
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J. Heering, P. Klint

Algebraic definition of a simple programming language

Department of Computer Science Report CS-R8504

3:.t:.~ot:1:::ak
~1 lnform!ltica

Amslerdam

February

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyri9ht © Stichting Mathematisch Centrum, Amsterdam

ALGEBRAIC DEFINITION OF A SIMPLE PROGRAMMING LANGUAGE

J.A. Bergstra
J. Heering

P. Klint
Centre for Mathematics and Computer Science

Amsterdam

ABSTRACT: What are the potentials and limitations of algebraic specifications for defining
programming languages and their processors? This paper tries to answer this question by
developing a specification for the toy programming language PICO. This specification describes
in detail all necessary steps from entering a PICO program in its textual form to computing its
value. A major part of this specification is devoted to g<;:neral techniques for defining
programming languages and does not depend on specific properties of PICO. The size of this
specification (more than 350 axioms) makes it mandatory to use modularization techniques. In
the specification formalism used we have experimented with polymorphism, infix operators,
conditional equations, rules for import and export and with parameterization. The results of
this experiment and their implications for further research are discussed.

KEY WORDS & PHRASES: Software Engineering, Algebraic Specifications, Formal Definition of
Programming Languages, Programming Environments, Modularization Techniques, Specification
Languages, Executable Specifications, Prototyping.

1983-84 CR Categories: D.2.1 [Software Engineering]: Requirements, Specifications; D.3.1
[Programming Languages]: Formal Definitions and Theory; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Programs; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages - Algebraic Approaches to
Semantics.

1980 Mathematics Subject Classification: 68Bxx [Software].
NOTE: Partial support received from the European Communities under ESPRIT projects no. 348

(Generation of Interactive Programming Environments) and no. 432 (An Integrated Formal
Approach to Industrial Software Development - METEOR).

Report CS-R8504
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

to; Dz~1
{,cDy1

j

btJf.)j

C?o),C32...

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1. Motivation 1
1.2. Relations with previous research 1
1.3. Verification and validation 2
1.4. Potentials for prototyping 2
1.5. Conclusions 2
1.6. Perspectives for further research 3
1.7. Acknowledgements 3

2. THE SPEOFICA TION FORMALISM 4

2.1. Syntax of the specification formalism 4
2.2. Lexical conventions 5
2.3. Various aspects of the specification formalism 5
2.3.1. Prefix and infix operators 5
2.3.2. Multiple output values 5
2.3.3. Polymorphism 6
2.3.4. Module expressions 7
2.4. Structure diagrams 7

3. INFORMAL DEFINITION OF THE LANGUAGE PICO 10

4. ELEMENTARY DATA TYPES 13

4.1. Booleans 14
4.2. Integers 16
4.3. Characters 18
4.4. Sequences 23
4.5. Strings 25
4.6. Tables 27

5. CONTEXT-FREE PARSING 30

5.1. Interface with lexical scanner 31
5.2. Interface with abstract syntax tree constructor 33
5.3. BNP patterns 38
5.4. Context-free parser 40

6. ALGEBRAIC SPECIFICATION OF PICO 45

6.1. Types and values 46
6.1.1. Types 46
6.1.2. Values 47
6.2. Lexical syntax 49
6.2.1. Lexical character scanner 50
6.2.2. Lexical syntax and rules for token construction 52
6.2.3. Lexical scanner 61
6.3. Abstract and concrete syntax 63
6.3.1. Abstract syntax 64
6.3.2. Concrete syntax and rules for abstract syntax tree construction 70
6.3.3. Parser 75
6.4. Static semantics 77
6.5. Dynamic semantics 80
6.6. The PICO system 83

7. LITERATURE 85

APPENDIX A.1. Dependency hierarchy of modules 87

APPENDIX A.2. Declaration of sorts per module 89

APPENDIX A.3. Declaration of functions per module 91

APPENDIX A.4. Modules in which each function is declared 93

I

1. INTRODUCTION

What are the potentials and limitations of algebraic specifications for defining programming
languages and their processors? We will try to answer this question by developing a specification for
the toy programming language PICO. This specification describes in· detail all necessary steps from
entering a PICO program in its textual form to computing its value. The specification has been made
more general than strictly necessary. A major part of it does not depend on any specific properties of
PICO but is equally usable for definitions of other programming languages.

1.1. Motivation

Our motivation for carrying out this -- quite substantial -- exercise is as follows:

(1) It will clarify how well-suited algebraic specifications are for defining (programming) languages
and their processors such as type-checkers, interpreters, editors, etc. We do not claim any
originality in this respect: many researchers have addressed problems in this area. Our main
goal is to gain experience in constructing large algebraic specifications.

(2) It will give us an opportunity for experimenting with various extensions of the algebraic
formalism, such as multiple return values, polymorphism, infix operators and (positive)
conditional equations. We have only used total functions in our specifications.

(3) The size of the specification to be developed makes the use of modularization techniques
mandatory. This gives a good opportunity for experimenting with operations for module
composition and parameterization.

(4) The experiment will give some insight in the tools that are desirable for the processing of formal
specifications (such as check, cross reference, maintenance and edit tools) and in the problems
associated with their implementation. As a side-effect some basic tools for the processing of
algebraic specifications have been developed.

In this case study, we will not consider the specification of errors and exceptions, for two
reasons:

(1) We want to concentrate first on the basic functionality and the alternatives for modularization
of the system to be designed; specifying error situations would obscure the design and would
probably double its size.

(2) Specification of errors within the algebraic framework has not yet been solved satisfactorily and
requires separate research.

1.2. Relations with previous research

This paper uses initial algebra semantics for algebraic specifications with conditional equations.
We use modularization mechanisms such as parameterization, imports and exports similar or identical
to the ones discussed in [KLA83], [W83], [GAU84] or [LOE84]. The specification uses positive
conditional equations. The entire PICO system constitutes a semi-computable algebra in the sense of
[BT79].

Many people have carried out similar exercises, for instance [GP81], the work of the CIP project
in Miinchen has been partly devoted to the topic of algebraic specifications of programming
languages. Further, several people have worked on the related topic of algebraic compiler
specification, for instance Bothe [B081], Ganzinger [GAN82] and Gaudel [GAU80]. For a survey of
algebraic specifications and initial algebra semantics in particular we refer to Goguen and Meseguer
[GM82]. A quite complete bibliography on algebraic techniques is [KL83].

2

1.3. Verification and validation

It is a major problem to get insight in the correctness of a given formal specification. The
algebraic specification method provides a relatively simple formalism with unambiguous semantics,
but constructing proofs of correctness remains as difficult as ever. We have the following opinion on
this matter:

(1) We consider algebraic specifications as the highest level of specification available, i.e. there is no
"super high level" specification against which the correctness of the algebraic specification can
be proved.

(2) Specifications can only be validated against informal requirements (see next subsection).

(3) A proof will be required that some program correctly implements a given algebraic specification.
This will involve verification of the translation steps between an algebraic specification and its
implementation.

