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This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two righthand 
side evaluations can be computed in parallel, so that effectively only one righthand side evaluation per step is 
required. This family is compared with the family of explicit linear two-step methods of Adams type and examples 
of methods with increased stability intervals and methods with increased order of accuracy are given. These methods 
are applied to test problems taken from the test set of Hull et al. and compared with conventional linear multistep 
methods. In addition to the family of two-step, two-stage Runge-Kutta methods, we describe a rather general class of 
k-step, m-stage Runge-Kutta methods in which them righthand side evaluations can also be computed in parallel. 
For this class we indicate how the order equations and stability region can be derived. 
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1. INrRODUCTION 

In the literature, multistep, multistage Runge-Kutta methods (briefly MRK methods) for the 

initial-value problem 

y'(t) = f(y(t)), y(to) =yo, 

have been proposed in order to obtain methods with larger stability regions or with higher orders 

of accuracy than possessed by linear multistep (LM) methods or Runge-Kutta (RK) methods. 

These methods belong to a general class of integration methods, now-adays termed general linear 

methods. An excellent reference for general linear methods, and in particular MRK methods, is the 

recent monograph of Hairer, N!ZSrsett and Wanner [3, p.385], where examples of and further 

references to special families of .such methods can be found. When compared with LM methods, 

MRK methods require more righthand side evaluations per step, and, when compared with RK 

methods, MRK methods require more storage. 

In this note, we propose a class of explicit MRK methods which is designed in such a way 

that all stages in each step can be computed in parallel, so that on computers with as many 

processors as there are stages, the computation time is comparable with that of LM methods, that 

is, they require effectively only one righthand side evaluation per step. In Section 2, we analyse in 

some detail a family of two-step, two-stage RK methods of Adams type and we show that it is 

possible indeed to construct methods which have either larger stability intervals or higher orders of 

accuracy than is possible within the family of conventional linear two-step methods of Adams 

type. The the starting procedure for these methods is of the same complexity as that for 

conventional linear two-step methods. In Section 3, the general k-step, m-stage case is defined, 

and in Section 4 we indicate how the order equations and the stability regions can be derived. ,, 
Section 5, presents numerical results by comparing the stability and accuracy of the example 

methods of Section 2 with that of conventional linear two-step methods for two test problems 
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taken from the test set of Hull et al. [5] and of Enright et al. [2]. These results justify a more 

thorough investigation of the general class of 'parallel MRK methods' proposed in this note. In a 

forthcoming paper, we shall report on further results for these methods. 

2. TWO-PROCF.SSOR ALGORITHMS 

In this section, we analyse the family of two-step, two-stage RK methods of Adams type: 

(2.1) Yn+l = Yn + h[b1fn + b2fn-1 + cf(a1Yn + a2Yn-1 + b3hfn-1)]. 

Here, Yn denotes a numerical approximation to y(tn), h=tn+1-tn, and fn:=f(yn). 
If c:;i:O, then these methods require two righthand side evaluations per step. For c=O the 

method reduces to the two-step Adams-Bashforth type method 

(2.2) Yn+l = Yn + h[btfn + b2fn-ll 

and requires only one righthand side evaluation in each step. For all values of the parameters ah bi 
and c the methods (2.1) are zero-stable. 

The family (2.1) is chosen in such a way that it is suitable for computations on parallel 
computers. By writing (2.1) in the form 

fn = f(yn), 

(2.1 ') gn = f(a1Yn + a2Yn-1 + b3hfn-1), 

Yn+l = Yn + h[b1fn + b2fn-1 + cgn], 

and assuming that the bulk of the numerical integration consists of the evaluations of the function 
f, we see that one processor can compute fn, while at the same time the other processor can 
compute gn. Hence, on two processors, the method (2.1) requires about the same computational 
time as the explicit linear two-step method (2.2). 

The crucial point now is whether (2.1) has advantages over (2.2). For instance, do there exist 

in the family (2.1) methods of higher order than there are in the family (2.2) or does (2.1) contain 
more stable methods than (2.2)? 

