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Most computer networks use a byte stream protocol for communication between processes, 

which suffer from two important drawbacks: the addressing mechanisms provided are often 

process-dependent or location-dependent, and communication is slow. While carrying out 

research into distributed operating systems at the Vrije Universiteit and the Centre for 

Mathematics & Computer Science, we have developed a transaction-oriented transport pro­

tocol for the Amoeba distributed operating system [Tanenbaum81 a], aimed for high-speed, 

with an addressing mechanism that is not only more general, but provides a protection 

mechanism as well. The basic mechanism for communication between processes is the 

transaction: a client process sends a request to a server process, which carries out the 

request and returns a reply. Protection is provided by using ports, chosen from a sparse 

address space, for addressing services. These ports serve as a "capability" for communica­

tion with the service. Through its simplicity, the transaction protocol achieves much higher 

transmission rates than other protocols executing on similar hardware (about 300 

Kbytes I sec process-to-process). 
The protection mechanism will be described, and the mechanisms for realising high 

transmission speeds. 
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1. INTRODUCTION 

Traditional networks and distributed systems are based on the concept of two 

processes or processors communicating via connections. The connections are typically 

managed by a hierarchy of complex protocols, usually leading to complex software and 

extreme inefficiency. (An ~ffective transfer rate of 0.1 megabit/sec over a 10 

megabit/sec local network, which is only 1% utilization, is frequently barely achiev­

able.) 
We reject this traditional approach of viewing a distributed system as a collection of 

discrete processes communicating via multilayer (e.g., ISO) protocols, not only because 

it is inefficient, but because it puts too much emphasis on specific processes, and by 

inference, on processors; Instead we propose to base the software design on a different 

conceptual model - the object model. In this model, the system deals with abstract 

objects, each of which has some set of abstract operations that can be performed on it. 

Associated with each. object are one or more "capabilities" [Dennis66] which are 

used to control access to the object, both in terms of who may use the object and 

what operations he may perform on it. At the user level, the basic system primitive is 
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performing an operation on an object, rather than such things as establishing connec­

tions, sending and receiving messages, and closing connections. For example, a typical 

object is the file, with operations to read and write portions of it. 
The object model is well-known in the programming languages community under 

·the name of "abstract data type." This model is especially well-suited to a distri­

buted system because in many cases an abstract data type can be implemented on one 

of the processor-memory modules described above. When a user process executes one 

of the visible functions in an abstract data type, the system arranges for the necessary 

underlying message transport from the user's machine to that of the abstract data 

type and back. The header of the message can specify which operation is to be per­

formed on which object. This arrangement gives a very clear separation between 

users and objects, and makes it impossible for a user to inspect the representation of 

an abstract data type directly by bypassing the functional interface. 
A major advantage of the object or abstract data type model is that the semantics 

are inherently location independent. The concept of performing an operation on an 

object does not require the user to be aware of where objects are located or how the 

communication is actually implemented. This property gives the system the possibil­

ity of moving objects around ·to position them close to where they are frequently used. 

Furthermore, the issue of how many processes are involved in carrying out an opera­

tion, and where they are located is also hidden from the user. 
It is frequently convenient to impkment the object model in terms of clients (users) 

who send messages to services. A service is defined by a set of commands and 

responses. Each service is handled by one or more server processes that accept mes­

sages from clients, carry out the required work, and send back replies. The design of 

these servers and the design of the protocols they use form an important part of the 

system software of our proposed fifth generation computers. 
As an example of the problems that must be solved, consider a file server. Among 

other design issues that must be dealt with are how and where information is stored, 

how and when it is moved, how it is backed up, how concurrent reads and writes are 

controlled, how local caches are maintained, how information is named, and how 

accounting and protection are accomplished. Furthermore, the internal structure of 

the service must be designed: how many server processes are there, where are they 

located, how and when do they communicate, what happens when one of them fails, 

how is a server process organized internally for both reliability and high performance, 

and so on. Analogous questions arise for all the other servers that comprise the basic 

system software. 

