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Suppose P(x ,y) is a program with two arguments, whose first argument has a known value c, but whose 
second argument is not yet known. Partial evaluation of P(c,y) results (or rather: should result) in a spe
cialized residual program P0 (y) in which "as much as possible" has been computed on the basis of c. In 
the literature on partial evaluation this is often more or less loosely expressed by saying that partial evalua
tion amounts to "making maximal use of incomplete information." In this paper a precise meaning is given 
to this notion in the context of initial algebra specifications and term rewriting systems. It turns out that, if 
maximal propagation of incomplete information is to be achieved, as a first step it is necessary to add equa
tions to the algebraic specification in question until it is w-complete (if ever). The basic properties of w
complete specifications are discussed, and some examples of w-complete specifications as well as of 
specifications that do not have a finite w-complete enrichment are given. 
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1. INTRODUCTION 

1.1. Partial evaluation 

1 

The current investigation was inspired by the notion of partial evaluation· or mixed computation as dis
cussed for instance by Futamura [I], Beckman et al. [2], Ershov [3], and Komorowski (4,5]. Although 
rather vague in scope, partial evaluation is basically a form of constant propagation. Suppose P (x J') 
is a program with two arguments, whose first argument has a known value c, but whose second argu
ment is still unknown. Partial evaluation of P(c J') results (or rather: should result) in a specialized 
residual program P0 (y) in which "as much as possible" has been computed on the basis of c. For 
instance, if P is a general context-free parser having as arguments a grammar and a string, partial 
evaluation of P with known grammar G and unknown string should lead to a specialized parser P 6 • 

Partial evaluation is first and foremost an important unifying concept, shedding light on the rela
tionship between interpretation and compilation, on the possible meaning of an ill-defined term like 
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compile-time, on program optimization in general, and on type checking. Secondly, it is a useful tech
nique in strictly limited and well-defined contexts in which the axioms and rules required can be 
hand-tailored to the application at hand. 

The notion of "computing as much as possible on the basis of incomplete information" is 
widespread in the partial evaluation literature. As Ershov - rather optimistically - puts it ([3], p. 49): 
"A well-defined mixed computation which in a sense makes a maximal use of the information con
tained in the bound argument yields a rather efficient residual program." And Komorowski says ([4], 
p. 59): "Partial evaluation is a case of program transformation. It attempts to improve efficiency of 
program execution by eliminating run-time checks and performing as much computation in advance as 
possible. However, it does not modify algorithms." (Emphasis added in both cases.) 

When experimenting with partial evaluation in the context of term rewriting systems (Huet & 
Oppen [6D, one quickly discovers that making maximal use of incomplete information or computing 
as much in advance as possible is very difficult or even impossible. The rewrite rules used to evaluate 
closed (i.e. variable-free) terms are usually found to be inadequate when applied to open terms (i.e. 
terms containing variables) and numerous new and more general rules have to be added if anything 
like a satisfactory result is to be achieved. Suppose, for example, that the following rewrite rules for a 
function max on the natural numbers with constant 0 and successor function S are given (with 
1 =S(O)): 

max(O,x) ~ x 
max(x,O) ~ x 
max(S(x),S(y)) ~ S(max(x,y)). 

Partial evaluation of 

max(max(l,l),x) 

to 

max(l,x) 

requires no new rewrite rules, but for 

max(max(l,x),l) 

the same result can only be obtained by applying the commutative and associative properties of max, 
which are not required for the evaluation of closed max-terms. 

Very often, the additional rewrite rules required correspond to valid equations from the viewpoint 
of initial algebra semantics (Goguen & Meseguer [7]). In principle, new rules have to be added as 
long as the term rewriting system is incomplete with respect to the equational theory of the initial 
algebra in question. If, as a first step, one considers equations instead of rewrite rules, this means 
that new equations have to be added until the algebraic specification is complete with respect to the 
equational theory of the initial algebra (if ever), i.e. until the equational specification is w-complete. 
(The validity of such new equations can sometimes be checked by means of an inductive completion 
algorithm. See for instance Huet & Hullot [8].) As a second step one then has to consider the compi
lation of w-complete specifications to term rewriting systems. Although this latter step is touched 
upon in some of the examples, it is not the primary topic of this paper. 
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1.2. 6'-completeness of algebraic specifications 
Consider a finite algebraic specification S with signature ~ and set. of ~-equations E. If a ~-equation 
is valid in all models of S, it is provable from E by purely equational reasoning. This is the com
pleteness property of many-sorted equational logic (Goguen & Meseguer [7]). 