1.4. Potentials for prototyping

Prototyping can be achieved by transforming an algebraic specification into an executable
program. Some alternatives are:

(1) Transform algebraic specification into a conditional rewrite system [BK81] by using a Knuth­
Bendix-like algorithm [RZ84] or by constraining the allowed forms of equations [HOD82]. In
both cases a more efficient prototype implementation can ,be realized by using a reduction
machine.

(2) Compile algebraic specification into Prolog [DE84]. In this case, one can profit from efficient
Prolog implementations [BBC83] and (concurrent) Prolog machines.

1.5. Conclusions

Our conclusions can be summarized as follows:

(1) The specifications as presented in the body of this paper are in our opinion satisfactory. The
techniques developed for specifying various aspects of our toy programming language can also
be used in the specifications of other -- more realistic -- languages. We expect· that a
programming environment for a given programming language can also be specified within the
framework as presented here.

(2) Polymorphism was found to be convenient -- though not indispensable -- for shortening the
specifications and making them more readable. Conditional equations were essential for the
modeling of partial functions. They also tended to shorten several parts of the specification.
The primitive abbreviation scheme used for introducing infix operators was unsatisfactory. The
way in which we have to treat integer and string constants is also clumsy. It will be essential to
have an elaborate mechanism for introducing arbitrary syntactic extensions and even graphical
notations.

(3) The algebraic specification techniques have been of considerable heuristic value in
understanding how the specification should (could) be modularized. However, the various
modularization techniques (such as import and parameterization) are not orthogonal. It will be
important to develop sound heuristics about which technique is to be used where.

(4) Structure diagrams (a high-level graphical notation described in section 2.4) are a considerable
aid in finding the proper modularization of a specification.

3

(5) In· view of the size of the specification it was necessary to implement some simple tools for
consistency checking. We have implemented a checker for the syntax and type correctness of
specifications and generators for structure diagrams and cross reference tables. For the
development of larger specifications it will be necessary to have more sophisticated editing
facilities, such as a syntax-directed editor with incremental type checking. The question will
have to be addressed how arbitrary syntactic extensions and graphical notations can be handled
by such an editor.

1.6. Perspectives for further research

During this exercise we have identified the following areas that need further clarification:

(1) Treatment of errors and exceptions.

(2) Multiple export signatures per module.

(3) More flexible export rules with which the number of exported names can be minimized.

(4) Parameterization of modules and formulation of constraints on parameters.

(5) More explicit specification of inherited parameters.

(6) Heuristic rules for proper modularization.

(7) Further development of structure diagrams.

(8) Mechanisms for introducing syntactic extensions.

(9) Techniques and tools for creating, modifying, maintaining and incremental checking of algebraic
specifications.

(10) Techniques and tools for transforming algebraic specifications into executable prototypes.

1.7. Acknowledgements

Niek van Diepen, Ed Kuijpers and Ard Verhoog made useful comments on various drafts of
this document.

4

2. THE SPECIFICATION FORMALISM

In this section we give a brief and informal description of the specification formalism. The
formalism is based on signatures consisting of a set of sorts and a set of functions over these sorts. A
signature combined with a set of equations over that signature and a set of variables occurring in the
equations forms a specification (see, for instance, [KLA83]). We will always use the initial algebra
semantics of these specifications.

2.1. Syntax of the specification fonnalism

<specification> ::=<module>+
<module> ::= 'module' <ident>

'begin'
<parameters>
<exports>
<imports>
<sorts>
<functions>
<variables>
<equations>

'end' <ident>
<parameters> ::= ['parameters' {<parameter-module> ','}+].
<parameter-module> ::=

<exports>

<ident> ['begin'
<sorts>
<functions>

'end' <ident>] •
::= ['exports' 'begin'

<sorts> <functiuns> 'end'] •
<imports> ::= ['imports' {<module-expression> ','}+] •
<module-expression>

::= <ident>
['{'

['renamed' 'by' <renames>]
(<ident> 'bound' 'by' <renames>
'to' <ident>)*

'}'] .
<renames> ::= '[' {<rename> ',' }* ']' •

<rename> ::= <fun-ident> ['->' <fun-ident>].
<sorts> ::= ['sorts' <ident-list>] •
<ident-list> ::= { <ident> ',' }+.
<fun-ident-list>::= { <fun-ident> ',' }+.
<functions> ::= ['functions' <function-list>] •
<function-list>::= C <fun-ident-List> ':'<fun-type>)+.
<fun-ident> ::= <ident> I '_' <operator> ' ' I <operator>
<fun-type> ::= [<type>] '->' <out-type> •
<type> ::= { <type-ident> 1 # 1 }+ •
<out-type> ::= <type-ident> I '(' <type> ')'
<type-ident> ::= <ident> I ('*')+ •
<variables> ::= ['variables' <variable-List>] •

I I

<variable-list>
<equations>
<cond-equation>
<tag>
<equation-list>
<equation>
<term>

<primary>

<term-list>
<tuple>

::= C <ident-list> '·' '->'<out-type>)+.

::= ['equations' <cond-equation>+ J •
::=<tag> <equation> ['when' <equation-list>].
::= ['[' <ident> 'J' J.
::=~<equation> ',' }+.
::=<term> '=' <term>.
::=<operator> <term>

<primary> [<operator> <term> J •
::= <ident> ['(' <term-list> ')'] I

<tuple> I <string> I '(' <term> ')' •
::= { <term> ',' }+.

::= '<' <term-list>'>'.

2.2. Lexical conventions

The lexical conventions of the specification language are as follows:

5

1) Identifiers (i.e. < i dent> in the grammar in the previous section) consist of a non-empty
sequence of letters and/or digits with embedded hyphens. For example, a, Z16, Very-Long­
Iden t if i er and 6 are legal identifiers, but -a, - or a- are illegal.

2) Strings (i.e. <string>) begin and end with a single quote (') and may contain letters, digits
and the punctuation marks: (space) "(double quote) C > * + , - • I : ; I = .

3) Operators (i.e. <operator>) are denoted by a sequences of one or more of the following
characters: ! iii, $, %, ~ &, + ', I, \, ;, ',. ? I.

4) Comments begin with two hyphens and end with either the end of the line or another pair of
hyphens.

2.3. Various aspects of the specification formalism

Our formalism extends the basic algebraic specification formalism based on signatures and sets
of equations in several ways. These extensions are discussed in the following subsections.

2.3.1. Prefix and infix operators

Monadic or dyadic functions may be denoted by respectively prefix or infix operators.
Operators are denoted by operator-symbols consisting of one or more of the characters specified in
the previous paragraph. In the signature, the position of operands of operators is indicated by the
underline character (_). For instance,

+ : S1 # S2 -> S3

defines the infix operator +with argument sorts S1 and S2 and output sort S3. All infix and prefix
operators have the same priority. They are just an abbreviation device and can always be replaced by
ordinary functions.

