</u>. Let $a_1 \ge a_2 \ge 0$ and let H be an $n \times n$ orthogonal matrix, where $n \ge 2$. Then the diagonal elements h_{11} and h_{22} have a non-negative covariance under the density

(2.1)
$$f(h_{11},h_{22}) = \exp\{\sum_{i=1}^{2} a_i h_{ii}\} / \int_{0(n)} \exp\{\sum_{i=1}^{2} a_i h_{ii}\} dH$$

with respect to Haar measure on O(n), where dH denotes Haar measure on O(n).

<u>PROOF.</u> First consider the special orthogonal group SO(n) of orthogonal matrices with determinant equal to one. Any $H \in SO(n)$ can be written as a product $H_{n-1} \cdots H_1$ of rotations H_1, \cdots, H_{n-1} , where

(2.2)
$$H_k = H^{(1)}(\theta_{1k})...H^{(k)}(\theta_{kk})$$

and $H^{(i)}(\theta_{ik})$ is a rotation by the angle θ_{ik} in the (x_i, x_{i+1}) -plane, oriented such that the rotation from the i^{th} unit vector e_i to the $(i+1)^{th}$ unit vector e_{i+1} is positive. The angles θ_{ik} vary as follows:

(2.3)
$$\begin{cases} 0 \le \theta_{ik} < 2\pi \\ 0 \le \theta_{ik} < \pi, i > 1 \end{cases}$$

These parameters are called *Euler angles*, see e.g Vilenkin (1968), chapter IX. In terms of these parameters, Haar measure on SO(n) is given by

(2.4)
$$dH = c_{n} \prod_{k=1}^{n-1} \prod_{j=1}^{k} \sin^{j-1} \theta_{jk} d\theta_{jk},$$

where

(2.5)
$$c_n = \prod_{k=1}^{n} \Gamma(k/2) / (2\pi^{k/2}),$$

see Vilenkin (1968), p. 439. By induction it is seen that

(2.6)
$$h_{n1} = \prod_{k=1}^{n-1} \sin \theta_{kk}, \quad h_{1n} = (-1)^{n-1} \prod_{k=1}^{n-1} \sin \theta_{k,n-1}.$$

Note that the distribution of (h_{11},h_{22}) under Haar measure on the orthogonal group is the same as the distribution of $(\epsilon_1h_{n1},\,\epsilon_2h_{1n})$, where ϵ_1 and ϵ_2 are independent random variables with the same distribution $P\{\epsilon_i=1\}=P\{\epsilon_i=-1\}=\frac{1}{2}$ and (h_{n1},h_{1n}) is distributed according to Haar measure on SO(n), independent of (ϵ_1,ϵ_2) . Thus, taking the expectation with respect to (ϵ_1,ϵ_2) , we get

$$\int_{0}^{h_{11}h_{22}} f(h_{11},h_{22}) dH$$

$$= c_{1} E \left[\epsilon_{1} \epsilon_{2} \int_{0}^{2\pi} d\theta_{11} \int_{0}^{2\pi} d\theta_{1,n-1} \int_{0}^{\pi} d\theta_{22} \int_{0}^{\pi} d\theta_{2,n-1} \right]$$

$$\cdots \int_{0}^{\pi} \left(\prod_{k=1}^{n=1} (\sin \theta_{kk} \sin \theta_{k,n-1}) \right) (\sin \theta_{n-1,n-1})^{n-2}$$

$$\cdot \left(\prod_{k=1}^{n-2} (\sin^{k-1} \theta_{kk} \sin^{k-1} \theta_{k,n-1}) \right) \cdot$$