The completeness property does not in general extend to the equational theory of the initial algebra 
I of S. Although the closed equations valid in I can always be proved from E using equational rea
soning, open equations valid in I do not in general yield to such simple means of deduction, but 
require stronger rules of inference (such as structural induction) for their proofs. For instance, con
sider the following specification: 

module BOOL 
begin 

sort boo/ 

functions F ,T: ~ boo/ 
...,: boo/ ~boo/ 
+: boo/ X boo/ ~ boo/ 
. , V: boo/ Xbool ~boo/ 

equations ...,F = T 

endBOOL. 

...,T=F 
T+F=F+T=T 
F+F=T+T=F 
T.T=T 
T .F=F.T=F .F=F 
TVT=TVF=FVT=T 
FVF=F 

(false, true) 
(not) 
(exclusive-or) 
(and, or) 

The initial model IBooL is a Boolean algebra with two elements. Because every closed term over 
~BOOL is equal to T or F, proving the validity in I 8 ooL of the laws of Boolean algebra (such as De 
Morgan's laws and the commutativity and associativity of +, . and V) amounts to checking a finite 
number of closed instances for each law to be proved. These laws are not provable from E BOOL by 
means of equational reasoning, however, as can easily be seen by constructing a model of BOOL in 
which they are false. 

Completeness with respect to the equational theory of the initial algebra can be obtained in full 
generality by adding the so-called 6'-rule to equational logic. This infinitary rule of inference allows 
one to infer an open ~-equation e from a (possibly infinite) set of premises consisting of the closed 
~-instances of e. Using this extended version of equational logic, the equations valid in the initial 
algebra of a specification S can always be proved from Es (even if they are not recursively enumer
able!). Adding the 6'-rule to equational logic has the general effect of making the class of models of a 
specification smaller and of highlighting the role of the initial model. 

The 6'-rule is rather unwieldy and the question arises whether it is possible to achieve completeness 
of a specification with respect to the equational theory of its initial algebra without transcending the 
limits of purely equational reasoning. More specifically, given a specification S, is it possible to add 
equations to it in such a way that (i) the initial algebra is not affected, and (ii) all open equations 
valid in the initial algebra become provable by purely equational means? 

I shall call a specification having property (ii) 6'-complete. I shall discuss the basic properties of 
non-parameterized 6'-complete specifications (§2) and give some examples (§3). 
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2. THE w-COMPLETENESS PROPERTY 
Provable will always mean provable by purely equational means unless otherwise noted. Only finite 
specifications are considered. The semantics of a specification will always be the initial algebra 
semantics. 

DEFINITION 2.1: A finite algebraic specification S with signature ~s and set of ~s-equations Es is 
w-complete if every open equation all of whose closed ~s-instances are provable from Es is itself 
provable from Es. 

THEOREM 2.1: An algebraic specification S is w-complete if and only if all equations valid in its initial 
algebra Is are provable from Es. 

PROOF: For any S the closed equations valid in Is are precisely the closed equations provable from 
Es. Hence, the open equations valid in Is are precisely the equations all of whose closed instances 
are provable from Es. Hence, S is w-complete if and only if not only every closed equation but also 
every open equation valid in Is is provable from Es. D 
THEOREM 2.2: The equations valid in the initial algebra Is of an w-complete specification S are valid 
in all other models of S as well. 

PRooF: According to theorem 2.1, the equations valid in Is are provable by purely equational means. 
Hence, according to the completeness property of equational logic they are valid in all models of S. 
D 

THEOREM 2.3: For a given specification S and any ~s-equation e 

Is 1= e 

if and only if for all closed ~s -equations t 1 = t 2 

EsU(e} .. t 1 =t2 ~Es .. t 1=tz. 

PROOF:(~) Is I= e implies that all closed instances of e are provable from Es. 
( <=) All closed instances of e are provable from E U { e }, and hence, according to the assumption, 
from E. Hence Is I= e. D 

As explained in § 1.2, open equations valid in the initial algebra of a specification generally require 
for their proofs rules of inference that are stronger than the simple rules of equational logic. Theorem 
2.1 says that w-complete specifications do not need these stronger rules of inference, i.e. they trade 
rules of inference for equational axioms. As far as their proofs are concerned, the open equations 
valid in the initial algebra of an w-complete specification can be treated in the same way as their 
closed counterparts. 

