

Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science

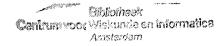
H.C.P. Berbee

A limit theorem for the superposition of renewal processes

Department of Mathematical Statistics

Report MS-R8408

May



A LIMIT THEOREM FOR THE SUPERPOSITION OF RENEWAL PROCESSES

H.C.P. BERBEE

Centre for Mathematics and Computer Science, Amsterdam

The asymptotics of a superposition of renewal point processes is studied from the point of view of Palm theory.

1980 MATHEMATICS SUBJECT CLASSIFICATION: Primary: 60G55, Secondary: 60G10, 60K05.

KEY WORDS & PHRASES: stationary, renewal process, Palm measure, superposition, asymptotics.

Report MS-R8408

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1. Introduction

In this section some known results from the theory of the superposition of point processes (p.p.) are given. In a generalized form they can be found in Matthes [1963].

Let N be a p.p. on the Borel line $(R^{1} \cdot \mathbb{S}^{1})$. The translation T_{t} on the Borel line is the map $T_{t}: x \to x - t$. Define the translation $T_{t}N$ of N by $T_{t}N(A) = N(T_{t}A)$, $A \in \mathbb{S}^{1}$. The process N is stationary if for all t the p.p. N and $T_{t}N$ have the same distribution. We assume the intensity $\lambda = EN(0,1]$ is finite. If P is the distribution of N, we write P_{0} for the Palm measure of P. In Palm measure can be seen as the distribution of N under the condition "a point occurs at 0". This condition has probability zero but there is a way to give the statement a proper meaning. If a p.p. N_{0} has distribution P_{0} , with points in $\cdots < U_{-1} < U_{0} = 0 < U_{1} < \cdots$ then the p.p. $T_{U_{t}}N_{0}$ has distribution P_{0} too.

Let $N_1,...,N_k$ be independent p.p. on the Borel line with distribution $P_1,...,P_k$. The distribution of the multivariate p.p. $N = (N_1,...,N_k)$ is denoted by $P_1x...xP_k$.

Now assume the p.p. N_j are stationary with intensity λ_j and do not have multiple points. The superposition of N is defined as $N^s = N_1 + ... + N_k$. The superposition has intensity $\lambda = \lambda_1 + ... + \lambda_k$. Let Q_0 be the Palm measure of the distribution $Q = P_1 x ... x P_k$ of N, that is the distribution of N conditioned to "a point of N^s " occurs at 0". The Palm measure satisfies

$$Q_0 = \sum_{i=1}^k \frac{\lambda_i}{\lambda} P^1 x ... x P^{i-1} x P_0^i x P^{i+1} x ... x P^k.$$

Let N_0 have distribution Q_0 . The p.p. N_0^s has no multiple points. Denote the points of N_0^s by $\cdots < U_{-1} < U_0 < U_1 < \cdots$. The p.p. $T_{U_0} N_0$ has distribution Q_0 too.

Let $Q_n, n \ge 1$ and Q be distributions of a multivariate p.p. with k components. Say an interval I is Q-continuous if for both boundary points x the event $N^s\{x\}=0$ has Q-measure 1. Say Q_n converges weakly to Q or

$$Q_n \Rightarrow Q$$

if for all Q-continuous intervals $J_1,...,J_l,l \ge 1$ the simultaneous distribution of the random vectors $N(J_1),...,N(J_l)$ under Q_n -measure converges weakly to the distribution of these vectors under Q-measure.

2. A limit theorem for the superposition of renewal processes

Let F be a distribution function on $(0,\infty)$ with finite mean $\mu>0$. Assume F is not lattice, so F is not concentrated on any set $L_d=\{nd:n\in\mathbb{Z}\}$. F is called centered lattice if F is concentrated on a coset $\alpha+L_d$ of a lattice L_d . We define a p.p. called the stationary renewal process as follows. Assume $X_1,X_2,...,Y_1,Y_2,...$ and (X_0,Y_0) are independent. Let $X_1,X_2,...,Y_1,Y_2,...$ have distribution F. The simultaneous distribution of (X_0,Y_0) is given by

$$P(X_0 > x, Y_0 > y) = \int_{x+y}^{\infty} \frac{1 - F(t)}{\mu} dt, x, y \ge 0$$