$$\begin{aligned}
& \cdot f(\varepsilon_{1} a_{1} \prod_{k=1}^{n-1} \sin \theta_{kk}, \ \varepsilon_{2} a_{2} \prod_{k=1}^{n-1} \sin \theta_{k,n-1}) \ d\theta_{n-1,n-1} \end{bmatrix} \\
& = c_{2} \int_{0}^{\pi/2} d\theta_{11} \int_{0}^{\pi/2} d\theta_{1,n-1} \int_{0}^{\pi/2} d\theta_{22} \int_{0}^{\pi/2} d\theta_{2,n-1} \\
& \cdot \cdot \cdot \int_{0}^{\pi/2} \left(\prod_{k=1}^{n-1} (\sin \theta_{kk} \sin \theta_{k,n-1}) \right) \sinh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{kk} \right) \\
& \cdot \cdot \sinh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k,n-1} \right) \left(\prod_{k=1}^{n-2} (\sin^{k-1} \theta_{kk} \sin^{k-1} \theta_{k,n-1}) \right) \\
& \cdot \cdot \sin^{n-2} \theta_{n-1,n-1} d\theta_{n-1,n-1} \cdot (\cos^{n-1} \theta_{n-1,n-1}) d\theta_{n-1,n-1} \cdot (\cos^{n-1} \theta_{n-1,n-1}) d\theta_{n-1,n-1} d\theta_{n-1,n-1} \cdot (\cos^{n-1} \theta_{n-1,n-1}) d\theta_{n-1,n-1} d\theta_{$$

Note that for n=2 there is only one parameter θ_{11} , for n=3 there are three parameters θ_{11} , θ_{22} , θ_{12} , for n=4 there are five parameters θ_{11} , θ_{22} , θ_{33} , θ_{13} , θ_{23} , etc. The constants c_1 and c_2 are defined by

$$c_{1} = \left[\int_{0}^{2/\pi} d\theta_{11} \int_{0}^{2\pi} d\theta_{1,n-1} \int_{0}^{\pi} d\theta_{22} \int_{0}^{\pi} d\theta_{2,n-1} \right]$$

$$\cdots \int_{0}^{\pi} \left(\int_{k=1}^{n-2} (\sin^{k-1}\theta_{kk} \sin^{k-1}\theta_{k,n-1}) \sin^{n-2}\theta_{n-1,n-1} d\theta_{n-1,n-1} \right]^{-1}$$

and

$$c_{2} = \left[\int_{0}^{\pi/2} d\theta_{11} \int_{0}^{\pi/2} d\theta_{1,n-1} \right]$$

$$\cdots \int_{0}^{\pi/2} \cosh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{kk} \right) \cosh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k,n-1} \right)$$

$$\cdot \left(\prod_{k=1}^{n-2} (\sin^{k-1} \theta_{kk} \sin^{k-1} \theta_{k,n-1}) \right) \sin^{n-2} \theta_{n-1,n-1} d\theta_{n-1,n-1} \right]^{-1}$$

Now let S = $[0,\pi/2]^{2n-3}$ and define the density q on S by

$$q(\theta_{11},\ldots,\theta_{n-1,n-1},\theta_{1,n},\ldots,\theta_{n-2,n-1})$$

$$(2.7) = c_{2} \cosh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{kk} \right) \cosh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k,n-1} \right) \\ \cdot \left[\prod_{k=1}^{n-2} \left(\sin^{k-1} \theta_{kk} \sin^{k-1} \theta_{k,n-1} \right) \right] \sin^{n-2} \theta_{n-1,n-1}.$$

Let
$$\tilde{\theta} = (\theta_{11}, \dots, \theta_{n-1, n-1}, \theta_{1, n-1}, \dots, \theta_{n-2, n-1})$$
, and

(2.8)
$$g_{1}(\widetilde{\theta}) = \begin{pmatrix} n-1 \\ \Pi \\ k=1 \end{pmatrix} \tanh \begin{pmatrix} n-1 \\ a_{1} & \Pi \\ k=1 \end{pmatrix},$$

(2.9)
$$g_{2}(\widetilde{\theta}) = \begin{pmatrix} n-1 \\ \Pi \\ k=1 \end{pmatrix} tanh \begin{pmatrix} n-1 \\ a_{2} \\ k=1 \end{pmatrix} tanh \begin{pmatrix} n-1 \\ a_{2} \\ k=1 \end{pmatrix}.$$