2.3.2. Multiple output values

In the signature tuples are allowed as output sorts, i.e. the function

f : S1 # S2 -> (S3 # S4)

6

has S3 # S4 as output sort, this is an ordered sequence with first component of sort S3 and second
component of sort S4. In equations, tuples are written as a sequence of terms enclosed by angle
brackets, i.e. < and >. It is required that the sorts of the constituents of a tuple are equal to the
corresponding components of a tupled output sort in the signature. Tuples can be removed from the
specification by introducing new sorts and construction/projection functions for each tupled output
sort in the signature. The above tupled output sort C S3 # S4) can, for instance, be removed by
introducing the additional sort SS and the functions make-SS, first-SS, second-SS, as follows:

f S1 # S2 -> SS
make-SS S3 # S4 -> SS
first-SS SS -> S3
second-SS SS -> S4

2.3.3. Polymorphism

Functions may be polymorphic, i.e. the same function name may be used to denote different
functions with different types, e.g. after defining

f S1 # S2 -> S3
f S2 -> S2

each occurrence of the function symbol f in a term will have to be disambiguated by considering the
number and sorts of its arguments.

Definitions of functions may also contain wild card sorts, denoted by one or more asterisk
characters (*). At the position of a wild card sort, a term of any legal sort is allowed. Wild card
sorts are identified by the number of asterisks by which they are denoted. In this way, one can
specify the multiple occurrence of the same, but arbitrary, sort. For instance,

g : * # S3 # ** # * -> *

specifies a function g with first and fourth argument of equal, but arbitrary sort, second argument of
sort S3 and third argument of another arbitrary sort which may differ from the sort of the first and
fourth argument. The output sort of g is the same as the sort of the first and fourth argument.

We impose some restrictions on polymorphic types which allow us to eliminate all
polymorphism from the specification by means of simple textual transformations. It is required that
all wild card sorts appearing in the output sorts of a function also appear among its input sorts. This
restriction excludes, for instance, polymorphic constants. We also impose the restriction that the sets
of input sorts of polymorphic functions are pairwise disjoint. This excludes, for instance,

f * # S2 -> S3
f S1 # * -> S3

since there is a unifying type S1 # S2 -> S3 in this case.

7

·2.3.4. Module expressions

Module expressions serve the purpose to rename sorts and functions of an existing module or to
bind parameters of a module to actual values. The module described by the module expression may
then be imported by another module. These three aspects of module expressions are now described in
more detail: ·

• Exported names: Each module may contain an exports clause giving a list of all names of
sorts and functions which are exported from the module, i.e. which remain visible when the
module is combined with other modules (see below). External names of a module can be
renamed by means of the renamed by construct. Currently, all exported names are inherited,
i.e. they are also exported by the modules that (directly or indirectly) use the module from
which the names were originally exported. This simple scheme has the undesirable property
that the number of exported names cannot be controlled.. In future versions of the specification
formalism, a better mechanism offering more refined control over exported names will be
introduced.

• Parameterization: In order to make modules more generally usable in different contexts, a form
of parameterization is available in the specification language. Parameterization is described by
adding one or more parameters clauses to a module. Each (formal) parameter is a (possibly
incomplete) submodule and contains one or more names of sorts and functions. All these
names are formal names which -- in a later stage -- have to be bound to actual ones. This is
achieved by the bound by construct. Not all parameters of~ module have to be bound before
it can be imported in another module. Such unbound parameters are inherited by the importing
module and are indistinguishable from parameters that are specified in the importing module
itself.

• Import of modules: Import of a module in another module is the fundamental composition
operation for modules. It is described by the imports clause. The import of module B in
module A is equivalent to constructing a new module A' that consists of the unions of the
signatures and equations of A and B. Note that only the exported names of B are used for the
construction of this union. In the specifications that follow we will -- for reasons of clarity --
frequently import more modules than is strictly necessary. ·

• Name identification: When modules are combined the problem arises how multiple declarations
of names should be interpreted. For identification of names we therefore adopt the origin
principle:

1) names with identical spelling and type, originating from the same module are equal,

2) names with identical spelling and type but different origin are forbidden.

This scheme allows the multiple inclusion of the same module (via different routes), but forbids
collisions of names with identical spelling and type, originating from different modules.

2.4. Structure diagrams

The overall modular structure of specifications will be illustrated by structure diagrams. Each
module is represented by a rectangular box. The name of each module is shown at the bottom of its
box. For example, module Boo leans does not import any other modules and is represented by:

All modules imported by a module M are represented by structure diagrams inside the box

8

representing M. For nested structure diagrams levels of detail may be suppressed to gain space. For
example, Characters imports Booleans and Integers (which in its tum also imports Booleans)
and is represented by:

r-:::--i II
~~

Integers

Characters

All parameters of a module are represented by ellipses carrying the name of the parameter. For
example, Sequences, which has parameter Items and imports Boo leans, is represented by:

Sequences

The binding of a formal parameter is represented by a line joining the formal parameter and the
module to which it is bound. For example, Strings are defined by binding the parameter Items of
Sequences to Characters. The corresponding structure diagram is:

Characters

Sequences

Strings

9

Unbound, inherited parameters are -- not yet very satisfactorily -- represented in structure diagrams
by repeating the inherited parameter as a parameter of the module that inherits it. For example,
Context-free-parser has formal parameters Scanner and Syntax and imports, among others,
BNF-patterns with unbound parameter Non-terminals and Atree-envi ronments with unbound
parameter Operators. This is represented by the following diagram:

Scanner Syntax

Non-terminals

Characters Tokens

BNF-patterns
A trees

Sequences Sequences

Strings Token-

sequences

Tables

A tree-

environments

Context-free-parser

All structure diagrams appearing in this paper have been generated automatically; they were derived
from the text of the specification.

10

3. INFORMAL DEFINITION OF TIIE LANGUAGE PICO
The language PICO is extremely simple. It is essentially the language of while-programs. A

program consists of declarations followed by statements. All variables occurring in the statements
have to be declared to be either of type integer or of type string. Statements may be assignment
statements, if-statements ·and while-statements. Expressions may be a single identifier, integer
addition or string concatenation.

At the lexical level, PICO programs consist of a sequence of lexical items separated by layout.
Lexical items are keywords, identifiers, integer and string constants and punctuation marks. The
lexical grammar for PICO is:

<lexical-stream>

<lexical-item>

<optional-layout>
<keyword-or-id>

<id>
<id-chars>
<id-char>

<integer-constant>
<digits>

<string-constant>
<string-tail>

<quote>

<any-char-but-quote>
<Literal>

<letter>

<digit>

<layout>

(•

::=<lexical-item> <lexical-stream>
<lexical-item> •

::=<optional-layout>
(<keyword-or-id> I
<integer-constant>
<string-constant>
<Literal» •

::=<layout> I <empty>.
::='begin' I 'end' I 'declare' I Jinteger' I

'string' I 'if' I 'then' I 'else' I 'fi' I
'while' I 'do' I 'od' I
<id> •

::= <letter> <id-chars> .
: := <id-char> <id-chars> I <empty> .
::= <letter> I <digit>

: := <digit> <digits>
: : = <digit> <digits> I <empty> .
::= <quote> <string-tail> .
: : = <any-char-but-quote> <string-tail> I <quote>

: := 1111

: := <letter> I <digit> I <literal> I <layout>
: := I (I I I) I I '+'

,_,
I I • I I I I I , ,

I 11' I 1 • I I I::

: := 'a' 'b' IC I 'd' 'e' If I 'g'
I h' Ii I 1 j I 'k' I l' 'm' 'n'
'o' 'p' 'q' I r' 's' 't' 'u'
'v' 'w' 'x' 'y' 'z'
'A' 'B' 'C' 'D' 'E' IF' 'G'
'H' I I I 'JI 'K' 'L' .,.,. 'N'
'O' 'P' 'Q' 'R' 'S' 'T' 'U'
'V' 'W' 'X' 'Y' 'Z' .