THEOREM 2.4: If an algebraic specification S is w-complete, the set of equations valid in its initial 
algebra Is is recursively enumerable. 

PRooF: The set of equations valid in Is is equal to the set of consequences of Es according to 
theorem 2.1. The latter set is recursively enumerable. D 
THEOREM 2.5: If an algebraic specification S is w-complete and if validity of closed equations in the 
initial algebra Is is decidable, validity of open equations in Is is decidable as well. 
PRooF: On the one hand, the set of equations valid in Is is recursively enumerable according to 
theorem 2.4. On the other hand, each open equation in Is is finitely refutable because the set of all 
of its closed instances is recursively enumerable and the validity of closed equations in Is is decidable 
according to the second assumption of the theorem. D 

Neither theorem 2.4 nor theorem 2.5 uses any specific properties of equational logic. In fact, their 
truth depends solely on the existence of a complete - but not necessarily purely equational - theory of 
the equations valid in the initial algebra. 
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Given a specification S, is there always a specification T such that 
(i) ~r=~s. Er-:JEs; 
(ii) lr=ls; 
(iii) T is w-complete? 
Even if ls is finite, the answer is no. Lyndon (using a somewhat different terminology) has given an 
example of an algebra with one sort, seven elements, and one binary function, which has a straightfor
ward initial algebra specification but no w-complete initial algebra specification [9]. Other examples 
(also described in somewhat different terms) can be found in §67 of Gratzer [10]. 

If extension of the signature with auxiliary (hidden) sorts and functions is allowed, w-completeness 
can be achieved for a wider class of specifications. The binary function in Lyndon's above-mentioned 
seven element algebra, for instance, can (like any other binary function on a set of seven elements) be 
expressed as a polynomial in two variables with coefficients in Z7, the integers mod 7. Z7 with addi
tion and multiplication has an w-complete specification very similar to the w-complete specification of 
the Booleans discussed in §3.2. 

Unlike the set of closed equations, the set of open equations valid in the initial algebra of a (finite) 
specification need not be recursively enumerable. For instance, the set of equations valid in the 
natural numbers with addition, multiplication and a <-predicate is not recursively enumerable (see 
§3.1). Such an algebra cannot have an w-complete specification according to theorem 2.4. Extension 
of the signature does not help in such cases. 

An obvious question is whether extension of the signature always helps if the equational theory of 
the initial algebra is recursively enumerable: 

OPEN QUESTION 2.1: Suppose the set of equations valid in the initial algebra ls of an algebraic 
specification S is recursively enumerable. Does this imply the existence of a specification T such that 
(i) ~r-:l~s. Er-:JEs; 
(iia) T is conservat.ive with respect to the closed theory of S, i.e. for all closed ~s-equations t 1 =t2 

Er 1- t 1=t2 ~Es I- t 1=t2; 

(lib) For every closed ~r-term t of a sort belonging to ~s there is a closed ~s-term t' such that 

Er 1- t =t'; 

(iii) T is w-complete. 

Consider a finitely generated algebra whose equational theory is recursively enumerable. The sub
set of closed equations valid in such an algebra is a fortiori recursively enumerable, and hence, accord
ing to theorem 4.1 of Bergstra & Tucker [ll], it has a (finite) initial algebra specification with auxili
ary sorts and functions. Hence, if the answer to question 2.1 is affirmative, every finitely generated 
algebra with a recursively enumerable equational theory has an w-complete initial algebra specification 
with auxiliary sorts and functions. 

If the answer to question 2.1 is affirmative, a further question is whether the auxiliary sorts can be 
dispensed with. If the answer to this question is also affirmative, one would like to conclude that 
every finitely generated algebra with a recursively enumerable equational theory has an w-complete 
initial algebra specification with auxiliary functions only. But this depends on yet another open prob
lem: It is unknown whether every finitely generated algebra whose closed equational theory is recur
sively enumerable has an initial algebra specification with auxiliary functions only (see Bergstra & 
Tucker (12]). 
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3. ExAMPLES 
This section contains two examples of non-parameterized "'-complete specifications (§§3.1-2), a discus
sion of the conditional function from the viewpoint of "'-completeness (§3.3), and a brief discussion of 
the "'-incompleteness of strong combinatory logic and related questions (§3.4). 

