
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C. Ebergen

On VLSI design

Department of Computer Science Note CS-N8408 September

ON V LS I DES I GN

J.C. EBERGEN

Centre for Mathematics and Computer Science, Amsterdam

Some of the problems in VLSI design are discussed. A VLSI design method is

presented with which these problems may be tackled. An example is provided

to illustrate some parts of the design method. r
b (! t) ':r I ' b1 g ft?) ,6q r- II

1980 MATHEMATICS SUBJECT CLASSIFICATION: 6Jco1, 68F05, 94C99.

KEY WORDS & PHRASES: VLSI design, functional specification, regular expres­

sions, layout of a circuit.

NOTE: This report is a slightly revised version of the paper presented at

the NGI/SION conference on 16/17 April 1984.

Note CS-N8408

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

I

1. INTRODUCTION .

Since in the last decade the promising possibilities of VLSI systems have become realizable, more and
more attention has been paid to efficient and reliable design methods for such systems. Presently, a
number of design methods for VLSI systems are being employed. Many of them use computer-aided
design tools such as circuit extractors, simulators, and design rule checkers for the automatic
verification of parts of the design.

In this article we discuss a somewhat different VLSI design method. In this method the design
route of VLSI systems, i.e. the route from specification to finished product, is divided roughly into
four levels, i.e.

(1) the formulation of a functional specification;

(2) the design of a program satisfying that specification;

(3) · the computation of a layout of a circuit realizing that program;

(4) the computation of a test procedure for that circuit.

When the above design route has been carried out, chips can be fabricated from the layout computed
and then tested with the test procedure computed. It is our intention to design VLSI systems, or
components as we call them, in the order from (1) through (4) and every end product of a certain

level is considered the specification for the end product of the next level. An end product that does
not satisfy its specification is considered to be an erroneous implementation of this specification. In
this way a component is designed in a top-down manner. In the sequel we address each of the levels
(1) through (4) separately. The parts (1) and (2) are dealt with in greater detail than (3) and (4).

In (1) and (2) we have chosen a level of abstraction that ignores physical properties and
irrelevant details to such an extent that both functional specifications and programs for a component
can be expressed conveniently in a mathematica,1 formalism. Such a formalism should enable us not
only to verify the correctness of a program, but also to derive a program for a component. For this
formalism we have chosen trace theory. Trace theory can be considered as an extension of a part of
language theory. A brief introduction to trace theory is presented in section 3.

In the development of trace theory we have been led by the opinion that ease of programming
is to be preferred to ease of implementing. This does not mean that the design of programs is easy.

On the contrary, we believe that programming is a difficult task and we have no hope in automating
it. It is, however, our hope and ultimate goal that the computation of a layout for a program can be
automated. Thus, a so-called silicon compiler can be designed that computes a corresponding layout
for a given program. It is also our hope that the computation of a test procedure can be automated.
In this way, the design of components is reduced to the design of programs for those components.

One of the major problems, if not the major, in VLSI design is the complexity, no matter which
method is used. To design a system with hundreds of thousands of transistors properly intercon­
nected such that a number of' constraints, e.g. proper timing, are satisfied is an overwhelmingly com­
plex task. This complexity needs to be bridled. Therefore, we adopt a hierarchical approach in the
design task at each level and a greatest possible separation between these design tasks. As for the
hierarchical approach, when at a certain level a hierarchical composition is prescribed for a com­

ponent, this hierarchy is maintained at the succeeding levels. Consequently, if a component can be
composed of n identical subcomponents, say, then the design of the layout for that component may
be reduced to the design of a layout for one subcomponent, which is copied n times, and a proper

interconnection between these layouts. As for the separation of the design tasks, we do not consider
specifications that impose real-time or area constraints on a component. In this way we hope to carry

out the design tasks as independently as possible.