Then

$$\int_{0(n)}^{h_{11}h_{22}} f(h_{11}, h_{22}) dH$$

$$= \int_{0}^{\pi/2} d\theta_{11} \cdots \int_{0}^{\pi/2} {n-1 \choose \prod_{k=1}^{m} (\sin\theta_{kk}\sin\theta_{k,n-1})}$$

$$(2.11) \cdot \tanh\left(a_{1} \prod_{k=1}^{n-1} \sin\theta_{kk}\right) \tanh\left(a_{2} \prod_{k=1}^{n-1} \sin\theta_{k,n-1}\right) q(\widetilde{\theta}) d\theta_{n-1,n-1}$$

$$= E(g_{1}(\theta) g_{2}(\theta))$$

where the expectation is taken with respect to the density q on S. The density q is pairwise TP_2 , since $\frac{\partial^2}{\partial \theta_{ij}\partial \theta_{k\ell}} \log q(\widetilde{\theta}) \ge 0$ for any pair

of different components θ_{ij} and $\theta_{k\ell}$ of $\widetilde{\theta}$, and since q>0 on S. Thus, again by the fact that q>0 on S, it follows that q satisfies the FKG condition on S (cf. Perlman and Olkin (1980), Remark 2.3). Since g_1 and g_2 are both nondecreasing in each argument on S, the FKG inequality implies

(2.12)
$$\mathbb{E}\{g_1(\widetilde{\theta})|g_2(\widetilde{\theta})\} \geq \mathbb{E}g_1(\widetilde{\theta})|\mathbb{E}g_2(\widetilde{\theta})$$

(see e.g. Perlman and Olkin (1980), Remark 2.5). By computations similar to those used in computing $\int_{0}^{h} (n)^{h} 11^{h} 22 f(h_{11}, h_{22}) dH$ it is seen that

(2.13)
$$\int_{0(n)} h_{11} f(h_{11}, h_{22}) dH = Eg_1(\tilde{\theta})$$

(2.14)
$$\int_{0(n)} h_{22} f(h_{11}, h_{22}) dH = Eg_2(\widetilde{\theta})$$

The result now follows from (2.11) to (2.14).

LEMMA 2.2. Under the same conditions as in Lemma 2.1, the diagonal elements $^{\rm h}_{11}$ and $^{\rm h}_{22}$ of H satisfy

(2.15)
$$\int_{0(n)} h_{11} f(h_{11}, h_{22}) dH \ge 0, \quad i = 1, 2,$$

where f is given by (2.1).

PROOF. Using the notation of the proof of Lemma 2.1 we have

$$(2.16) \int_{0(n)} h_{11} f(h_{11}, h_{22}) dH = Eg_{1}(\widetilde{\theta})$$

$$= \int_{S} \begin{pmatrix} n-1 \\ k=1 \end{pmatrix} sin\theta_{kk} tanh \begin{pmatrix} n-1 \\ a_{1} & k=1 \end{pmatrix} sin\theta_{kk} q(\widetilde{\theta}) d\widetilde{\theta},$$

where $S = [0,\pi/2]^{2n-3}$; see (2.7), (2.8) and (2.13). The expression at the right-hand side of (2.16) is clearly non-negative (and strictly positive if $a_1 > 0$). The proof for h_{22} is completely similar.

3. TOTAL POSITIVITY AND MONOTONICITY

THEOREM. Let L = diag(ℓ_1 , ℓ_2) and Λ = diag(λ , λ), where $\ell_i \geq 0$, i = 1,2, and $\lambda > 0$. Then the hypergeometric function $_0F_1(\frac{1}{2}n;\frac{1}{4}\Lambda,L)$ is TP_2 in (ℓ_1 , ℓ_2) and in (ℓ_i , λ), j = 1,2, for each $n \geq 2$.