3.1. The natural numbers with addition and multiplication 
A simple initial algebra specification of the natural numbers with addition and multiplication looks as 
follows: 

module NAT 
begin 

sortN 
functions 0: ~ N 

S:N~N 

+,.:NXN~N 

variables x .J' : ~ N 

equations x +o = x 
x +S(Y)=S(x +y) 

x.O=O 
x.S(y)=x +(x:r) 

end NAT. 

(1) 
(2) 

(3) 
(4) 

By adding the commutative, associative and distributive laws for addition and multiplication an "'
complete version of NAT is obtained: 

module N 
begin 

include NAT 

variables x .J' ,z : ~ N 

equations x +y =y +x 
x +(y +z)=(x +y)+z 

X:}' =y.x 
x .(y .z )=(x :Y ).z 

x.(y +z)=(x:r)+(x.z) 
endl\I. 

THEOREM 3.1.1: 1\1 has the same initial algebra as NAT and is "'-complete. 

(5) 
(6) 

(7) 
(8) 

(9) 

PROOF: (a) IN=INAT• because (1) l:N=l:NAT• and (2) the commutative, associative and distributive 
laws for addition and multiplication are valid in !NAT (proof by multiple structural induction). 
(b) EN f- t =P for every open or closed ~N-term t, where P is a term in canonical form generated by 
the grammar 

P ::= 0 I sum I S(P) 
sum : : = product I (sum + sum) 
product : : = variable I (product. product) 
variable::= x I y I · · · . 

Canonical forms are unique modulo associativity and comniutativity of addition and multiplication. 
Consider the following term rewriting system RN: 



x+o~x 

O+x ~x 
x +S(y) ~ S(x +y) 
S(x)+y ~ S(x +y) 

x.o~o 

O.x ~ 0 
x.S(y) ~ x +(x:)') 
S(x):Y ~ y +(x:Y) 

x.(y +z) ~ (x:)')+(x.z) 
(x +y).z ~ (x.z)+(y.z). 
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RN is strongly terminating (use a recursive path ordering [6] with. >- + >- S) and confluent modulo 
the associative and commutative laws (apply theorem 3.3 of Huet [13]). EN 1- t 1 =t2 for all rules 
t 1 ~ t2 E RN. Furthermore, RN reduces the left- and right-hand sides of all equations t 1 =t2 E EN 
to normal forms that are syntactically identical modulo the associative and commutative laws. Hence 
RN is complete. The normal forms of RN are precisely the canonical forms defined above. 
Two terms t 1 and t 2 are equal in IN if and only if the corresponding canonical forms P 1 and P 2 are 
syntactically identical modulo the associative and commutative laws. Otherwise there would be a 
non-trivial polynomial in one variable with integer coefficients having an infinity of zeros. 0 

If cut-off subtraction ..:.. : N XN ~ N defined by the equations 

x..:..O=x 
o..:..x=O 
S(x)..:..S(y)=x ..:..y 

is added to NAT, the equations valid in the initial algebra of the resulting specification NAT' are not 
recursively enumerable (see §8 of Davis et al. [14]). Hence, according to proposition 2.4 now-complete 
specification of the natural numbers with addition, multiplication and cut-off subtraction is possible. 
A similar result holds if a <-predicate is added to NAT. 

3.2. Boolean algebra 
BOOL of §1.2 is an w-incomplete specification of Boolean algebra. An (almost) w-complete version 
of BOOL is obtained by adding the equation S(S(x))=x to N. This treatment of Boolean algebra is 
very economical and leads to an interesting canonical form for Boolean terms which is a direct des
cendant of the canonical form for ~N-terms defined in the previous paragraph. Consider 

module B 
begin 

include N with renaming [N ~ boo/, 0 ~ F, S ~ -,] 

functions T: ~ boot 
V: boot X boo/ ~ boot 

variables xvi:~ boot 

equations -,-,x =x 
x.x=x 

T=-,F 
x Vy =(x:Y)+(x +y) 

end B. 

(10) 
(11) 

(12) 
(13) 

The successor function of N becomes inversion in B, addition becomes exclusive-or, multiplication 
becomes conjunction, etc. Equation (10) corresponds to S(S(x))=x. Equation (11) has been added 
for the sake of w-completeness. 
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THEoREM 3.2.1: B is an c.i-complete specification of Boolean algebra. 