In order to answer these questions we need the order conditions for (2.1). It can be shown 
that these conditions read (cf. [4, p. 196]): 

p~ 1: 

p~2: 

p~3: 

In the case of the LM method (2.2), the error constants are given by Cj - ~ . • J. 
Furthermore, we shall need the characteristic polynomial of (2.1) which is given by 
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l;2 - S(z)l; + P(z) , S(z) := 1 + (b1 + ca1)z, P(z) := -z[b2 + ca2 + cb3z], 

where z runs through the eigenvalues of the matrix haf/dy. For a given value of z, this polynomial 

has its roots on the unit disk if the Hurwitz inequalities P(z)~l and IS(z)lg>(z)+ 1 are satisfied. 

Finally, we remark that the storage requirements needed to implement (2.1) are reduced if we 

choose a1=0. We observe that if bi also vanishes, then the 'two-processor' methods (2.1) can be 

implemented in such a way that (2.1) and (2.2) require the same amount of storage. 

2.1. First-order methods with increased real stability interval 

We start with first-order methods. Imposing the corresponding order conditions we find that, 

within the family (2.2), the real stability interval is determined by the Hurwitz inequalities biz2!- l 

and (l-2b2)U:-2. An elementary calculation reveals that for b1i,1that is, for the method 

(2.3) 1 
Yn+l = Yn + 4h[3fn + fn-1], 

the real stability interval is maximized and is given by [-4,0]. Furthermore, the error constant is 

given by C2 - t = - ~. Thus, we are faced with the task to show that the family (2.1) contains 

first-order methods with larger stability intervals and comparable error constants. 

Theorem 2.1. The two-parameter family of methods 

= f(yn), 

(2.4) 3 - 2-fi 
= f(a1yn + (1 - ai)Yn-1 + c hfn-1), c * 0, 

Yn+l = Yn + h[(3 - 2-fi- ca1)fn + (- c - 2 + 2-fi + ca1)fn-l + cgn], 

is first-order accurate with error c;onstant 

and it possesses the real stability interval [-3-2"2, O]. 

Proof. First we eliminate a1 and b1 by means of the order equations. Next, assume that cb3>0 and 

consider the plots of S and P+ 1 as functions of z. Evidently, the length of the interval on the z-axis 

where ISlg>+l, is maximal if S has its zero at the point where P+l has its left zero. Denoting this 

zero by zo we have the relations S(zo)=O and P(zo)+ 1=0. Furthermore, we have to satisfy the 

inequality P(z)~l for zo ~ z ~ 0. This is true if P(zmax)~l, Zmax being the point where P assumes 

its maximum. Thus, we obtain the interval of stability [zo,0] if S(zo)=O, P(zo)+ 1=0, 

P(zmax)~l.The condition S(zo)=O yields zo = - (b1+ca1)-l, and the condition P(zo)+l=O yields 

bi+ca1=cb3i. Hence, P is given by P(z)= -z(l-cb3+cb3z) and the zero zo by zo=-(cb3)-1. Finally, 

we derive from the condition P(zmax)~l that z(}?.-3-2..Ji,,,,_s.8. Hence, choosing bi+ca1=cb3=3-2-fi 

we obtain methods with maximal stability interval. a 
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From this theorem, it follows that it is not possible to increase the accuracy by a judicious 

choice of the parameters c and al. An alternative is to exploit the freedom of the two parameters for 

reducing the storage requirements. For example, by choosing al=l and C=3 - 2TI, we obtain the 

method 

fn = f(yn), 

(2.5) gn = f(Yn + hfn-1), 

Yn+l = Yn + h[ (2TI - 2)fn-1 + (3 - 2"2 )gn]. 

2.2. Second-order methods with increased real stability interval 
Next we turn to second-order methods. The family (2.2) contains just one second-order 

method and this method is the Adams-Bashforth method 

(2.6) 1 
Yn+l = Yn + pi[3fn - fn-1]. 

The Adams-Bashforth method possesses the real stability interval [-1,0] and the error constant 

-i2. We shall show that the family (2.1) contains a two-parameter family of second-order methods 

with negative stability interval [- r· 0]. 