2

2. THE FORMULATION OF A FUNCTIONAL SPECIFICATION

If we want to give a functional specification of a component, we have to ask ourselves how we charac­

terize a component formally. For this formal characterization we have chosen a trace structure. A

trace structure R is an ordered pair <B, X > such that B k U and X k B* . Throughout this article

U denotes a finite, but sufficiently large, set of symbols and B* the set of all finite sequences of sym­
bols from B. A finite sequence of symbols is also called a trace. The empty trace is denoted by t: •

B is called the alphabet of the trace structure R and is also denoted by a R. X is called the trace set

of R and is also denoted by t R . The alphabet a R characterizes all communication actions a com­

ponent is capable of, where actions are to be considered instantaneous and indivisible. The trace set

X characterizes all finite sequences of communication actions in which the component can engage.

Henceforth, we give a functional specification of a component by giving a specification for its

trace structure. The functional specifications that we use in this article are based on predicates on

traces. Before we present this specifica~ion method, we introduce some preliminary definitions. Let

P be a predicate on traces and B a set of symbols with Bk U. We say that P is an invariant of a

trace t iff P holds for every prefix of t. P is called an invariant of a trace structure R iff P is an

invariant of every trace of t R. The pair (B, P) is called a specification iff d P k B, where d P, the

dependence alphabet of P, is defined by

b EdP = (3r,s::P(rbs)-=i=P(rs))

for all b E U and traces r and s. The condition d P k B expresses that the value of P depends on
symbols from B only. Finally, we say that R satisfies the specification (B ,P) iff aR = B and P is an
invariant of R.

With the above definitions we can specify a trace structure R uniquely by specifying R as the

greatest trace structure that satisfies the· specification (B , P). Operationally speaking we, thus, require

not only that any behavior of the component keeps a certain relation invariant, but also that the com­
ponent can exhibit any behavior that keeps that relation invariant.

To illustrate this specification method we give a functional specification of a simple component

which we call a k-counter. Let B and P be defined by

B = {x,y}
P(t) = O~tNx-tNy ~k

for all traces t, where t N x denotes the number of occurrences of symbol x in trace t and k ;;;.1.

Notice that dP = {x,y} and that, consequently, (B,P) is a specification. The component

countk (x ,y) is specified as the greatest trace structure that satisfies (B, P). Operationally, one can

interpret the component countk (x ,y) as a component that records an integer value. The symbol x

denotes an increment by 1 and the symbol y denotes a decrement by 1 of this value. The component

countk (x ,y) can engage in any sequence of increments and decrements as long as its value stays

within the bounds 0 and k. (Notice that its initial value is 0.)

3. TRACE THEORY

When we have a specification for a component we compose that component from other, preferably

simpler, components. Since a component is formally characterized by a trace structure, we, conse­

quently, need composition methods for trace structures. In this section the basic operations on trace

structures are introduced. For a· further introduction to trace theory the reader is referred to [1,6).

The reader may also find interesting material, which differs slightly from [1,6], in [3].

The first binary operation on trace structures that we describe is called weaving. Weaving

characterizes the simultaneous cooperation of two components. While cooperating these components

can communicate through common actions, i.e. actions that are characterized by a R n a S, where R

and S are the trace structures of the two components. We consider a communication between

3

components as a simultaneous mutual participation in a common action. Accordingly, common
actions take place upon mutual agreement and, consequently, through common actions components
synchronize their behaviors. Thus, the behavior of the simultaneous cooperation of two components

can be any behavior, restricted to the set of actions aR U aS, that it is in accordance with the
behaviors of the components in isolation. The weave of R and S, denoted by R., S, is defined by

R.,S = <aRUaS,{tltE(aRUaS)* /\ qaREtR /\ traSEtS}>

where t r B denotes the projection of t on B, i.e. the trace that remains when all symbols outside B

are deleted from t.

Besides the projection of a trace t on an alphabet B, we also define the projection of a trace
structure R on an alphabet B, denoted by R r B, by

RrB = <aRnB,{trBltEtR}>.

By projection we can 'hide' internal communications between components, i.e. we can eliminate com­
mon symbols from the weave of two trace structures and, consequently, describe the net effect of a

composition. This operation is called blending. The blend of R and S, denoted by R , S, is defined
by

R, S = (R.,SH(aR +aS)

where + denotes symmetric set difference. In contrast to weaving, blending is in general not associa­
tive. We do have that if aR n aS n aT = 0, then (R, S), T = R, (SIT).