PROOF. We use the following integral representation

(3.1)
$$0^{F_{1}(\frac{1}{2}n;\frac{1}{4}\Lambda,L)}$$

$$= \int_{0(2)0(n)} \exp\{tr D_{\lambda}^{\dagger}H_{1}D_{\ell}H_{2}^{\dagger}\} dH_{1} dH_{2},$$

where $H_1 \in O(2)$, $H_2 \in O(n)$ and dH_1 and dH_2 denote Haar measure on O(2) and O(n), respectively; D_ℓ is a 2×n matrix defined by $(D_\ell)_{ij} = \ell_i^{1/2} \delta_{ij}$ and D_λ is a 2×n matrix defined by $(D_\ell)_{ij} = \ell_i^{1/2} \delta_{ij}$ and D_λ is a 2×n matrix defined by $(D_\lambda)_{ij} = \lambda_i^{1/2} \delta_{ij}$ where δ_{ij} is Kronecker's delta (see e.g. James (1961)). When $\Lambda = \operatorname{diag}(\lambda,\lambda)$ we obtain the following integral representation

(3.2)
$$_{0}^{F_{1}(\frac{1}{2}n; \frac{1}{4}\Lambda, L)} = \int_{0(n)} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH,$$

since in this case

$$\int_{0(n)} \exp\{\operatorname{tr} D_{\lambda}^{\dagger} H_{1} D_{\ell} H_{2}^{\dagger}\} dH_{2}$$

$$(3.3) = \int_{0(n)} \exp\{\lambda^{1/2} \sum_{i=1}^{2} \sum_{j=1}^{2} h_{ij}^{(1)} h_{ij}^{(2)} \ell_{i}^{1/2}\} dH_{2}$$

$$= \int_{0(n)} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH$$

where $H_1 = (h_{ij}^{(1)})$ and $H_2 = (h_{ij}^{(2)})$. The last equality in (3.3) holds, since

(3.4)
$$\sum_{i=1}^{2} \sum_{j=1}^{2} h_{ij}^{(1)} h_{ij}^{(2)} \ell_{j}^{1/2} = \operatorname{tr} \bar{H}_{1} A(L) H_{2}^{i},$$

where A(L) is the n×n matrix defined by A(L) $= \ell_1^{1/2}$, i = 1,2, A(L) = 0 for other values of (i,j) and = 0 is the n×n orthogonal matrix defined by (= 0,1) = 0 = 0 = 0 for other values of (i,j) and = 0 is the n×n orthogonal matrix defined by (= 0,1) = 0 =

Let
$$F = {}_{0}F_{1}(\frac{1}{2}n; \frac{1}{4}\Lambda, L)$$
. Then

$$\frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} \log F$$

$$= \frac{1}{4} \lambda (\ell_{1} \ell_{2})^{-1/2} \int_{0 (n)}^{h_{11} h_{22}} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH / F$$

$$- \frac{1}{4} \lambda (\ell_{1} \ell_{2})^{-1/2} \left[\int_{0 (n)}^{h_{11}} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH / F \right]$$
(3.5)

$$\cdot \left[\int_{0(\mathbf{n})} h_{22} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH / F \right]$$

and

$$\frac{\partial^{2}}{\partial \lambda \partial \ell_{i}} \log F$$

$$= \frac{1}{4} (\lambda \ell_{i})^{-1/2} \int_{0(n)} h_{ii} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dF / F$$

$$+ \frac{1}{4} \ell_{i}^{-1/2} \int_{0(n)} h_{ii} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{jj} \exp\{\lambda^{1/2} \sum_{j=1}^{2} \ell_{j}^{1/2} h_{ij}\} dH / F$$

(3.6)

$$-\frac{1}{4}\ell_{i}^{-1/2} \left[\int_{0(n)}^{2} \int_{j=1}^{2} \ell_{j}^{1/2} h_{jj} \exp\{\lambda_{j}^{1/2} \int_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH / F \right] \cdot \left[\int_{0(n)}^{2} h_{ii} \exp\{\lambda_{j}^{1/2} \int_{j=1}^{2} \ell_{j}^{1/2} h_{jj}\} dH / F \right].$$

By Lemmas 2.1 and 2.2 it follows that (3.5) and (3.6) are nonnegative. Hence F is pairwise TP_2 in (ℓ_1, ℓ_2) and (ℓ_i, λ) , i = 1, 2.