2. PROTECTION 

Every service has one or more ports [Mullender82] to which client processes can send 

messages to contact the service. Ports consist of large numbers, typically 48 bits, 

which are known only to the server processes that comprise the service, and to the 

service's clients. For a public service, such as the system file service, the port will be 

generally made known to all users. The ports used by an ordinary user process will, 

in general, be kept secret. Knowledge of a port is taken by the system as prima facie 

evidence that the sender has a right to communicate with the service. Of course the 

service is not required to carry out work for clients just because they know the port, 

for example, the public file service may refuse to read or write files for clients lacking 

account numbers, appropriate authorization, etc. 
Although the port mechanism provides a convenient way to provide partial authen­

tication of clients ("if you know the port, you may at least talk to the service"), it 

does not deal with the authentication of servers. The basic primitive operations 

offered by the system are put(port, message) and get(port, message). 
Since everyone knows the port of the file server, as an example, how does one insure 
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that malicious users do not execute gets on the file server's port, in effect imper­

sonating the file server to the rest of the system? 
One approach is to have all ports manipulated by kernels that are presumed 

trustworthy and are supposed to know who may get from which port. We reject 

this strategy because some machines, e.g., personal computers connected to larger mul­

timodule systems may not be trustworthy, and also because we believe that by mak­

ing the kernel as small as possible, we can enhance the reliability of the system as a 

whole. Instead, we have chosen a different solution that can be implemented in either 

hardware or - if necessary - in software. 
In the hardware solution, we need to place a small interface box, which we call an 

F-box (Function-box) between each processor module and the network. The most log­

ical place to put it is on the VLSI chip that is used to interface to the network. Alter­

natively, it can be put on a small printed circuit board inside the wall socket through 

which personal computers attach to the network. In those cases where the processors 

have user mode ·and kernel mode and a trusted operating system running in kernel 

mode, it can also be put into operating system software. In any event, we assume 

that somehow or other all packets entering and leaving every processor undergo a sim­

ple transformation that users cannot bypass. 
The transformation works like this. Each port is really a pair of ports, P, and G , 

related by: P = F(G ), where F is a (publicly-known) one-way function [Wilkes68, 

Purdy74, Evans74] performed by the F-box. The one-way function has the property 

that given G it is a straightforward computation to find P, but that given P, finding 

G is so difficult that the only approach is to try every possible G to see which one 

produces P. If P and G contain sufficient bits, this approach can be made to take 

millions of years on the world's largest supercomputer, thus making it effectively 

impossible to find G given only P. Note that a one-way function differs from a cryp­

tographic transformation in the sense that the latter must have an inverse to be use­

ful, but the former has been carefully chosen so that no inverse can be found. 

Using the one-way F-box, the server authentication can be handled in a simple way. 

Each server chooses a get-port, G, and computes the corresponding put-port, P. The 

get-port is kept secret; the put-port is distributed to potential clients or in the case of 

public servers, is published. When the server is ready to accept client requests, it does 

a getCG ). The F-box then computes P = F(G) and waits for packets containing P 

to arrive. When one arrives, it is given to the process that did get( G ). To send a 

packet to the server, the client merely does put ( P), which sends a packet containing 

P in a header field to the server. The F-box on the sender's side does not perform 

any transformation on the P field of the outgoing packet. 
Now let us consider the system from an intruder's point of view. To impersonate a 

server, the intruder must do get ( G ) . However, G is a well-kept secret, and is never 

transmitted on the network, Since we have assumed that G cannot be deduced from 

P (the one-way property of F) and that the intruder cannot circumvent the F-box, he 

cannot intercept packets not intended for him. Replies from the server to the client 

are protected the same way, only with the client picking a get-port for the reply, say, 

G', and including P' = F(G') in the request packet. 
The presence of the F-box makes it easy to implement digital signatures for still 

further authentication, if that is desired. To do so, each client chooses a random sig­

nature, S, and publishes F(S). The F-box must be designed to work as follows. Each 

packet presented to the F-box contains three special header fields: destination (P), 

reply (G'), and signature (S). The F-box applies the one-way function to the second 

and third of these, transmitting the three ports as: P, F(G'), and F(S), respectively. 

The first is used by the receiver's F-box to admit only packets for which the 

corresponding get has been done, the second is used as the put-port for the reply, 

and the third can be used to authenticate the sender, since only the t~e owner of the 
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signature will know what number to put in the third field to insure that the publicly­
known F (8) comes out. 