A component that can engage in a finite sequence of actions, can also engage, operationally
speaking, in any prefQI;. of that sequence of actions. We, therefore, define the prefix of a trace struc­
ture R, denoted by pref R, by

pref R = <a R , { t l(3s : :ts E t R)} >.

We say that a trace structure is prefix-closed iff pref R = R. For each component initially the
sequence of communication actions performed is the empty sequence E • Therefore, we are especially
interested in trace structures, as characterizations of components, that are not only prefix-closed but
also non-empty. For prefix-closed and non-empty trace structures we have that their weave and their
blend is again prefix-closed and non-empty. Furthermore, if R is specified as the greatest trace struc­
ture that satisfies (B,P), then R is prefix-closed. If P(E) holds as well, then R is also non-empty.

Concatenation, union, fixed repetition, and arbitrary, but finite, repetition are usually defined
for sets. We define these operations for trace structures as well:

R;S = <aR U aS ,tR tS >,

R IS= <aR U aS ,tR U tS >,

R 0 = <0,{E}> and Rn+I =Rn;R, and

[R] =<(Un :n ;;a.O :aRn),(Un :n ;;;;.o :tRn)>,

where concatenation of sets is denoted by their juxtaposition.

In order for a component to be realizable in an integrated circuit, it has to have, among others,
a finite number of states. From language theory we know that we can translate this constraint into
the condition that the component's trace structure has to be regular, i.e. its trace set has to be a regu­
lar set. We have that the set of regular trace structures is closed under weaving, blending, taking
prefixes, concatenation, union, fixed repetition, and arbitrary repetition. Trace structures of the form
< { b} ,{ b} >, b E U, and < 0, { E} > are called atomic trace structures. An expression for a trace
structure built up from atomic trace structures and the operators ,. , ; , I , and [] is called a com­
mand. (Ncommand is similar to a regular expression in language theory.)

4

In order to condense lengthy commands, we use the following notational conventions.. If no

confusion can arise the trace structures < { b }, { b } > and < 0, { t:} > may be abbreviated to b and t:
respectively -notice that., , ; , I , and [] are defined on trace structures only. As for the priority

rules, ., has highest binding power, then ; , and then I , i.e. the smaller character has a higher

binding power.

4. THE DESIGN OF A PROGRAM

It :ls our aim to implement a prefix-closed, non-empty, regular trace structure as an integrated circuit.

Furthermore, we want to implement a blend of two such trace structures by an interconnection of the

implementations of the trace structures. We, therefore, express a component as a blend of a number

of prefix-closed, non-empty, regular trace structures.

For example the component countk(x,y), k;;;;.l, as specified in section 2, can be expressed in a

number of ways. The following equations are given without proof. They can, however, be derived by

means of a derivation method based on the functional specifications defined in section 2. This deriva­

tion method is currently under investigation.

(4.0) count 1(x,y) =pref [x;y]

(4.1) countk+1(x,z) = countk(x,y), count,(y,z)

(4.2) countk+1(x,y) = s.countk(x,y) 1 pref [x;s.x I x;y I s.y;y]

(4.3) count21c+ 1(x,y) = s.countk(x,y) 1 pref [(x I s.y;y); (s.x;x I y)]

where k;;;;.I, /;;;;.I, and s.countk(x,y) denotes the trace structure in which every symbol b E{x,y} is

replaced by s.b. From these equations we can deduce a number of compositions for the component

countk(x ,y), k ;;;;.1, that are all blendings of a number of prefix-closed, non-empty, regular trace struc­

tures.

A composition for a component is expressed in a program. In general a program has the fol­

lowing form.

oom C(B):

(0) sub so:Co(Bo), s1:C1(B1), · · · , Sn-1:Cn-1(Bn-1)

(1) ao=bo, a1=bi. .. · , Om-1=bm-l

(2) s
moc

In line (0) n, n ;;;;.o, subcomponents are listed. We say that subcomponent s; is of type C;(B;). The

trace structure of component s; is s;. C; (B;). In line (1) m, m ;;;;.o, equalities are listed. The symbols

constituting an equality are considered to be the same symbol. In line (2) a non-empty, regular trace

structure is given in the form of a command. This command may be absent, in that case we take

S = < 0 ,{ t:} >. The above program defines the trace structure C (B) by

Definition (4.4) is consistent if the alphabets of the right-hand side and the left-hand side of (4.4) are

equal and blending is associative in (4.4). Therefore, we impose some conditions on the above pro­

gram. LetA be defined by A= BUs0 .B0 Us 1.B 1U · · · UaS. We require that

5

each symbol in A occurs either in two distinct alphabets constituting A , or in one equality; and

for each equality, its symbols belong to two distinct alphabets constituting A .