The marginal distribution of X_0 , and Y_0 is called the *survivor* distribution of F. Let the p.p. N have points

$$\left\{\sum_{i=0}^{n} X_{i}, n \ge 0\right\} \cup \left\{-\sum_{i=0}^{n} Y_{i}, n \le 0\right\}.$$

It can be checked easily that N is stationary. A p.p. distributed as N is called a stationary renewal process. Its distribution will be denoted by P_F . The intensity of N is $\frac{1}{\mu}$. Let the p.p. N_0 have points

$$\{\sum_{i=1}^{n} X_{i}, n \ge 1\} \cup \{0\} \cup \{-\sum_{i=1}^{n} Y_{i}, n \le 1\}.$$

It can be shown that the distribution of N_0 is the Palm measure $(P_F)_0$. The restriction of N_0 to $[0,\infty)$ describes the set of points visited by a random walk started in 0. This restriction is called the ordinary renewal process.

Let F_j be distribution functions on $(0,\infty)$ with mean μ_j and non lattice, $1 \le j \le k$. Let $\overline{M}_1, \ldots, \overline{M}_k$ be independent ordinary renewal processes with distribution $F_1,...,F_k$. The r.v. $X_1,...,X_k$ are assumed to be independent of $\overline{M}_1,\ldots,\overline{M}_k$. The modified (multivariate) renewal process with initial point $(X_1,...,X_k)$ is defined as

$$M = (T_{X_1}\overline{M}_1,...,T_{X_k}\overline{M}_k).$$

Let the superposition M^s have points

$$S_0 \leqslant S_1 \leqslant S_2 \leqslant \cdots$$

in which the equalities account for possible multiplicities of points of M^s . There are two important examples of modified renewal processes.

Example 1.

Let N have distribution $Q = P_{F_1}x...xP_{F_k}$. N is invariant under T_t . The restriction of the components of N to $[0,\infty)$ determines a modified renewal process M. The initial point $(X_1,...,X_k)$ consists of independent r.v., distributed as the survivor distribution of F_i .

Example 2.

Let N_0 have distribution Q_0 , the Palm measure of Q. The points of N^s are denoted by

$$\cdots < U_{-1} < U_0 = 0 < U_1 < \cdots$$

N is invariant under T_{U_n} . The restriction of the components of N_0 to $[0,\infty)$ determines a modified renewal process. The initial point $(X_1,...,X_k)$ satisfies $P(X_j=0)=\frac{\lambda_j}{\lambda}=\frac{1/\mu_j}{1/\mu_1+...+1/\mu_k}$. Under the condition $X_j=0$ the r.v. $X_i,i\neq j$ are independent; their distribution is the survivor distribution of F_i . Because of the invariance property the interval lengths U_n-U_{n-1} in the superposed process have the same distribution, say G. As can be seen from the structure of Q_0

$$Q_0 = \sum_{i=1}^{k} \frac{\lambda_i}{\lambda} P_{F_1} x... x (P_{F_i})_0 x... x P_{F_k}$$

this distribution G is given by

$$G(x,\infty) = \sum_{j=1}^{k} \frac{\lambda_j}{\lambda} (1 - F_j(x)) \prod_{i \neq j} \int_{x}^{\infty} \frac{1 - F_i(t)}{\mu_i} dt.$$

Both examples 1 and 2 correspond to convergence theorems. Example 1 corresponds to:

Theorem 1. If the distributions F_i , $1 \le j \le k$ are non-lattice, the modified renewal process M satisfies

$$P_{T_t}M \Rightarrow Q$$
 for $t \rightarrow \infty$.

Proof. For k=1 the theorem is a well known consequence of the renewal theorem. Because of the independence of the component processes the case k>1 is a consequence of k=1. \square

Example 2 corresponds to:

Theorem 2.