::= '0' '1' '2' '3' '4'
'5' '6' '7' '8' '9' .

: : = I I I <newline> I <tab> .

.

11

Here, <newline> and <tab> are assumed to be primitive notions corresponding to, respectively, the
newline character and the tabulation.

The concrete. syntax of PICO is:

::= 'begin' <decls> <series> 'end'
::= 'declare' <id-type-list>';'

<pico-program>
<decls>
<id-type-List>
<type>
<series>
<stat>
<assign>

::=<id> '·' <type> <<empty> I ',' <id-type-list>)
::= 'integer' I 'string' •
::=<empty> I <stat> <<empty> I ';' <series>>
::= <assign> I <if> I <while>

<if>
::=<id>':=' <exp>.
::= 'if' <exp> 1 then' <series>

'else' <series> 'fi'
::= 'while' <exp> 'do' <series> 'od' • <while>

<exp> ::=<id> I <integer-constant> I <string-constant>
<plus> I <cone> I '(' <exp> ')' •

<plus>
<cone>
<empty>

::=<exp> '+' <exp> •
::=<exp> 'II' <exp>.
: := I I

I

The non-terminals <id>, <integer-constant> and <string-constant> are defined in the lexical
grammar given above and represent identifiers, integer constants and string constants respectively.

There are two overall static semantic constraints on programs:

1) All identifiers occurring in a program should have been declared and their use should be
compatible with their declaration. More precisely, this means that all <id>s occurring in an
<assign> or an <exp> should have been declared, i.e. should occur in some <id-type> in the
<id-type-list> of the <decls>-part of the PICO-program, and that the type of <id>s
should be compatible with the expressions in which they occur.

2) The <exp> occurring in an <if>- or <whi le>-statement should be of type integer.

A type can be given to <exp>s depending on their syntactic form:

o if an <exp> consists of an <id>, that <id> should have been declared and the type of the
<exp> is the same as the type of the <id> in its declaration;

o an <exp> consisting of an <integer-constant> has type integer;

• an <exp> consisting of a <string-constant> has type string;

• an <exp> consisting of a <plus> has type integer;

• an <exp> consisting of a <cone> has type string.

Given this notion of types of <exp>s, the static semantic constraints can be formulated in more
detail:

• The <exp>s occurring in a <plus> should be of type integer;

e The <exp>s occurring in a <cone> should be of type string;

e The <id> and <exp> that occur in an <assign> should have the same type.

• The <exp>s that occur in <if> and <while> should have type integer.

The dynamic semantics of PICO are straightforward except that

12

1) integer variables are initialized with value 0,

2) string variables are initialized with "" (empty string),

3) the <exp> in an <if> or <while> is assumed to be true if its value is unequal to 0.

13

4. ELEMENTARY DATA TYPES

As a prerequisite for the PICO specification some elementary data types are defined in this
chapter, specifications are given for:

• Booleans (4.1): truth values true and false with functions and, or, not and the
polymorphic function ; f.

• Integers (4.2): natural numbers with constants 0, 1 and 10 and functions succ (successor),
add (addition), mul (multiplication), eq (equality of integers), less (less than), lesseq (less
than or equal), greater (greater than) and greatereq (greater than or equal).

• Characters (4.3): the alphabet consists of constants for letters, digits, and punctuation marks.
The functions eq (equality of characters), ord (ordinal number of character in the alphabet),
is-letter (is character a letter?), is-upper (is character an upper case letter?), is-lower (is

character a lower case letter?) and is-dig i t (is character a digit?) are defined on them.

• Sequences (4.4): linear lists of items. Sequences are parameterized with the data type of the
items. The only constant is null, the empty sequence. The following functions are defined:
eq (equality of sequences), seq (combine item with sequence), cone (concatenate two
sequences) and conv-to-seq (convert an item to a sequence).

• Strings (4.5): sequences of characters, i.e. sequences with items bound by characters. The only
constant is null-string, the empty string. The following functions are defined: eq (equality
of strings), seq (combine character with a string), cone (90ncatenate two strings), string

(convert a character to a string) and s t r-to-i n t (convert a string to an integer).

• Tables (4.6): mapping from strings to entries, where entries are a parameter. The only constant
is null-table, the empty table. The following functions are defined: table (add new entry to
table), lookup (searches for an entry in a table), delete (deletes an entry from a table) and
eq (equality of tables).

14

4.1. Booleans

4.1.a. Gobal description

Booleans are truth values true and false with functions and, or, not and the polymorphic
function if (see section 2 for a discussion of polymorphism).

Apart from the if-function, this is the simplest initial algebra specification of the Booleans. It
contains only closed equations. Note that, for instance, the equation

not(not(x)) = x

is not derivable by equational logic from the axioms given, although it is valid in the initial model.
Adding this equation to Booleans, does not affect the initial model, but only causes an increase in
the power of the specification in the sense that more of the (open) equations valid in the initial model
can be derived from the specification by equational logic. See [HEE85] for a discussion of this
subject.

4.1.b. Structure diagram

4.1.c. Specification

module Booleans
begin

exports
begin

end

sorts
functions

true
false
or
and
not
if

variables
x, y -> *

equations

[1J or(true, true)
[2J or(true, false)
[3J or(false, true>

BOOL

BOOL
BOOL
BOOL
BOOL

[4J or(false, false)

-> BOOL
-> BOOL

BOOL -> BOOL
BOOL -> BOOL

-> BOOL
* # * -> *

= true
= true
= true
= false

15

[5] and(true, true> = true
[6] and(true, false> = false
[7] and(false, true) false
[8] and(false, false> = false

[9] not(true> = false
[10] not(false> = true

[11] if(true, x, y) = x
[12] if(false, x, y) = y

end Booleans

16

4.2. Integers

4.2.a. Global description

Integers as defined here are in fact natural numbers with constants 0, 1 and 10 and functions
succ (successor), add (addition), mul (multiplication), eq (equality), less (less than), lesseq (less
than or equal), greater (greater than) and greatereq (greater than or equal).

The equations for the constants 1 and 10 are not very satisfactory. Clearly, a mechanism is
needed for defining a shorthand notation for all integer constants. In section 4.5.a this subject is
discussed in connection with string constants.