From (4.4) the correctness of a program can be derived if C(B), the subcomponents
C; (B;), 0 E;;; i < n, and the command S are known.

For example, we can derive the following programs for countk(x ,y) , k ;;;;.1, from the equations
(4.0) through (4.3).

(4.5) com count1(x,y): [x;y] moc

(4.6) com countk +1(x ,y):

moc

sub s :countk (x ,y) , t :count1(x ,y)

x =s.x, s.y =t.x, t.y =y

(4.7) com countk+1(x,y):

sub s :countk (x ,y)

[x;s.x I x;y I s.y;y]

(4.8) com count 2k + 1(x ,y):
sub s :countk (x ,y)
[(x I s.y;y);(s.x;x I y)]

moc

for k;;;;.I and /;;;;.I.

We observe that there may be several programs for the same component. Consequently, we
may choose the program that suits our particular needs, e.g. with respect to time efficiency, area
efficiency, or ease of layout computation. Furthermore, if a command can be implemented in a fixed
area and the interconnections of these areas do not need disproportionately more area, then we can
also derive some properties of the area complexity of a component. A program for countk(x ,y) simi­
lar to (4.6) or (4.7), for example, has an area complexity of O(k). The area complexity of a program
for this component similar to (4.8), however, is O(log k). For a further introduction to the design of
programs for components the reader is referred to [4].

5. THE COMPUTATION OF A LAYOUT

Once a program is obtained for a component we compute a layout for this program. In computing a
layout we exploit the hierarchy that is defined in the program. First, we compute layouts for the sub­
components and the command listed in the program and then we compute a suitable interconnection
for these layouts. The layouts of the subcomponents are, of course, computed in the same way, con­
sequently the layout of the component is computed in a bottom-up manner. If some commands or
subcomponents are used repeatedly in the program we, obviously, copy their layouts, thus reducing
the computation time for the layout even more. For further discussions on the computation of a lay­
out for a command the reader is referred to [2, 7]. ,,

6

One of the major problems in the computation of layouts for VLSI systems are timing prob­
lems. For certain layouts the delays incurred in the interconnection wires can cause an incorrect

operation of the circuit composed. This can especially occur in circuits in which signals have to be
distributed over long distances within a certain time period, as for example can occur in synchronous
VLSI systems. These timing problems may become even more serious when one scales down the

feature sizes of a chip. Therefore, it is attractive when layouts are such that the generated circuit is

insensitive for any delays occurring in the interconnection wires. Such VLSI systems, also called self­
tinied systems, are described in [l,5,8].

To conclude this section we give a possible schematic of the program

com count ix ,y):

subs0,s1,s2,s3 :count1(x,y)

x =so.X, So·Y =s1.x, St·Y =s2.X, S2.y =s3.X, S3.y =y

moc

The translation of programs into schematics has not been formalized yet. The example may,
nevertheless, give an idea in what manner we want to solve this problem.

(0) (0)
px--~~~~~~~~~~~~~~~~~~~~~~--- py'

px'
(0)

fig.1

PY
(0)

First, we give a possible translation of count1(x,y) into a schematic. Making a circuit self­
timed requires a kind of 'hand-shake' signalling in the communication protocol. Therefore, the sym­
bols x and y are mapped onto the request-acknowledge pairs px ,px' and py ,py' respectively, where
px ,px' ,py, and py' represent voltage transitions in the marked points on the wires in fig. 1. We
stipulate that the environment of this circuit behaves in such a way that requests and acknowledge­
ments alternate and that the first occurrences, if any, for the pairs px ,px' and py ,py' are px and py'
respectively. The zeroes in the figure denote the initial values at these points. The reader is
encouraged to check that under the described stipulations this component can engage in exactly all
finite sequences t of actions from {px ,px' ,py ,py' } for which 0 os;;; t N px - t N py EO;; I holds, irrespec­
tive of any delays that the propagation of transitions can incur in the interconnection wires.