- (i) If all distribution functions F_j , $1 \le j \le k$, are not lattice and not centered lattice or
- (ii) if all distribution functions $F_j = F$, $1 \le j \le k$ are identical and are not lattice then the modified renewal process M satisfies

$$P_{T_sM} \Rightarrow Q_0 \text{ for } n \rightarrow \infty$$

Proof. The proof will be based on a coupling argument for random walks developed in Ornstein [1969]. Construct a probability space (Ω, \mathcal{C}, P) with two independent processes $S_n^{(j)}$, $n \ge 0$, $1 \le j \le k$, and $T_n^{(j)}$, $-\infty < n < \infty$, $1 \le j \le k$, satisfying the following properties. The sets of points $\{S_n^{(j)}: n \ge 0\}$, $1 \le j \le k$, determine the points of a p.p., simultaneously distributed as the components of the given modified renewal process M_j , $1 \le j \le k$. The set of points $\{T_n^{(j)}: -\infty < n < \infty\}$, $1 \le j \le k$, determine the component, of a p.p. N_0 with distribution Q_0 . For all its components, $T_0^{(j)}$ is chosen to be its first non negative r.v. The increments of $S_n^{(j)}$ are denoted by $X_n^{(j)} = S_n^{(j)} - S_{n-1}^{(j)}$, $n \ge 1$ and of $T_n^{(j)}$ by $Y_n^{(j)} = T_n^{(j)} - T_{n-1}^{(j)}$, $n \ge 1$. All of these increments are independent and F_j -distributed.

Let $J_1,...,J_l$ be Q_0 -continuous intervals. Choose a number η such that

$$P(N_0^s(x-2\eta,x+2\eta) \ge 1$$
 for any boundary point x of $J_1,...,J_l) < \epsilon$

Extend the intervals J_i at both sides with 2η to get J_i^+ and let J_i shrink at both sides with 2η to get J_i^- . Choose an interval J of the form (a,∞) , $a \in \mathbb{R}^1$ that contains all intervals J_i^+ . We shall give a coupling with coupling distance η . The proof of (ii) contains a problem that concerns the numbering of points of the coupled process. Therefore we have to deal with (i) and (ii) separately.

Case (i). Consider for j=1,...,k the difference $S_n^{(j)}-T_n^{(j)}=S_0^{(j)}-T_0^{(j)}+\sum\limits_{i=1}^n Z_i^{(j)}$ in which $Z_i^{(j)}=X_i^{(j)}-Y_i^{(j)}$. Because F_j is not centered lattice and not lattice distributed, the difference $Z_i^{(j)}$ is not lattice distributed, and has $EZ_i^{(j)}=0$. The random walk $S_n^{(j)}-T_n^{(j)}$, $n\geq 1$ is recurrent. Take $\tau^{(j)}$ the first entrance time into the neighbourhood $(-\eta,\eta)$ of zero. Because of the Markov property, given $\tau^{(j)}$ the increments $(X_n^{(j)})_{n>\tau^{(j)}}$ and $(Y_n^{(j)})_{n>\tau^{(j)}}$ are independent of the process $(S_n^{(j)},T_n^{(j)})$ for $n\leq \tau^{(j)}$, and also independent of the other components. Given $\tau^{(j)}$ the increments are independent and F_j -distributed. Now exchange in $S_n^{(j)}$ the increments $X_n^{(j)}$ by $Y_n^{(j)}$ for $n>\tau^{(j)}$. We obtain the process $\tilde{S}_n^{(j)}$, $n\geq 0$, distributed as $S_n^{(j)}$, $n\geq 0$. This procedure has to be performed for all indexes $1\leq j\leq k$. The result is a p.p. \tilde{M} , distributed as M, with points $\{\tilde{S}_n^{(j)}:n\geq 0\}$, $1\leq j\leq k$, such that $\tilde{S}_n^{(j)}$ and $T_n^{(j)}$ differ at most η for all n exceeding a random time $\tau=\max \tau^{(j)}$.

Let the superposition \tilde{M}^s have points $\tilde{S}_0 \leqslant \tilde{S}_1 \leqslant \cdots$, and the superposition N_0^s points $T_0 \leqslant T_1 \leqslant T_2 \leqslant \cdots$. Consider the interval $\tilde{S}_n + J$. Choose n so large that on $A \subseteq \Omega$ with probability $P(A) > 1 - \epsilon$, the points of the components of \tilde{M} and N_0 are coupled at distance at most η on this interval $\tilde{S}_n + J$. Then also for the superposed processes $|\tilde{S}_n - T_n| \leqslant \eta$ on A. So the points of the translated p.p. $T_{\tilde{S}_n}\tilde{M}$ and $T_{T_n}N_0$ are coupled with distance at most 2η on J. On the set A

$$T_{T_n}N_0(J_i^-) \leq T_{\tilde{S}_n}\tilde{M}(J_i) \leq T_{T_n}N_0(J_i^+).$$

Because of the invariance of N_0 under T_{T_n} and the choice of η

$$P(T_{T_n}N_0(J_i^-)\neq T_{\tilde{S}_n}\tilde{M}(J_i))$$
 for some i)< ϵ .