It is elementary verified that by imposing the conditions for second-order accuracy, the 

Hurwitz inequalities assume the form 

and that the largest interval of negative values of z satisfying these inequalities is obtained for 

cb3= i and is given by [-r, _0]. Thus, choosing al and c as free parameters, we have the result 

Theorem 2.2. The two-parameter family of methods 

= f(yo), 

(2.7) 3 = f(a1Yn + (l-a1)Yn-l + 4C"hfo-1), c '* 0, 
3 1 

= Yn + h[( 4 - ca1)fo + ( 4 - c + ca1)fn-l + cgn] Yn+l 

is second-order accurate and possesses the real stability interval [- ~" O]. [] 

It is not possible to exploit the freedom of the two free parameters for raising the order of the 

method. However, by choosing these parameters such that the second third-order condition is 

satisfied, we can compute an error constant C3 -t· so that we obtain a measure for the accuracy. 
A sqnple calculation reveals that this condition is satisfied for 
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to obtain the error constant C3 -t = - ~~ which is about twice as large as the error constant of our 
reference method (2.6) 

As observed earlier, by choosing ai=l, we reduce the storage requirements of the algorithm. 

Setting c= t, we obtain the simple method 

fn = f(yn), 

(2.8) gn = f(Yn + hfn-1), 
1 

Yn+l = Yn + 4 h[fn-1 + 3gn]. 

2.3. Third-order methods 

It is well known that zero-stable, explicit linear two-step methods cannot have order p greater 

than 2, so that methods of type (2.2) are at most second-order accurate. Next, we consider the 

attainable order of (2.1). From the order conditions given above it follows that for third-order 

accuracy 5 conditions are to be satisfied. Since there are 6 free parameters there is one parameter 

left. We shall choose c as the free parameter. It turns out that we cannot choose c such that the 

three additional conditions for fourth-order accuracy are satisfied. Thus, the attainable order of the 

class (2.1) is p=3. 

Unfortunately, the parameter c cannot be used for increasing the stability region of the 

method. This follows immediately from the Hurwitz inequalities used in the preceding subsection. 

These inequalities were derived under the condition of second-order accuracy leaving cb3 as a free 

parameter. It can be shown that for third-order accuracy the value of cb3 should equal -5/6, so that 

the Hurwitz inequalities are fixed for all third-order methods. This leads us to the theorem: 

Theorem 2.3. The one-parameter family of methods 

1 5 1 " 10 = f(yn), al := 2 + 6c ± 2 1 + 3c , 

(2.9) 5 
= f(a1yn + (l-a1)Yn-l - 6c hfn-1), c '# 0, 

7 4 
= Yn + h[( 3 - ca1)fn + (-3 - c + ca1)fn-l + cgn] Yn+l 

is third-order accurate and possesses the real stability interval [ ~ - 11 
, O]. [) 

As before, we consider the storage economic case where a 1=1. It is easily verified that this can be 

achieved by choosing c= {2 . The corresponding scheme is given by 

fn = f(yn), 

(2.10) gn = f(Yn - 2hfn-1), 
23 4 5 

Yn+l = Yn + h[ rrfn -3fn-l + ITgn]. 
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3. m-PROCESSOR ALGORITHM 

The algorithms described above can be generalized for use on m-processor computers. 

Consider the special explicit, multistep RK method 

k m m 

(3.la) Yn+l = L [ajYn+l-j + h L bijfn+l-j,i] + h L bifn+l,i , 
j=l i=l i=l 

where the righthand side values f n+ 1-j,i are defined according to the formula 

k m 

(3.lb) fn+l,s := f(L [csjYn+l-j + h L dsijfn+l-j,i]), s = 1, ... , m. 
j=l i=l 

Evidently, the evaluation of the values fn+1,1, ... .fn+l,m can be done independently of each other. 

Thus, if m processors are available, then the required computation time for executing one step 

roughly corresponds to just one f-evaluation. 