The following corollary shows that the power function is monotone "on the diagonal".

COROLLARY. Let $\tilde{\ell} = (\ell_1, \ell_2)$ be distributed according to the density

(3.7)
$$\phi_{\lambda}(\widetilde{\ell}) = \exp(-\lambda)_{0} F_{1}(\frac{1}{2}n; \frac{1}{4}\Lambda, L) \phi_{0}(\widetilde{\ell}),$$

where $\Lambda = \operatorname{diag}(\lambda, \lambda)$, $L = \operatorname{diag}(\ell_1, \ell_2)$

where
$$\Lambda = \text{diag}(\lambda, \lambda)$$
, $L = \text{diag}(\ell_1, \ell_2)$,
$$(3.8) \quad \phi_0(\tilde{\ell}) = \begin{cases} k(\ell_1 - \ell_2)(\ell_1 \ell_2)^{\frac{1}{2}(n-3)} \exp(-\frac{1}{2}(\ell_1 + \ell_2)), & \ell_1 \geq \ell_2 \geq 0 \\ 0, & \text{otherwise}, \end{cases}$$

and k>0 is a constant such that ϕ_0 is a probability density. Then the function $\lambda \mapsto \int_{\mathbb{R}^2} g(\widetilde{\ell}) \phi_{\lambda}(\widetilde{\ell}) d\widetilde{\ell}$, $\lambda \geq 0$, is nondecreasing for each g which is nondecreasing in the components ℓ_1 and ℓ_2 of $\widetilde{\ell}$.

PROOF. Define

(3.9)
$$G(\lambda, \ell_1, \ell_2) = \exp(-\lambda) {}_{0}F_{1}(\frac{1}{2}n ; \lambda I, L).$$

Then G > 0 on the rectangle \mathbb{R}^3_+ . Since $\frac{\partial^2}{\partial \ell_1 \partial \ell_2} \log G(\lambda, \ell_1, \ell_2) \geq 0$ and $\frac{\partial^2}{\partial \ell_j \partial \lambda} \log G(\lambda, \ell_1, \ell_2) \geq 0$ for each $(\lambda, \ell_1, \ell_2) \in \mathbb{R}^3_+$, it follows that G is pairwise TP_2 on \mathbb{R}^3_+ . Since G > 0 on \mathbb{R}^3_+ , this implies that G satisfies the FKG condition on \mathbb{R}^3_+ (cf. Perlman and Olkin (1980), Remark 2.3). The result now follows from Proposition 2.6 (ii) and Remark 2.7 in Perlman and Olkin (1980).

4. A COUNTEREXAMPLE

We show that the approach to proving monotonicity of the power function by showing that $_0F_1(\frac{1}{2}n;\frac{1}{4},L)$ is pairwise TP_2 (which worked "on the diagonal" in Section 3), fails in general. Take n=2, $\Lambda=\mathrm{diag}(\lambda,0)$, $\lambda>0$, $L=(\ell_1,\ell_2)$, $\ell_1\geq 0$, i=1,2. Then by the same line of argument as used in Lemma 2.1 we have

$$\begin{split} \frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} \,_{0}F_{1}(\frac{1}{2}n;\frac{1}{4},L) &= \frac{\partial^{2}}{\partial \ell_{1} \ell_{2}} \int_{0(2)0(2)} \exp\{\operatorname{tr}^{-1/2}H_{1}L^{1/2}H_{2}^{*}\} \,_{dH_{1}} \,_{dH_{2}} \\ &= \frac{1}{4}\lambda(\ell_{1}\ell_{2})^{-1/2} \int_{0(2)} \int_{0(2)} h_{11}^{(1)} h_{11}^{(2)} h_{12}^{(1)} h_{12}^{(2)} h_{12}^{(2)} \\ & \cdot \exp\{\lambda^{1/2} \int_{j=1}^{2} h_{1j}^{(1)} h_{1j}^{(2)} \ell_{j}^{1/2}\} \,_{dH_{1}} \,_{dH_{2}} \\ &= \frac{1}{\pi^{2}} \lambda(\ell_{1}\ell_{2})^{-1/2} \int_{0}^{\pi/2} d\theta_{1} \int_{0}^{\pi/2} \cos\theta_{1} \cos\theta_{2} \sin\theta_{1} \sin\theta_{2} \\ & \cdot \sinh(\lambda^{1/2}\ell_{1}^{1/2} \cos\theta_{1} \cos\theta_{2}) \sinh(\lambda^{1/2}\ell_{2}^{1/2} \sin\theta_{1} \sin\theta_{2}) \,_{d\theta_{2}}, \end{split}$$