It is important to note that the F-box arrangement merely provides a simple 
mechanism for implementing security and protection, but gives operating system 
designers considerable latitude for choosing various policies. The mechanism is 
sufficiently flexible and general that it should be possible to put it into hardware with 
precluding many as-yet-unthought-of operating systems to be designed in the future. 

3. COMMUNICATION PRIMITIVES 
In the literature about computer networks, one finds much discussion of the ISO OSI 
reference model [Tanenbaum81b] these days. It is our belief that the price that must 
be paid in terms of complexity and performance in order to achieve an "open" system 
in the ISO sense is much too high, so we have developed a much simpler set of com­
munication primitives, which we will now describe. 

3.1. Transaction vs. Stream Communication 
Most distributed systems have a connection mechanism that is based on the idea of 
two processes going to some effort to set up a connection, using the connection, and 
then tearing it down. The assumption is that a connection will be used for a stream 
of information so long that the overhead needed to set it up and tear it down are basi­
cally negligible. Most streams will consist of a file of one kind or another - a source 
program, a binary program, an input file, and so on. To see how long the average file 
is, we have conducted some measurements on the UNIXt system used in our depart­
ment by the faculty and staff for research (no students, thus). The results of these 
measurements show that 34% of all files are less than 512 bytes, 52% are less than lK 
bytes, 67% are less than 2K bytes, 79% are less than 4K bytes, 88% are less than 8K 
bytes, and 94% are less than 16K bytes. 

The above considerations have led us to a different approach [Mullender ]. With 
packets of even 2K bytes, two thirds of all files fit into a single packet. Consequently, 
it is much simpler to adopt a "Request-Reply" or "Transaction" style of communica­
tion, in which the basic primitive is the client sending a request to a server and the 
server sending a reply back to the client. The client uses trans and the server 
getreq and putrep. Trans sends a request, and blocks until a reply is received. 
Getreq blocks the server until a request is received, which can then be processed, 
after which a reply can be sent using putrep. Each request-reply pair is completely 
self-contained, and independent of any other ones that may previously been sent. In 
other words, no concept of a "connection" exists. Not only is this conceptually much 
more appropriate for use in an operating system, but it is much simpler to implement 
than a complex 7-layer protocol, not to mention offering lower delay. Henceforth we 
will refer to a request-reply pair as a transaction, which is not to be confused with 
transactions with a data base. 

3.2. Basic Communication Protocol 
Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bottom layer 
is the Physical Layer, and deals with the electrical, mechanical and similar aspects of 
the network hardware. The next layer is the Port Layer, and deals with the location 
of ports, the transport of (32K byte) datagrams (packets whose delivery is not 
guaranteed) from source to destination and enforces the protection mechanism of the 
previous section. On top of this we have a layer that deals with the reliable transport 
of bounded length (32K byte) requests and replies between client and server. We 

t UNIX is a Trademark of Bell Laboratories. 
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llii.ve called this layer the Transaction Layer. The final layer has to do with the 

semantics of the requests and replies, for example, given that one can talk to the file 

server, what commands does it understand. 
Since systems -0f the kind we are describing will use high-speed, highly reliable local 

networks, few if any of the complex mechanisms designed for flow- and error-control 

in long-haul networks are useful here. Among other things, a simple stop-and-wait 

protocol is sufficient. The main function of the Transaction Layer is to provide an 

end-to-end message service built on top of the underlying datagram service, the main 

difference being that the former uses timers and acknowledgements to guarantee 

delivery whereas the latter does not. 
The Transaction Layer protocol is straightforward. When the client does a trans, 

a packet containing the request is sent to the server and a timer is started. If the 

server does not acknowledge reeeipt of the request packet before the timer expires 

(usually by sending the reply, but in some special cases by sending a separate ack­

nowledgement packet), the Transaction Layer retransmits the packet again and res­

tarts the timer. When the reply finally comes in, the client sends back an ack­

nowledgement (usually piggybacked onto the next request packet) to allow the server 

to release any resources, such as buffers, that were acquired for this transaction. 