Now consider fig. 2. The component count4(x,y) is blended of four subcomponents of type
count1(x,y). By means of blending the subcomponents are synchronized. Synchronization takes

place in this composition between. the subcomponents s0 and si. s1 and s2, and s2 and s3, i.e. in three
places. In circuits synchronization can be realized by C-elements. The behaviour of a C-element in
fig. 2 is as follows. The output of the Celement becomes 0 or I if both inputs are 0 or 1 respectively,
and otherwise the output stays in its current state. Under the same stipulations as described for the
component of fig. 1 the component can engage in exactly all finite seqeunces t of actions from
{px ,px' ,py ,py' } for which 0 E;;; t N px - t N py EO;; 4 holds, irrespective of any delays that the propaga­
tion of tramitions can incur in the interconnection wires.

7

(0) (0) (0)
px PY

(0) (0)

fig.2

6. THE COMPUTATION OF A TEST PROCEDURE

From the layout computed the chips are fabricated and subsequently tested. When we test a chip we
test it for fabrication errors only. We do not test a chip for the implementation of the right program
or the satisfaction of its functional specification. These verifications should be carried out at higher
levels.

To test a chip one may want to test it in every possible state. Thus, the test time needed, how­
ever, can be very long since the number of states of the component can be very large. The number of
states of the blend of two components with respective numbers of states m and n, is at most mn .
Accordingly, the number of states of a component increases at most exponentially in the component's
size and, consequently, also the test time for the component increases at most exponentially in its
size. If, however, we can test each subcomponent with its interconnections separately the test time
needed to test the component is proportional to its size. For example the component countk (x ,y),
which has O(k) states, may, when composed with program (4.8), thus be tested in O(logk) time.

7. CONCLUDING REMARKS

In the preceding sections we have discussed a VLSI design method in which a hierarchical design and
a separation of the several design tasks are the main objectives. The ultimate goal is that the design
of a component can be reduced to the design of a program. Therefore, special attention is paid to an
adequate formalism, trace theory, in which a functional specification and a program for a component
can be expressed. With this formalism more than one program may be derived for a component,
thereby providing a greater freedom for choosing a suitable program for further implementation.
From a program important properties with respect to the area complexity or test time of a component
may be derived. For the realization of this design method, however, still a number of problems have
to be overcome.

8. ACKNOWLEDGEMENTS

Acknowledgements are due to Martin Rem, Jan van de Snepscheut, and the other members of the
Eindhoven VLSI Club.

References

[I] Ebergen, J.C., Trace Theory. and Self-timed Systems, M. Sc. Thesis, Dept. of Math. and Com­
puting Sc., Eindhoven University of Technology, (April 1983).

[2] Floyd, R. W. and Ullman, J.D., The Compilation of Regular Expressions into Integrated Cir­
cuits, J ourna/ of the A CM 29 (1982) 603-622.

8

[3] Hoare, C.A.R, Notes on Communicating Sequential Processes, Technical Monograph PRG-33,
Oxford University Computing Laboratory (Aug. 1983).

[4) Rem, M., Trace Theory and the Design of Concurrent Computations, lecture notes for the collo­
quium 'Parallelle Computers en Berekeningen', to appear in a C.W.I. syllabus.

[5] Seitz, C.L., System Timing, in: Mead, C. and Conway, L., Introduction to VLSI Systems,
Addison Wesley (1980).

[6] · van de Snepscheut, J.L.A. , Trace Theory and VLSI Design, Ph. D. Thesis, Eindhoven Univer­
sity of Technology (Sept. 1983).

[7) van Lierop, M.L.P., A Flexible Bottom-up Approach for Layout Generation, Internal Report,
Dept. of Math. and Computing Sc., Eindhoven University of Technology, To appear.

[8] Udding, J.T., Qassification and Composition of Delay-insensitive Circuits, Ph. D. Thesis, Ein­
dhoven University of Technology, To appear.