where
$$H_1 = (h_{ij}^{(1)} \text{ and } H_2 = (h_{ij}^{(2)} \text{. Define the density q on } [0, \pi/2]^2 \text{ by}$$

$$(4.1) \qquad q(\theta_1, \theta_2) = k. \cosh(\lambda^{\frac{1}{2}} \ell_1^{\frac{1}{2}} \cos\theta_1 \cos\theta_2) \cosh(\lambda^{\frac{1}{2}} \ell_2^{\frac{1}{2}} \sin\theta_1 \sin\theta_2),$$

where k > 0 is chosen such that q is a probability density and define

$$g_{1}(\theta_{1},\theta_{2}) = -\cos\theta_{1}\cos\theta_{2} \tanh(\lambda^{1/2}\ell_{1}^{1/2}\cos\theta_{1}\cos\theta_{2})$$

$$g_{2}(\theta_{1},\theta_{2}) = \sin\theta_{1}\sin\theta_{2}\tanh(\lambda^{1/2}\ell_{2}^{1/2}\sin\theta_{1}\sin\theta_{2}).$$

The density q clearly satisfies the FKG condition on S and hence, since g_1 and g_2 are both increasing in θ_1 and θ_2 on S, we have by the FKG inequality

(4.3)
$$\mathbb{E} g_1(\theta_1, \theta_2)g_2(\theta_1, \theta_2) \geq \mathbb{E} g_1(\theta_1, \theta_2)\mathbb{E} g_2(\theta_1, \theta_2),$$

where the expectation is taken with respect to the density q on S. Moreover, the inequality in (4.3) is strict (cf. Perlman and Olkin (1980), Proposition 2.4 (ii)). Let $F = {}_{0}F_{1}(1, \Lambda, L)$. Then

(4.4)
$$\frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} \log F = \left(\frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} F\right) / F - \frac{\partial F}{\partial \ell_{1}} \frac{\partial F}{\partial \ell_{2}} / F^{2}$$
$$= \frac{1}{4} \lambda (\ell_{1} \ell_{2})^{-1/2} (-E g_{1} g_{2} + E_{g_{1}} E_{g_{2}}) < 0,$$

implying that F is not TP_2 in the pair (ℓ_1, ℓ_2) .

However, it is shown by a completely different method in Perlman and Olkin (1980) that any test of the type described in Section 1 has a power function which is increasing in λ , if $\Lambda = \text{diag}(\lambda,0)$.

Acknowledgement. We have benefited from helpful remarks by Tom Koornwinder on an earlier draft of this manuscript.

REFERENCES

- [1] FORTUIN, C.M. J. GINIBRE, & P.W. KASTELEYN, (1971), Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89-103.
- [2] JAMES, A.T. (1955), A generating function for averages over the orthogonal group. Proc. Roy. Soc. London Ser. A 229, 367-375.

- [3] JAMES, A.T. (1961), The distribution of noncentral means with known covariance. Ann. Math. Statist. 32, 874-882.
- [4] KELLY, D.G. & S. SHERMAN, (1968), General Griffiths inequalities on correlations in Ising ferromagnets. J. Mathematical Phys. 9, 466-484.
- [5] KEMPERMAN, J.H.B. (1977), On the FKG inequality for measures on a partially ordered space. Indag. Math. 39, 313-331.
- [6] PERLMAN, M.D. & I. OLKIN. (1980), Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8, 1326-1341.
- [7] VILENKIN, N.J. (1968), Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, American Math. Soc., Providence, Rhode Island, U.S.A.