Under normal circumstances, reading a long file, for example, consists of the sequence 

From client: request for block 0 
From server: here is block 0 
From client: acknowledgement for block 0 and request for block 1 
From server: here is block 1 

etc. 
The protocol can handle the situation of a server crashing and being rebooted quite 

easily since each request contains the capability for the file to be read and the posi­

tion in the file to start reading. Between requests, the server has no "activation 

record" or other table entry whose loss during a crash causes the server to forget 

which files were open, etc., because no concept of an open file or a current position in 

a file exists on the server's side. Each new request is completely self-contained. Of 

course for efficiency reasons, a server may keep a cache of frequently accessed i-nodes, 

file blocks etc., but these are not essential and their loss during a crash will merely 

slow the server down slightly while they are being dynamically refreshed after a 

reboot. 

4. THE PORT LA YER 

The Port Layer is responsible for the speedy transmission of 32K byte datagrams. 

The Port Layer need only do this reasonably reliably, and does not have to make an 

effort to guarantee the correct delivery of every datagram. This is the responsibility 

of the Transaction Layer. Our results show that this approach leads to significantly 

higher transmission speeds, due to simpler protocols. 
Theoretically, very high speeds are achievable in modern local-area networks. A 

typical example of a local-area network interface is shown in Fig. 1. When a host 

transmits a packet to another host, the packet is first transferred to the interface by 

means of a direct merrwry access (DMA) transfer. When this is done, the packet is 

transmitted over the network. After the packet has been received by the destination 

interface, it can be transferred to the destination host's memory, again using a DMA 

transfer. While this transfer is going on, the sending host may already transfer the 

next packet to the interface. A sequence of packets is thus transmitted by interchang­

ing periods of DMA transfers and network transfers. On most interfaces DMA transfers 

and network transfers cannot occur simultaneously. 
It is now simple to deduce an upper bound for the maximum transfer rate over the 

network: A typical speed for DMA transfers is 1 byte/ µ.sec, and the typical 
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HOST HOST 

DMA Transfer 

interface interface 

Network Transfer 

Fig.1. A typical local-area network interface. 

transmission speed of a 10 Mbit local-area network is also 1 byte/ µ.sec~ Since DMA 

transfer and network transfer cannot overlap, but DMA at the destination host can 

overlap with the DMA of the next packet at the source host, an upper bound for the 

transfer rate of a typical local-area network is 500,000 bytes/sec point-to-point. 

Obviously, to achieve such a transmission rate, the overhead of the protocol must be 

kept as low as possible, while an effort must be made to overlap DMAS at both com­

municating parties. To achieve this, we have chosen a very large datagram size for 

the Port Layer, which has to split up the datagrams into small packets that the net­

work hardware can cope with. This approach allows the implementor of the Port 

Layer to exploit the possibilities that the hardware has to offer to achieve an efficient 

stream of packets. 
Our Port Layer interfaces to a 10 Mbit token ring that allows scatter-gather; that 

is, a packet can be sent to or from the interface in several DMA transfers, and then 

transmitted over the network separately. We discovered that this allows us to do two 

important things to speed up the protocol. First, when a packet is received, the 

header can be inspected separately, so the protocol can decide where in memory the 

packet must go. The protocol can then transfer the packet directly from the interface 

to the right place in memory, without having to copy it. A copy loop would halve the 

transmission speed. Second, the separation of DMA and transmission allows the proto­

col to prepare a transmission by doing the DMA. The transmission can then be ini­

tiated immediately when the signal is received that the receiver is ready. In our 

implementation of the Port Layer these considerations have resulted in the protocol 

that will now be described. 
The transmitter begins by transferring and sending the first 2K of the datagram to 

be transmitted (2K is the maximum packet size allowed by the hardware). Immedi­

ately after the transmission is complete, the DMA for the next 2K bytes is started, but 

it is not yet transmitted. In the mean time, the receiver is interrupted by the arrival 

of the first packet. It extracts the header, examines it and decides where the body of 

the packet should go. Then the body of the packet is transferred from the interface 

to its final location in memory. While this is being done, the receiver prepares a tiny 

acknowkdgement packet to tell the transmitter it is prepared for the next packet. As 
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soon as the DMA transfer of the previous packet has finished, this acknowledgement is 

sent back to the transmitter. When the transmitter receives it, the transfer of the 

next packet to the interface will have finished, so it can then be sent immediately. 

This sequence is continued until the whole datagram is transmitted. 