3.1. Linear multistep version 

Let us introduce the 1-by-m matrices Bo:=(bi) and Bj:=(bij), the m-by-1 matrices Cj==(Cij), 

the m-by-m matrices Dj==(dsij), and the (column) vectors fn:=(fni), where j=l, ... ,k. Then the 

algorithm (3.1) can be written in the more compact form 

k 

(3.2a) Yn+l = L [ajYn+l-j + hBjfn+l-j] + hBofn+l• 
j=l 

k 

(3.2b) fn+l := f(L [ CjYn+l-j + h Djfn+l-j]). 
j=l 

where, for any given vector v=(Vj), f(v) denotes the vector with entries f(vj). 

Suppose that Yn·····Yn+l-k and f 0 , ••• .fn+l-k have already been computed, then (3.2) defines 

the computation of Yn+l and fn+l· Thus, (3.2) represents a k-step method for computing 

successively the vectors (y0 ,fnT)T for n=k, k+l, .... By introducing the polynomials 

a(l;;) := l;;k - all;;k-1 - a1l;;k-2 - ... - ak, 

y(~) := C1l;;k-l + C2l;;k-2 + ... +Ck, 

J3(s) := Bol;;k + Bll;;k-1 + B1l;;k-2 + ... +Bk, 

8(s) := D1 l;;k-1 + D2l;;k-2 + ... +Dk, 

the k-step method (3.2) can be presented in the linear multistep fashion 

(3.3) a(E)yn - h{3(E)fn = 0, fn = f(y(E)E-kYn + h 8(E)E-kfn), 
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where E denotes the forward shift operator E defined by Ey0 :=Yn+l· The resemblance with the 

conventional linear k-step method 

p(E)yn - hcr(E)fn = 0, fn = f(yn), 

is clear. Both methods employ, in addition to the recursion for the numerical solution y0 , an 

'auxiliary' recursion. In the linear multistep case this auxiliary recursion for f n is sort of trivial, 

whereas in the case (3.3) the recursion for fn is an essential part of the algorithm. 

The method (2.1 ') is a special (k=2, m=2) case of (3.3). Writing (2.1 ') in the form 

Yn+l - Yn - h [ (b2,0) (!:~!) + (bi,c) (!:)] = 0, 

we see that the polynomials a, ~. y and o are given by 

3.2. Starting values 

In order to start the recursion (3.2), we need k starting vectors (y0 ,f0 T)T. Let us try to 

approximate the vector fn by means of y-values only. From (3.3) we deduce 

fn := f(y(E)E-kyn + h o(E)E-kfn) = f(y(E)E-kyn + h o(E)E-kf(y(E)E-ky0 + h o(E)E-kfn)) 

= f(y(E)E-ky0 + h o(E)E-kf(y(E)E-kyn + h o(E)E-kf(y(E)E-kyn + h o(E)E-kf0 ))) = ... , 

from which it follows that 

fn = f(y(E)E-kyn) + _G(h), 

fn = f(y(E)E-ky0 + h o(E)E-kf(y(E)E-kyn)) + O(h2), 

fn = f(y(E)E-kyn + h o(E)E-kf(y(E)E-ky0 + h o(E)E-kf(y(E)E-ky0 ))) + O(h3), .... 

Evidently, the number of y-values needed to approximate fn can be reduced by choosing zero 

matrices for Ck, Ck-1, ... and Dk, Dk-1. .... For instance, if all matrices Cj and Dj vanish except 

for C1 and D1, then 

fn = f(C1Yn-1) + O(h), 

fn = f(C1Yn-l + h D1(f(C1Yn-2))) + O(h2), 

fn "= f(CtYn-1 + h D1f(C1Yn-2 + h D1f(C1Yn-3))) + O(h3), 

In this way, a pth-order approximation to fn can be obtained by means of the values Yn-l·····Yn-p· 
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An alternative way of computing starting vectors f n is possible 'in the case of strictly lower 

triangular matrices Dj- In that case, we deduce from (3.1 b) that 

k 

fn,1 := f(L CljYn-), 
j=l 
k 

fn,2 := f(L [c2jYn-j + hd21jfn-j,1]), 
j=l 
k 

fn,3 := f(L [c3jYn-j + hd31jfn-j,l + hd32jfn-j,2]), 
j=l 

... ' 

which shows that f n can directly be expressed in terms of y-values. 