PROOF: (a) Ie=lsooL• because (I) l:e=l:8 o0n, (2) if e EE11ooL• then Ee r- e and hence let= e, and 
(3) if e EEe, then all closed l:e-instances of e are provable from EsooL and hence lsooL t= e. 
(b) (See also part (b) of the proof of theorem 3.1.1.) Ee 1- t =P for every open or closed l:e-term t, 
where P is a term in canonical form generated by the grammar 

P ::= F I -,F I sum I -.sum 
sum::= product I (sum+ sum) 
product : : = variable I (product. product) 
variable::= x I y I · · · , 

and such that no two maximal multiplicative subterms are identical modulo commutativity and associ
ativity of . and no multiplicative subterm contains the same variable more than once. Canonical 
forms are unique modulo the associative and commutative laws. Bringing a l:e-term into canonical 
form involves the following steps (the equations of N with renaming [Ni-+ boo/, 0 i-+ F, S i-+ -.] are 
numbered (1)-(9) in the same order in which they occur in N): 

(Sia) Eliminate all occurrences of V by means of (13). 

(Sib) Eliminate all occurrences of T by means of (12). 

(S2) Bring the resulting term into !\I-canonical form (§3.1) (ta.king the renaming into account) by 
means of (1)-(9). 

(S3a) Eliminate multiple occurrences of-. from the head of the resulting term by means of (10). 
(S3b) Llnearize all multiplicative sub terms by means of (7), (8) and ( 11 ). 
(S3c) Eliminate all maximal multiplicative subterms occurring more than once by means of (5)-(8), 

the equation x +x =F (which is provable from Ee), and (I). 

Two terms t 1 and t 2 are equal in I e if and only if the corresponding canonical forms P 1 and P 2 are 
syntactically identical modulo the associative and commutative laws. Otherwise there would be a 
non-trivial P in canonical form such that I 11 t= P =F. But if P is of the form -.Q, it assumes the 
value T because either Q is F or it assumes the value F if all variables have the value F. If P is not 
of the form -.Q, consider a maximal multiplicative subterm q of P containing the least number of 
variables. Because maximal multiplicative subterms do not occur more than once, every other maxi
mal multiplicative subterm contains at least one variable not occurring in q. If the variables occur
ring in q are given the value T and all other variables the value F, P assumes the value T. 0 

The canonical forms used in the above proof are virtually identical to the "normal expressions" of 
Hsiang [15). Besides being the most natural ones from the present viewpoint, these canonical forms 
have the further merit of being the normal forms of a complete term rewriting system (similar to RN) 
which can be derived from B by a generalized Knuth-Bendix completion procedure. Other known 
canonical forms, such as the complete disjunctive normal form, do not have this property. Further 
details can be found in [15]. 

3.3. The conditional function 
The following module contains a simple definition of a polymorphic conditional function if: 



module IF 
begin 

include B 

variable o: ~ sorts 

function if: boo/ X o X o ~ o 

variables u ,v : ~ o 

equations if (F ,u ,v )=v 
ifh.F,u,v)=u 

end IF. 

(1) 
(2) 
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If IF is combined with a specification S, if: boo! X o X o ~ o expands into a non-polymorphic 
ifs: boo/ Xs Xs ~ s for every sorts E~suIF· Let DIP be the union of IF and 

module D 
begin 

sort data 

functions di. d'b ... , dm: ~data (m > 1) 
end D. 

In DIP the if-function has two non-polymorphic instances, namely i/bool :boo/ X boo/ X boo/ ~ boo/ 
and i/data :boo/ Xdata Xdata ~data. 

D is trivially "'-complete form> 1, but in the degenerate case m = 1 the equation u =d1 is valid in 
Iv. From now on m>l is assumed. DIP is not "'-complete. The equation if(X,u,u)=u is an 
example of an equation which is valid in I DIF, but not provable from E DIF. The following version of 
IF is better from the viewpoint of "'-completeness: 

module !Fa 
begin 

include IF 

variables o: ~ sorts 
u,v,w: ~ (1 

X,Y,Z: ~boo/ 

equa~ons if(X,u,v)=if(X,u,if(-,X,v,w)) (3) 
if(X,u,if(Y,v ,w))=if(-,X.Y,v ,if (X,u,w)) (4) 
if(X,u,if(Y,u,v))=if(XVY,u,v) (5) 
if (X,if (Y,u,v ),w)=if (X.Y,u,if (X.-,Y,v ,w )) (6) 

if(X,Y,Z)=(X.Y)+(-,X.Z) (7) 
end !Fa. 