5. THE TRANSACTION LA YER 

It is the responsibility of the Transaction Layer to guarantee the arrival of requests 

and replies. The Transaction Layer makes use of the Port Layer and timers to 

achieve this. 
The interface to the transaction layer basica'ny consists of three calls, one for 

clients, and two for servers. All calls use a small datastructure, called Mr e f, which 

contains a pointer to a small fixed-size out-of-band buffer for the transmission of com­

mands and parameters to the 8erver, a pointer to the main body of data to be 

transferred, and the length of the main body of data (Oto 32768), as follows: 

typedef struct Mref { 
char *M oob; 
char *M-buf; 
unsigned (~Len; 

} Mref; 

The client, in order to do a transaction calls 

transCcap, req, rep); 
Cap *cap; Mref *req, *rep; 

The server receives requests and sends replies with 

getreqCport, cap, req); 
Port *port; Cap *cap; Mref *req; 

putrepCrep); 
Mref *rep; 

In principle, the Transaction Layer works as follows: When a client calls trans, 
the Transaction Layer generates a reply-port to enable the server to send a reply. 

The server port is deduced from the capability; the first 48 bits of the capability for 

an object identify the service that controls the object. The request is then sent, using 

put, and a retransmission timer is started. 
The server, which previously had made a call to getreq, receives the request; the 

capability is filled in, and the received message is put in the buffers referred to by 

req. As soon as the request is received, the server's Transaction Layer starts a piggy­

back timer. When the server has not sent a reply before this timer expires, a separate 

acknowledgement is sent to put the client at ease, and stop its retransmission timer. 

When the server sends a reply to the client the same thing happens, more or less, with 

the role of client and server reversed. When a client makes a sequence of transactions 

with a single server, a subsequent request will acknowledge receipt of the previous 

reply. 
The client maintains one more timer, the crash timer. This timer is set when the 

server's acknowledgement to a request has been received, and is used to detect server 

crashes. Whenever this timer expires, the client sends an "are you still alive?" packet 

to the server, to which the server replies with an acknowledgement. 
When transactions occur quickly, one after the other, no extra acknowledgements 

are sent at all. Only when transactions take a long time (say, longer than a minute), 

acknowledgements are sent, and when transactions take much longer than that (say, 

ten minutes) then "are you still alive" messages begin to be sent. 
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5.1. Timer Management 
If the timers are started and stopped in exactly the way described above, the Transac­
tion Layer would become unacceptably slow. Per (quick) transaction, two retransmis­
sion timers and two piggyback timers would have to be started and stopped, eight 
timer actions altogether. 

There is a much more efficient way of dealing with timers, one that makes use of a 
sweep algorithm. This algorithm does not implement very accurate timers, but accu­
racy of the timer intervals is not very important to the correct and efficient operation 
of the protocol. 

The sweep algorithm is called every n clock ties. N must be chosen such that n 
ties is about. the minimum timer interval needed (the piggyback timer interval). 
Whenever the algorithm is called, it makes a sweep over all outstanding transactions. 
If the state of a transaction has changed, the new state is recorded. If it has not 
changed, a counter is incremented, telling for how long the state has remained the 
same. If the (state, counter) combination has reached a certain value, the sweep algo­
rithm carries out the appropriate actions, usually sending an acknowledgement, 
retransmitting a message, or aborting a transaction. 

Because this algorithm is used there is no code needed in the transaction code itself, 
reducing the overhead of the Transaction Layer significantly. In this way, the code 
executed in the Transaction Layer is optimised for the normal case (no errors). 

5.2. RESULTS 

Two versions of the algorithm have now been implemented. The one described has 
been implemented on the Amoeba distributed operating system, and achieves over 
300,000 bytes a second from user process to user process (using M68000s and a Pro-net 
ring). It is now being implemented under UNIX where we expect to obtain more than 
200,000 bytes/sec, assuming the communicating processes are not swapped. 

An older version of the protocol, using 2K byte datagrams, now gets 90,000 
bytes/sec across the network between two VAX-750s running a normal load of work, 
without causing a significant load on the system itself. 

Several services, implemented under UNIX, are using the Transaction Layer inter­
face, and it is our experience that these services are easy to design and that they work 
efficiently. 

The port mechanism allows us to move services from one machine to another, com­
pletely transparently to the user. The F-boxes do not yet exist in hardware, but are 
built into the operating system. The one-way function does not significantly slow the 
system down, because a cache is maintained of get-port/put-port pairs. 
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