4. ACCURACY AND STABILITY 

4.1. Accuracy 

The order of accuracy of the method (3.1) is said to be p if the residue left on substitution of 

the exact solution y(t) into (3.1) is of order hp+l. We shall indicate how the order equations can be 

obtained in terms of the polynomials a, f3, y and o. Using the representation (3.3), we can write 

the order condition in the form 

(4.1) a.(E)y(tn) - hf3(E)f(y(E)E-ky(tn) + h o(E)E-kf(y(E)E-ky(tn) + ... )) = O(hP+l). 

Assuming that y(t) is sufficiently differentiable, we have E=exp(h~t); hence, by using the 

abbreviations 

d d d d d 
a.(E) = a.(exp(hdt)) ~ a(hdt ), J3(E) = b(hdt ), y(E) = c(hdt ), o(E) = d(hdt ), 

and putting c(O)=e:=(l,l, ... ,l)T, we can expand (4.1) in powers of h. For instance, 

( 4.1 ') a(O)y(tn) + h[a'(O) - b(O)e]y'(tn) 

+ h2[ta"(O) - b(O)(c'(O) + d(O)e - ke) - b'(O)e]y"(tn) + O(h3) = O(hP+l ). 

By expressing the various derivatives of the functions a, b, c and d again in terms of the 
polynomials a, J3, y and o we finally obtain the order equations. For example, on substitution of 

a(O) = a.(l), a'(O) = a.'(l), a"(O) = a.'(1) + a."(l) into (4.1'), and similar expressions for the 

other coefficient functions, we find the order equations: 

p ~ 1: y(l) = e, a.(1) = 0, a.'(l) - J3(l)e = 0. 

R~ 2: t[a.'(1) + a."(l)] - f3(l)[y'(l) + o(l)e - ke] - f3'(1)e = 0. 
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4.2. Stability 

Next we derive the linear stability condition for the method (3.1), that is, we apply the method 

to the linear test equation y'=Ay. Again using the representation (3.3), we obtain the recursion 

(4.2) a(E)yn - PCE)hfn = 0, Ah'Y(E)Yn - [Ek - Ah o(E)]hfn = 0, 

or equivalently, 

a(E) - PCE) Yn 0 
(4.2') = 

Ah'Y(E) - EkJ + Ah o(E) hf0 

We now use the following lemma (cf. [I, p.428]): 

Lemma 4.1. Let the sequence of vectors { v0 } satisfy the difference equation G(E)v0 = 0, where 

the entries of the constant matrix G(~) are polynomials in ~. Then each component of v0 satisfies 

again a homogeneous difference equation with characteristic polynomial det [G(~)]. a 

Application of this lemma to (4.2') reveals that Yn satisfies a difference equation with 

characteristic polynomial 

(4.3) C(~;Ah) := det 

Following the linear stability theory for linear multi.step methods, we define the stability region S 

by the set of points in the complex z-plane where the polynomial C(~;z) has its roots on the unit 

disk, and require that Ah lies in S_ when A runs through the eigenvalues of the matrix "dff()y. 

5. NUMERICAL ExPERIMENTS 

Of the various two-step methods discussed in the preceding sections, we compare methods 

where all free parameters are used for maximizing the real stability interval and methods where 

these parameters maximize the order of accuracy. The main characteristics of these methods are 

once again listed in Table 5.1. The methods (2.3) and (2.6) are 'one-processor' algorithms, and 

(2.5) and (2.10) are 'two-processor' algorithms. The methods were applied to test problems taken 

from [2] and [5], and are specified in the tables of results below. The maximum absolute errors 

produced at the end point t=T are denoted by ei for the 'one-processor' algorithms and by e2 for 

the 'two-processor' algorithms. Asterisks indicate development of instabilities. 

Table 5.2 presents results for the first-order methods (2.3) and (2.5) showing the improved 

stability of the 'two-processor' method. Table 5.3 presents similar results for the second-order 

Adams-Basf1forth method (2.6) and the third-order 'two-processor' method (2.10). We recall that 

on two-processor computers, all methods require one righthand side evaluation per step. 
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Adams-Bashforth method (2.6) and the third-order 'two-processor' method (2.10). We recall that 

on two-processor computers, all methods require one righthand side evaluation per step. 
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