4.2.b. Structure diagram

4.2.c. Specification

module Integers
begin

exports
begin

sorts

functions
0
1
10
succ
add
mul
eq
less
lesseq
greater

INTEGER

INTEGER
INTEGER #
INTEGER #
INTEGER #
INTEGER #
INTEGER #
INTEGER #

greatereq: INTEGER #
end

imports Booleans

variables
x, y, z -> INTEGER

equations

Integers

-> INTEGER
-> INTEGER
-> INTEGER
-> INTEGER

INTEGER -> INTEGER
INTEGER -> INTEGER
INTEGER -> BOOL
INTEGER -> BOOL
INTEGER -> BOOL
INTEGER -> BOOL
INTEGER -> BOOL

[13J
[14J

[15J
[16J

[17J
[18J

[19]

[20J
[21J
[22J

1
10

addCx, O>
addCx, succCy))

mulCx, O>
mulCx, succ(y))

eqCx, x>
eqCx, y)
eqCsuccCx>, succCy))
eqCO, succC x))

= succCO>
= succ(succ(succCsuccCsuccCsuccC

succCsuccCsuccCsucc(O))))))))))

= x
= succCaddCx, y))

= 0
= addCx, mulCx, y))

= true
= eqCy, x>
= eqCx, y)
= false

[23J lessCx, O> = false
[24J lessCO, succCx>> = true
[25] lessCsuccCx>, succCy>>= lessCx, y)

[26J lesseqCx, y) = or(less<x, y), eq(x, y))

[27J greaterCx, y) = notClesseqCx, y))

[28J greatereqCx, y) = orCgreaterCx, y), eqCx, y))

end Integers

17

18

4.3. Characters

4.3.a. Global description

The alphabet of characters consists of constants for letters, digits, and punctuation marks. The
functions eq (equality), ord (ordinal number of character in the alphabet), is-letter (is character
a letter?), is-upper (is character an upper case letter?), is-lower (is character a lower case letter?)
and is-digit (is character a digit?) are defined on them.

Two observations can be made about this specification. First, one may notice that the absence
of integer constants forces us two write equations of the form

ordCchar-3) = succ(ordCchar-2))

instead of the more natural form

ordCchar-3) = 3.

Secondly, it is clear that some abbreviation mechanism is needed for specifications that contain many
constants as is the case here. At the expense of additional complexity of the specification, this could
have been achieved by defining characters in two stages: first, a basic alphabet is defined which
consists only of lower case letters and a hyphen; next, this basic alphabet is used to generate all
constants for the full alphabet. Names of constants are then only allowed to contain symbols from
the basic alphabet, i.e. char-upper-case-a instead of char-A.

4.3.b. Structure diagram

4.3.c. Specification

module Characters
begin

exports
begin

sorts
functions

CHAR

eq
is-upper
is-Lower
is-letter

r-::=-i II
L::.J ~

Integers

Characters

CHAR # CHAR -> BOOL
CHAR
CHAR
CHAR

-> BOOL
-> BOOL
-> BOOL

19

is-digit CHAR -> BOOL
ord CHAR -> INTEGER

char-0 -> CHAR
char-1 -> CHAR
char-2 -> CHAR
char-3 -> CHAR
char-4 -> CHAR
char-5 -> CHAR
char-6 -> CHAR
char-7 -> CHAR
char-8 -> CHAR
char-9 -> CHAR

char-ht -> CHAR tab --
char-nl -> CHAR new line
char-space -> CHAR space
char-quote -> CHAR "
char-lpar -> CHAR (

char-rpar -> CHAR)

char-times -> CHAR * --
char-plus -> CHAR + --
char-comma -> CHAR ,
char-minus -> CHAR
char-point -> CHAR
char-slash -> CHAR I
char-bar -> CHAR I
char-equal -> CHAR =
char-colon -> CHAR
char-semi -> CHAR ;

char-A -> CHAR
char-B -> CHAR
char-C -> CHAR
char-D -> CHAR
char-E -> CHAR
char-F -> CHAR
char-G -> CHAR
char-H -> CHAR
char-I -> CHAR
char-J -> CHAR
char-K -> CHAR
char-L -> CHAR
char-M -> CHAR
char-N -> CHAR
char-0 -> CHAR
char-P -> CHAR
char-Q -> CHAR
char-R -> CHAR
char-S -> CHAR

,.

20

end

char-T
char-U
char-V
char-W
char"."X
char-Y
char-Z

char-a
char-b
char-c
char-d
char-e
char-f
char-g
char-h
char-i
char-j
char-k
char-l
char-m
char-n
char-o
char-p
char-q
char-r
char-s
char-t
char-u

·char-v
char-w
char-x
char-y
char-z

imports Booleans, Integers

variables
c, c1, c2

equations

[29J ordCchar-0)
[30J ordCchar-1>
[31J ordCchar-2>
[32J ordCchar-3)
[33J ordCchar-4>
[34J ordCchar-5)

-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR

-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR I

-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR

-> CHAR

= 0

= succCordCchar-O>>
= succ(ordCchar-1>>
= succ(ord(char-2>>
= succ(ord(char-3))
= succ(ord(char-4))

21

[35] ord(char-6) = succ<ord(char-5))
[36] ordCchar-7) = succCordCchar-6))
[37] ordCchar-8) = succ<ordCchar-7>>
[38] ord(char-9) = succ(ord(char-8))

[39] ord(char-ht) = succ(ordCchar-9))
[40] ord(char-nl> = succ(ordCchar-ht))
[41] ordCchar-space) = succCordCchar-nl))
[42] ordCchar-quote) = succ(ordCchar-space>>
[43] ord(char-lpar) = succ(ordCchar-quote))
[44] ordCchar-rpar) = succ(ordCchar-lpar))
[45] ordCchar-times) = succCordCchar-rpar))
[46] ordCchar-plus) = succ(ordCchar-times))
[47] ordCchar-comma) = succ<ordCchar-plus>>
[48] ordCchar-minus> = succCordCchar-comma))
[49] ordCchar-point) = succ(ordCchar-minus))
[50] ord(char-slash) = succ<ordCchar-point))
[51] ordCchar-bar> = succCordCchar-slash))
[52] ord(char-equal) = succ(ordCchar-bar))
[53] ordCchar-colon) = succ(ordCchar-equal))
[54] ord(char-semi) = succ(ord(char-colon)~