THEOREM 3.3.1: DIFa =D UIFa has the same initial algebra as DIP and is w-complete. 

PROOF: (a) lv1Fa =IvIF• because ~DIFa =~DIF and all equations in Ev1Fa are valid in lv1F· (b) If t is 
a ~DIFa -term of sort boo/ it can be brought into IS-canonical form (§3.2) because all ifs can be elim
inated from t by means of (7). If t is a ~DIFa -term of sort data containing distinct Boolean variables 
x., ... , Xk (k ;;;.O) and distinct variables of sort data u 1, ••• , u1 (I ;;;.O), it can be brought into the 
canonical form 

81 

or 
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The 8; 's are constants or variables of sort data (i.e. elements of { d v . . . , dm ,u 1, • • • , u1 } ), v is an 
arbitrarily chosen variable of sort data, and the~; 's are Boolean terms in IB-canonical form, such that 

(i) 8;=/=8j (i=/=j) 
(ii) ~; is not of the form F or -,F 
(iiiH;·~i = 8 F (i=/=J) 

n 
(iv) V ~; = 8 T. 

i=l 

Two canonical forms are equal in I DIFa if and only if they are syntactically identical modulo commu
tativity and associativity of • and +, modulo the shuffting of (~; ,8; )-pairs, and modulo the choice of v. 
It takes the following steps to bring a ~DIFa -term of sort data into canonical form: 

(SI) Eliminate all Boolean ifs by means of (7). 

(S2) Eliminate all ifs from the second argument of other ifs by means of (6). 

(S3) Expand the innermost if(~,8,8') (if it exists) into if(~,8,if(-,~,8',v) by means of (3). The result
ing term satisfies (iv). 

(S4) Merge all ifs whose second argument contains the same constant or variable by means of ( 4) 
and (5). The resulting term satisfies (i). 

(SS) If at this point the canonical form in statu nascendi is of the form 

if(11n,Sn,if(1/n-h8n-v · .. ,if(11i.8i.v) ... )) (n >1), 

then turn it inside out, i.e. tum it by means of n(n; l) applications of (4) into 

if (Oi.81, ... 'if (On -i.Sn -1.if (On ,Sn ,v )) ... ) 

with On =11n, On -1 =•1/n ·1/n -I> On -2 =-,(-,1/n ·1/n -1)·(•1/n ·1/n -2), etc. 
The resulting term satisfies (iii). · 

(S6) Bring all O; 's into B-canonical form ~i. 

(S7a) If ~i =F for some i, eliminate the corresponding ifand 8; by means of (1). 

(S7b) If ~;=-,F for some i, the term is of the form if(-,F,8,v) because of property (iii) and (S7a). 
Reduce it to 8 by means of (2). The resulting term satisfies (ii) and is in canonical form. D 

Although, according to theorem 3.4.1, !Fa is c.>-complete when combined with the simplest possible 
D, c.>-completeness is lost if D is somewhat more complicated. For instance, the equations 

S (if (X,x J' ))=if (X ,S (x ),S (y )) 
if (X,XJl).if (X J',X)=X:Y 

are valid in INuJFa but not provable from ENulFa· This can be remedied by adding the distributive 
property of if to !Fa: 

module IFb 
begin 

include !Fa 

variables X: ~ boo/ 
o,-r: ~ sorts 
u,v: ~ C1 

<P: C1 ~ 'T 

equation <P(if (X,u ,v ))=if (X,<P(u ),<P(v )) 

end IFb. 

(8) 
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Equation (8) is to be interpreted as follows. If IFb is combined with a specification S, (8) expands 
into n separate instances for every n-ary function f E~suIFb by substitution of 
(Axk )f (x 1, ••• , Xt. ... , Xn) for «P (1 ~k ~n ). For example, one of the instances of (8) is 
if =if, k =2) 

if (Y,if (X,u,v ),w )=if (X,if (Y,u,w ),if (Y,v ,w)), 

which is provable from E1Fa. 

THEoREM 3.3.2: IFb is (weakly) w-complete in the sense that S U IFb is w-complete for every w
complete specification S that does not contain functions of one or more Boolean arguments or with a 
Boolean result. 

PROOF: Use for every sorts E~s a canonical form similar to the one used in the proof of theorem 
3.3.l, but with 8; a term of sorts in S-canonical form. To bring a term into canonical form, follow 
steps (Sl)-(S7b) of theorem 3.3.1 with two additional steps between (SI) and (S2), and a slightly 
different step (S4): 

(SI.I) Move all ifs to outermost positions by means of (8). 