Therefore

$$P(T_T N_0(J_i) \neq T_{\tilde{S}} \tilde{M}(J_i)) \leq P(A^c) + \epsilon.$$

Because $T_{T_0}N_0$ has distribution Q_0 the asserted convergence follows from this inequality.

Case (ii). We consider the case of k identical distributions $F_j = F$. Because of what is proved in case (i) we only have to consider a non-lattice, centered-lattice distributed F. Let L_d be the minimal lattice for which F is concentrated on a coset of L_d . Assume F is concentrated on $\alpha + L_d$. The ratio α / d cannot be rational, and so the ratio $k \alpha / d$ is rational. Choose numbers $p_j, 1 \le j \le k$, depending on $S_0^{(j)} - T_0^{(j)}$ such that $p_j \cdot k \alpha + S_0^{(j)} - T_0^{(j)} = \delta_j$ (mod d) with $|\delta_j| < \eta$. Let $p = p_1 + \ldots + p_k$; then the sum of $\tilde{p}_1 = kp_1 - p, \ldots, \tilde{p}_k = kp_k - p$, equals zero. Now choose positive numbers m_1, \ldots, m_k with $\tilde{p}_1 = m_1 - m_2, \ldots, \tilde{p}_{k-1} = m_{k-1} - m_k$. We remark that $m_k - m_1 = (m_k - m_{k-1}) + \ldots + (m_2 - m_1) = -\tilde{p}_{k-1} - \ldots - \tilde{p}_1 = \tilde{p}_k$. Because F is concentrated on $\alpha + L_d$ it follows that

$$S_{m_1}^{(1)} - T_{m_2}^{(1)} = kp_1\alpha - p\alpha + S_0^{(1)} - T_0^{(1)} \pmod{d} = (\delta_1 - p\alpha) \pmod{d}$$
......
$$S_{m_{k-1}}^{(k-1)} - T_{m_k}^{(k-1)} = \cdots = (\delta_{k-1} - p\alpha) \pmod{d}$$

$$S_m^{(k)} - T_{m_k}^{(k)} = \dots = (\delta_k - p\alpha) \pmod{d}$$

The numbers $v_j = \delta_j - p \alpha$, $1 \le j \le k$ and $v = p \alpha$ satisfy $|v_j - v| < \eta$. We have reached that (mod d) the S-process shifted over a distance v and the T-process have distance at most η at the indicated times. Consider $S_{m_1+n}^{(1)} - T_{m_2+n}^{(1)}$, $n \ge 0$. The numbers m_j depend on $S_0^{(j)}$ and $T_0^{(j)}$, $1 \le j \le k$ only, so $S_{m_1+n}^{(1)} - T_{m_2+n}^{(1)}$ is a random walk with increments $Z_n^{(1)} = X_{m_1+n}^{(1)} - Y_{m_2+n}^{(2)}$. Because of the choice of L_d the r.v. $Z_n^{(1)}$ have a distribution with minimal lattice L^d , and expectation zero. So the random walk $S_{m_1+n}^{(1)} - T_{m_2+n}^{(1)}$, $n \ge 0$ on $v_1 + L_d$ is recurrent. Take τ_1 the first entrance time of the random walk into v_1 . Now exchange in $S_n^{(j)}$ the increments $(X_n^{(1)})_{n \ge \tau_1}$ with $(Y_n^{(1)})_{n \ge \tau_1}$ to obtain the process $\tilde{S}_n^{(j)}$. Using the Markov property, it follows again that the replacement does not change the distribution. This coupling has to be performed for all components. The result is a process \tilde{S} such that

$$|v + \tilde{S}_{m_1+n}^{(1)} - T_{m_2+n}^{(1)}| < \eta$$
......
$$|v + \tilde{S}_{m_{k-1}+n}^{(1)} - T_{m_k+n}^{(k-1)}| < \eta$$

$$|v + \tilde{S}_{m_k+n}^{(k)} - T_{m_1+n}^{(k)}| < \eta$$

for all n exceeding some random time τ . Denote by \tilde{M} the p.p. determined by the \tilde{S} -process.