[55] ordCchar-A) = succ(ord(char-semi))
[56] ordCchar-B> = succ(ordCchar-A))
[57] ord(char-C) = succCordCchar-B))
[58] ord(char-D) = succ<ord(char-C))
[59] ordCchar-E) = succ(ordCchar-D))
[60] ordCchar-F) = succCordCchar-E))
[61] ord(char-G) = succCordCchar-F))
[62] ord(char-H) = succ(ord(char-G))
[63] ord(char-1) = succCordCchar-H))
[64] ord(cha r-J) = succ(ord(char-1))
[65] ord(char-K) = succCordCchar-J))
[66] ordCchar-U = succ(ord(char-K))
[67] ord(char-M) = succ(ord(char-L))
[68] ordCchar-N) = succ(ordCchar-M))
[69] ord(char-0 > = succCordCchar-N))
[70] ordCchar-P) = succ(ordCchar-0))
[71] ordCchar-Q) = succ(ordCchar-P))
[72] ordCchar-R> = succCordCchar-Q))
[73] ordCchar-s> = succCordCchar-R))
[74] ord(char-n = succCordCchar-S))
[75] ord(char-U) = succCordCchar-T))
[76] ord(char-V> = succCordCchar-U))
[77] ord(char-W) = succCordCchar-V))
[78] ordCchar-x> = succCordCchar-W))
[79] ordCchar-Y> = succCordCchar-X))
[80] ordCchar-Z) = succCordCchar-Y))

[81] ordCchar-a) = succCordCchar-Z))

22

[82J ordCchar-b) = succCordCchar-a))
[83J ordCchar-c) = succCordCchar-b))
[84J ordCchar-d) = succCordCchar-c))
[85J ordCchar-e) = succ(ordCchar-d))
[86J ordCchar-f) = succ(ordCchar-e))
[87J ordCchar-g) = succCordCchar-f))
[88J ordCchar-h) = succCordCchar-g))
[89J ordCchar-i) = succCordCchar-h))
[90J ordCchar-j) = succCordCchar-i))
[91J ordCchar-k) = succ(ordCchar-j))
[92J ordC cha r-l) = succCordCchar-k))
[93J ordCchar-m) = succ(ordCchar-l))
[94J ordCchar-n) = succ(ordCchar-m))
[95J ordCchar-o) = succCordCchar-n))
[96J ordCchar-p) = succ(ord(char-o))
[97J ordCchar-q) = succCordCchar-p))
[98J ordCchar-r) = succCordCchar-q))
[99J ordCchar-s) = succ(ordCchar-r))
[100J ordCchar-t) = succCordCchar-s))
[101J ordCchar-u) = succ(ordCchar-t))
[102J ordCchar-v) = succCordCchar-u))
[103J ordCchar-w) = succCordCchar-v))
[104J ordCchar-x) = succCordCchar-w))
[105] ord(char-y) = succCordCchar-x))
[106J ordCchar-z) = succ(ordCchar-y))

[107J eqCc1, c2) = eqCord(c1), ordCc2))
[108J is-upper(c) = andCgreatereqCord(c), ord(char-A)),

lesseq(ord(c), ord(char-Z)))
[109J is-lower(c) = and(greatereq(ord(c), ordCchar-a)),

lesseq(ord(c), ord(char-z)))
[110J is-digit(c) = andCgreatereq(ord(c), ord(char-0)),

lesseq(ord(c), ord(char-9)))
[111J is-letter(c) = or(is-upper(c), is-lower(c))

end Characters

23

4.4. Sequences

4.4.a. Global description

Sequences are linear lists of items; they are parameterized with the data type of the items. The
only constant is null, the empty sequence. The following functions are defined: eq (equality), 'seq
(combine item with sequence), cone (concatenate two sequences) and conv-to-seq (convert an item
to a sequence).

Note that the function eq in the above specification is polymorphic.

4.4.b. Structure diagram

4.4.c. Specification

module Sequences
begin

parameters Items
begin

sorts ITEM
functions

Sequences

eq ITEM # ITEM -> BOOL

end Items

exports
begin

sorts
functions

null
seq
cone

SEQ

eq
conv-to-seq

end

imports Booleans

ITEM # SEQ
SEQ # SEQ
SEQ # SEQ
ITEM

-> SEQ
-> SEQ
-> SEQ
-> BOOL
-> SEQ

24

variables
s, s1, s2
it, it1, it2

-> SEQ
-> ITEM

equations

[112]

[113]
[114]

[115]

[116]
[117]

[118]

[119]

cone(s, nu l L>
conc(null, s)
concCseqCit, s1), s2)

eq(s, s>
eqCs1, s2)
eqCnull, seqCit, s>>
eqCseqCit1,s1>, seqCit2,s2>>

conv-to-seq(it)

end Sequences

= s
= s
= seq(it, conc(s1, s2>>

= true
= eqCs2, s1)
= false
= and(eq(it1,it2>, eqCs1,s2))

= seq(it, null>

25

4.5. Strings

4.5.a. Global description

Strings are sequences of characters, i.e. Sequences with Items bound to Characters .. The
only constant is null-string, the empty string. The following functions are defined: eq (equality),
seq (combine character with a string), cone (concatenate two strings), string (convert a character
to a string) and str-to-int (convert a string to an integer).

In the case of the data type string there is an urgent need for a short hand notation for string
constants. The PICO specification would become unreadable without it. We will therefore use an, ad
hoe, convenient notation for string constants to denote the terms generated by the module Strings,
e.g. the term

seq(char-a, seqCchar-b, null-string))
will be written as

"ab".
The empty string, i.e. the constant null-string, will be written as 1111

• In the future, a general
abbreviation scheme will be indispensable for obtaining readable specifications containing integer and
string constants, sets, lists, etc.

4.5.b. Structure diagram

4.5.c. Specification

module Strings
begin

exports
begin

functions

Characters

Sequences

Strings

26

str-to-int STRING -> INTEGER
end

imports Sequences

variables

{ renamed by

}

[SEQ -> STRING,
null -> null-string,
conv-to-seq -> string]

Items bound by
[ITEM -> CHAR,

eq -> eql
to Characters

c :-> CHAR
str :-> STRING

equations

[120] str-to-intCseqCc, str>> = ifCeqCstr, null-string),
ord(c),
addCmuLCordCc>, 10), str-to-intCstr)))

[121l str-to-intCnull-string) = 0

end Strings

27

4.6. Tables

4.6.a. Global description

Tables are mappings from strings to entries, where entries are a parameter. The only constant
is null-table, the empty table. The following functions are defined: table (add new entry to
table), lookup (searches for an entry in a table), delete (deletes an entry from a table) and eq
(equality of tables).

Note that adding a pair (name, error-entry) to a table has the somewhat strange, but
harmless, effect that

lookupCname, tableCname, error-entry, tbl1>> =<true, error-entry>

and that

lookup(name, null-table) = <false, error-entry>.

Only in the first case name occurs in the table, but except for the true/false flag, the same value is
delivered.