(Sl.2) Bring all maximal if-free subterms (all of which are necessarily of the same sort) into S
canonical form. 

(S4') Merge all ifs whose second argument contains syntactically identical S -canonical forms by 
means of ( 4) and (5). The resulting term satisfies (i). D 

If S contains functions of Boolean arguments or with a Boolean result (as indeed it will in all real
istic cases), the selective action of the first argument of the if-function gives rise to new equations and 
theorem 3.3.2 fails. For instance, suppose an c.>-complete specification S containing B is sufficiently 
complete with respect to 8, i.e. all closed ~8 -terms of sort booi can be proved equal to Tor F. Sup
pose further that · ~s contains a sort data and functions f ,g: boo/ °"' data and 
h,k: boo/Xbool °"'data. In that case some typical equations valid in lsuIFb but not provable from 
Esu1Fb are 

if(X,f(X),g(X))=if(X,f(T),g(F)) 
if(X + Y,h(X,Y),k(X,Y))=if(X + Y,h(X,-,X),k(X,X)) 
if(X.Y,h(X,Y),k(X,Y))=if(X.Y,h(T,T),if(X + Y,k(X,-,X),k(F,F)). 

(9) 
(10) 
(11) 

Contrary to equations (1)-(8), which are valid in lsuIF for all S satisfying the sufficient complete
ness requirement jU.St mentioned, equations like (9)-(11) are very much dependent on the particular S 
involved. 

If interpreted as a left-to-right rewrite rule, equation (11) is typical of a whole class of rules whose 
right-hand sides contain more ifs then their left-hand sides. Application of such rules easily leads to 
terms containing an enormous number of alternatives, because in general most of the new branches 
only lead to further branches. 

3.4. Combinatory logic 
Consider the following algebraic specification of strong combinatory logic: 
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module CLX 
begin 

sort F 

functions K, S: ~ F 
. : FXF ~ F (application) 

Note. The infix dot is not written and application 
associates to the left, i.e. (K.x ):Y is written as Kxy, etc. 

variables x V' ,z : ~ F 

equations Kxy = x 

end CLX. 

Sxyz = xz (yz) 

S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK) 
S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK))XK(SKK))) 
S(K(S(KS)))(S(KS)(S(KS))) = 

= S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS) 
S(S(KS)K)(K(SKK)) = SKK 

CLX is identical to CL+A/hr in Barendregt [16]. Hence, according to [16], theorem 7.3.14, CLX is 
equivalent to the AK ,871-calculus. The last four closed equations (the so-called combinatory axioms) 
give CLX the extensional property, i.e. if for two (possibly open) ~CLx-terms f and g not containing 
the variable x 

ECLx I- fx =gx, 

then also 

ECLx 1- f=g. 

Is CLX w-extensional? That is, does 

EcLX 1- fa = ga for all closed a 

imply 

EcLX I- f =g? 

Plotkin has shown that the AK,871-calculus is not w-extensional ([16], theorem 17.3.30). Hence, CLX 
is not w-extensional either. Because 

w-completeness /\ extensionality ~ w-extensionality, (I) 

CLX is not w-complete. In fact, as far as CLX is concerned the notions of w-extensionality and w
completeness are equivalent. This is not difficult to prove. In view of (1) plus the fact that CLX is 
combinatorially complete, it is enough to show that 

combinatorial completeness /\ w-extensionality ~ w~completeness. (2) 

Consider a ~cLX-equation f = g all of whose closed instances are provable from EcLX· Assume 
further that f and g contain the same variables x 1, • • • , xk ( k ;;a. I). (If f contains a variable x not 
in g, then replace some variable or constant v in g by Kvx, etc.) By combinatorial completeness of 
CLX there exist closed terms q, and t[! such that 

ECLx I- f ='f>x1 · · · xk> g=tfix1 · · · xk 

Applying w-extensionality k times gives 
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Hence 

and 

EcLX I- f =g. 

This proves (2). 

Two questions I have not succeeded in answering are: 

OPEN QUESTION 3.4.1: Does CLX have an w-complete version (with or without auxiliary sorts and 
functions)? 

OPEN QUESTION 3.4.2: Are the open equations valid in the initial algebra of CLX recursively enumer
able? 

If - as would be my guess - the answer to the second question is no, the answer to the first question 
must also be no according to theorem 2.4. 
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