About the numbering of points we remark the following. Take from each component of the $\tilde{S}_n^{(j)}$ -process a "coupled" point, say with index $m_j + n_j$, $1 \le j \le k$. The index sum is $\sum_{j=1}^k (m_j + n_j)$. Consider the set of points of the $T_n^{(j)}$ - process that coincide by the coupling with the selected points of the $\tilde{S}_n^{(j)}$ -process. Remark that the index sum of these points is $\sum_{j=1}^k (m_j + n_j)$. So each selection of points of the components of \tilde{M} coincides by the coupling with points of N_0 in such way that both index sums are equal. The points of the superposed process of \tilde{M} are given by $\tilde{S}_n = \max_{n_1 + \dots + n_k = n} (\min_j \tilde{S}_{n_j}^{(j)})$ and for N_0 by $T_n = \max_{n_1 + \dots + n_k = n} (\min_j \tilde{S}_{n_j}^{(j)})$. So if n is large enough the superposition points satisfy $|v + \tilde{S}_n - T_n| < \eta$. Consider again the interval $\tilde{S}_n + J$. Choose n so large that on $A \subset \Omega$ with $P(A) > 1 - \epsilon$ the components of \tilde{M} and N_0 only have coupled points. So on that interval the points of the $S_n^{(j)}$ -process shifted over a distance v coincide with the points of the $T_n^{(j)}$ -process with error at most η . But because $|v + \tilde{S}_n - T_n| < \eta$ the points of the translated p.p. $T_{\tilde{S}_n}\tilde{M}$ on J lie separated from the points of $T_{T_n}N_0$ with distance at most 2η . The rest of the proof is the same as in case (i). \square

Corollary 3. Let G be the distribution of the interval length of the Palm process. The convergence to the Palm measure entrails the convergence of the interval length $S_{n+1}-S_n$ to G.

Proof. Choose Q_0 -continuous intervals $J_+ = (\eta, x)$ and $J_- = (-\eta, x)$ such that $P(N_0(-\eta, \eta) > 1) < \epsilon$. Let $n \to \infty$ in the inequality

$$P(T_{S_n}M(J_+)=0) \le P(S_{n+1}-S_n > x) \le P(T_{S_n}M(J_-) \ge 1)$$

According to theorem 2 and the choice of ϵ right- and left-hand limits differ at most ϵ from $P(N_0(0,x)=0)=1-G(x)$. \square

If the distributions $F_1,...,F_k$ are non lattice, but centered lattice the convergence to the Palm measure stated in theorem 2 cannot be proved in general.

Counterexample. We give a counterexample for corollary 3. Take non lattice distributions F_1 and F_2 with F_1 concentrated on $\alpha + L_d$ and F_2 concentrated on $-\alpha + L_d$. Assume the initial point is (0,0). Let M denote the modified renewal process, with superposition points $S_0 \leqslant S_1 \leqslant \cdots$. If both S_n and S_{n+1} are points of the first component of M, then $S_{n+1} - S_n \in \alpha + L_d$. If S_n is a point of the first component (say the κ th point) and S_{n+1} is a point of the second component (the $(n+1-\kappa)$ th point) then $S_{n+1} - S_n \in (n+1)\alpha + L_d$. A consideration of all possibilities gives that $S_{n+1} - S_n \in \{\alpha\} \cup \{-\alpha\} \cup \{(n+1)\alpha\} \cup \{-(n+1)\alpha\} + L_d$, a.s. However the structure of Q_0 shows G has an absolute component. Therefore the distribution of $S_{n+1} - S_n$ does not converge to G.

Acknowledgement. I would like to thank A.A. Balkema for several helpful conversations several years ago.

Literature:

Matthes, K. [1963], Stationäre zufälle Punktfolgen, I. Jahresbericht deutsch. math. Verein. 66, 66-79. Ornstein, D.S. [1969], Random walks I, T.A.M.S. 138, 1-43,

Cox, D.R. & W.L. Smith [1954], On the superposition of renewal processes, Biometrika 41, 91-99. Çinlar, E. [1972], Superposition of point processes; in "Stochastic Point Processes", ed. Lewis, Wiley.