4.6.b. Structure diagram

4.6.c. Specification

module Tables
begin

parameters Entries
begin·

Characters

Sequences

Strings

Tables

28

sorts
functions

ENTRY

error-entry -> ENTRY
eq ENTRY # ENTRY -> BOOL

end Entries

exports
begin

sorts TABLE
functions

end

null-table
table
lookup
delete
eq

imports Booleans, Strings

variables
name, name1, name2
e, e1, e2
tbl, tbl1, tbl2
found

equations

STRING # ENTRY # TABLE
STRING # TABLE
STRING # TABLE
TABLE # TABLE

-> STRING
-> ENTRY
-> TABLE
-> BOOL

[122J table(name1, e1, tableCname2, e2, tbl))

-> TABLE
-> TABLE
-> (BOOL #
-> TABLE
-> BOOL

= if(eq(name1,name2>,
table(name1, e1, tbl>,

ENTRY)

tableCname2, e2, table(name1, e1, tbl)))

[123J lookup(name, null-table)
= <false, error-entry>

[124J lookup(name1, tableCname2, e, tbl))
- if(eqCname1, name2>,

<true, e>,
lookup(name1, tbl))

[125J delete(name, null-table)
= null-table

[126J delete(name1, table(name2, e, tbl))

[127J eqCtbl1, tbl2>

= if(eq(name1, name2>,
deleteCname1, tbl>,
tableCname2, e, delete(name1, tbl)))

= eqCtbl2, tbl1>

[128] eqCnuLL-table, null-table>
= true

[129] eqCnull-table, tableCname, e, tbL>>
= false

[130] eq(tableCname, e1, tbl1), tbl2)

end Tables

= ifCandCfound, eqCe1,e2>>,
eqCdeleteCname, tbl1), deleteCname, tbl2>>,
false>

when <found, e2> = lookupCname, tbl2>

29

30

5. CONTEXT-FREE PARSING

In thjs chapter the problem will be addressed how a context-free grammar can be specified
within the algebraic framework and how the parsing process is to be described. A syntactic definition
of a language can globally be subdivided in definitions for:

lexical syntax:
which defines the tokens of the language, i.e., keywords, identifiers, punctuation marks, etc.

context-free syntax:
which defines the concrete form of programs, i.e. the sequences of tokens that constitute a legal
program.

abstract syntax:
which defines the abstract tree structure underlying the concrete (textual) form of programs. All
further operations on programs may be defined as operations on the abstract syntax tree (see 6).

In this chapter, we will define a parser (Context-free-parser, see 5.4) which is parameterized
with a lexical scanner and a grammar describing the concrete syntax and the construction rules for
abstract syntax trees. The parsing problem is decomposed as follows:

1) Lexical analysis is delegated to a Scanner (a parameter of Context-free-parser}, which
transforms an input string into a sequence of lexical tokens (5.1). A token is a pair of strings:
the first describes the lexical category of the token, the second gives the string value of the
token, e.g. token("identifier", "xyz") or tokenC"integer-constant", "35").

2) Abstract syntax trees are represented by the data type Atrees. Rules for the construction of
abstract syntax trees are part of the grammar for a given language. The essential function is
build, which specifies for each non-terminal how certain (named) components of the syntax
rule have to be combined into an abstract syntax tree (5.2).

3) BNP patterns (5.3) are introduced to allow the description of arbitrary context-free grammars.
The main functions and operators introduced are t (indicates a terminal in the grammar), n
(indicates a non-terminal), +(sequential composition of components of a grammar rule), and I
(alternation)~ A grammar constructed by means of these operators can later be bound to the
parameter Syntax of Context-free-parser.

4) Actual parsing is described in Context-free-parser (5.4). This module has four parameters
of which two are inherited from imported modules. The parameters Scanner and Syntax
define the interface with the lexical scanner and with the concrete syntax and abstract syntax.
Context-free-parser imports BNF-patterns (inheriting the unbound parameter Non­
termi na ls) and Atree-envi ronments (inheriting the unbound parameter Operators).
Context-free-parser describes a parser which is driven by the BNP operators occurring in
Syntax. Currently, we require that Syntax satisfies the LL(l) restrictions.

31

5.1. Interface with lexical scanner

5.1.a. Global description

Lexical analysis transforms an input string into a sequence of lexical tokens. A token is a pair
of strings: the first describes the lexical category of the token, the second gives the string value of the
token, e.g. tokenC"identifier", "xyz") or tokenC"integer-constant", "35"). In this
section, the data types Tokens and Token-sequences are defined.

5.1.b. Structure diagrams

Characters

Sequences

Strings

Tokens

Tokens

Sequences

Token-

sequences

32

5.1.c. Specification

module Tokens
begin

exports
begin

end

sorts TOKEN
functions

token
eq

STRING # STRING
TOKEN # TOKEN

imports Booleans, Strings

variables
s1, s2, s3, s4 -> STRING

equations

[131] eqCtokenCs1, s2>, token(s3, s4))

end Tokens

module Token-sequences
begin

imports Sequences
{ renamed by

[SEQ -> TOKEN-SEQUENCE,

-> TOKEN
-> BOOL

= andCeqCs1, s3>, eqCs2, s4>>

null -> null-token-sequence J
Items bound by

}

end Token-sequences

[ITEM -> TOKEN,
eq -> eq J

to Tokens

33

5.2. Interface with abstract syntax tree constructor

5.2.a. Global description

Abstract syntax trees are defined by the data type A trees. Abstract syntax trees are essentially
labelled trees whose nodes consist of an operator, indicating the construction operator of the node,
and zero or more abstract syntax trees as sons. Atrees has one parameter Operators, which
defines the interface to the set of operators for constructing abstract syntax trees. Conversion
functions are defined for the common cases that the leaves of the abstract syntax tree consist of
Strings, Integers or Tokens .

. The construction process for abstract syntax trees as described in 5.4 uses the notion of
environments of abstract syntax trees, i.e. tables which map strings onto abstract syntax trees. This
notion is realized by the data type Atree-envi ronments. Note that the parameter Operators of
A trees is inherited by Atree-envi ronments.

5.2.b. Structure diagrams

r-::=-1 II
~~

Integers

Operators

Characters

Tokens

Sequences

Strings

A trees

34

S.2.c. Specification

module Atrees
begin

parameters
Operators

begin
sorts OPERATOR

functions

A trees

Tables

A tree-environments

eq: OPERATOR # OPERATOR -> BOOL
end Operators

exports
begin.

sorts ATREE

35

functions
error-atree -> ATREE
nul l-atree -> ATREE
atree OPERATOR -> ATREE
atree OPERATOR # ATREE -> ATREE
atree OPERATOR # ATREE # ATREE -> ATREE
atree OPERATOR # ATREE # ATREE # ATREE -> ATREE
string-atree STRING -> ATREE
integer-atree INTEGER -> ATREE
lexical-a tree TOKEN -> ATREE
eq ATREE # ATREE -> BOOL

end

imports Booleans, Integers, Strings, Tokens

variables
c, c1, c2 :-> OPERATOR
a, a1, a2, a3, a4 :-> ATREE
b1, b2, b3, b4 :-> ATREE
s, s1, s2 :i'-> STRING
n, n1, n2 :-> INTEGER
t, t1, t2 :-> TOKEN

equations

[132] eq(a1, a2> = eq(a2, a1>

[133] eq(null-atree, nul l-atree) = true
[134] eq(null-atree, error-a tree) = false
[135] eq(null-atree, atree(c)) = false
[136] eq(null-atree, atreeCc, a)) = false
[137] eq(null-atree, atreeCc, a1, a2» = false
[138] eqCnull-atree, atree<c, a1, a2, a3)) = false
[139] eq(null-atree, string-atree(s)) = false
[140J eq(null-atree, integer-atree(n)) = false
[141] eq(null-atree, lexical-atree(t)) = false

[142] eq(error-atree, error-a tree) = true
[143] eq(error-atree, atree(c)) = false
[144] eq(error-atree, atree(c, a)) = false
[145] eq(error-atree, atree<c, a1, a2» = false
[146] eq(error-atree, atree<c, a1, a2, a3)) = false
[147] eq(error-atree, string-atree(s)) = false
[148] eq(error-atree, integer-atree(n)) = false
[149] eq(error-atree, lexical-atree(t)) = false

[150] eq(atree<c1>, atreeCc2)) = eqCc1, c2)
[151] eq(atreeCc1>, atreeCc2, a1)) = false
[152] eqCatreeCc1), atreeCc2, a1, a2» = false
[153] eqCatreeCc1>, atree(c2, a1, a2, a3)) = false

36

[154]
[155]
[156]

[157]
[158]
[159]

[160]
[161]
[162]

[163]

[164]

[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]
[174]

[175]

[176]

[177]

eqCatreeCc>, stri ng-atreeC s)) = false
eqCatreeCc>, integer-atree(n)) = false
eqCatreeCc>, lexical-atree(t)) = false

eqC atreeC c1., a1>, atreeCc2, b1)) = andCeqCc1, c2>, eqCa1, b1))
eq(atree(c1, a1>, atreeCc2, b1, b2)) = false
eq(atree(c1, a1>, atreeCc2, b1, b2, b3))

= false
eq(atreeCc1, a1>, stri ng-atreeC s» = false
eq(atreeCc1, a1>, integer-atree(n)) = false
eqCatreeCc1, a1>, lexical-atree(t)) = false

eq(atree(c1, a1, a2>, atreeCc2, b1, b2))
= andCeqCc1, c2),

and(eqCa1, b1>,
eqCa2, b2)))

eqCatreeCc1, a1, a2), atreeCc2, b1, b2, b3))
= false

eqCatreeCc1, a1, a2), string-atree<s>>= false
eq(atree(c1, a1, a2>, integer-atreeCn))

= false
eqCatreeCc1, a1, a2>, lexical-atree<t>>

= false

eq(atreeCc1, a1, a2, a3), atreeCc2, b1, b2, b3))

eqCatreeCc1, a1, a2, a3>,

eqCatreeCc1, a1, a2, a3),

eq(atreeCc1, a1, a2, a3),

= andCeqCc1, c2>,
andCeqCa1, b1>,

andCeqCa2, b2>,
eqCa3, b3))))

string-atree<s>>
= false

integer-atree(n))
= false

lexical-atree<t>>
= false

eqCstring-atreeCs1), string-atreeCs2))= eqCs1, s2)
eq(string-atree(s), integer-atree(n)) = false
eq(string-atree(s), lexical-atree(t)) = false

eq(integer-atree(n1), integer-atreeCn2>>
= eq(n1, n2>

eqCinteger-atree(n), lexical-atree(t))= false

eqClexical-atreeCt1), lexical-atree(t2>>
= eqCt1, t2>

end Atrees

module Atree-environments
begin

exports
begin

functions
A STRING # ATREE-ENV -> ATREE

end

imports Tables
{ renamed by

[TABLE -> ATREE-ENV,
null-table -> null-atree-env]

Entries bound by
[ENTRY -> ATREE,

eq -> eq,
error-entry -> error-atree]

to Atrees
}

variables
s :-> STRING
e :-> ATREE-ENV
f :-> BOOL
v :-> ATREE

equations

(178] SA e

end Atree-environments

= v
when <f, v> = lookup(s, e)

37

38

5.3. BNF patterns

5.3.a. Global description

BNF patterns are introduced to allow the description of arbitrary context-free grammars. The
main functions and operators introduced are t (indicates a terminal in the grammar), n (indicates a
non-terminal), lexical (indicates a lexical item), + (sequential composition of components of a
grammar rule), and I (alternation). The functions t, n and lexical have two variants: the variant
with one argument indicates respectively a terminal, non-terminal or lexical item; the variant with two
arguments also associates a name with the syntaxctic notion. These names can later be used to refer
to the abstract syntax tree which is the result of parsing the given syntactic notion. An actual
grammar constructed with these operators can be bound to the parameter Syntax of Context­
free-parser. Examples of grammars using this notation are the lexical syntax (6.2.2) and concrete
syntax (6.3.2) of PICO.

5.3.b. Structure diagram

5.3.c. Specification

module BNF-patterns
begin

parameters
Non-terminals

begin
sorts NON-TERMINAL

end Non-terminals

exports

Characters

Sequences

Strings

BNF-patterns

begin
sorts PATTERN

functions

+

t

t
n
n
lexical
lexical

PATTERN # PATTERN
PATTERN # PATTERN
STRING
STRING # STRING
NON-TERMINAL

-> PATTERN
-> PATTERN
-> PATTERN
-> PATTERN
-> PATTERN

NON-TERMINAL # STRING -> PATTERN
STRING -> PATTERN
STRING # STRING -> PATTERN

null-pattern : -> PATTERN

end

imports Strings

end BNF-patterns

39

40

5.4. Context-free parser

5.4.a. Global description

Context-free-parser describes the actual parsing process. It has four parameters of which
two are inherited from imported modules. Parameter Scanner defines the interface with the lexical
scanner, i.e. the function scan which converts input strings to Token-sequences. Parameter
Syntax defines the interface with the rules of the syntax (function rule) and with the rules for
constructing abstract syntax trees (function build). Context-free-parser imports BNF­
patterns (inheriting the unbound parameter Non-terminals, which defines the interface with the
set of non-terminals of the syntax) and Atree-envi ronments (inheriting the unbound parameter
Operators, which defines the interface with the set of construction operators for the abstract syntax).

Context-free-parser describes a parser for the language described by the syntax rules. The
equations in Context-free-parser describe for each type of BNP operator the conditions under
which (a part of) the input Token-sequence is acceptable. The BNP operator n (non-terminal) uses
the function rule from parameter Syntax to associate a pattern with a non-terminal. Acceptance of
a part of the input is expressed by constructing an Atree-envi ronment consisting of named
A trees. Acceptance of a non-terminal is expressed by the function build from Syntax for that
non-terminal .

Currently, we require that the syntax satisfies the LL(l) restrictions. This simplifies the
definition of Context-free-parser considerably: in the definition given below only one abstract
syntax tree has to be constructed instead of a set of abstract syntax trees as would be necessary in the
case of an ambiguous input string if the grammar were not LL(l).

5.4.b. Structure diagram

Scanner

Sequences

Strings

5.4.c. Specification

module Context-free-parser
begin

parameters
Scanner

Sequences

Token-

sequences

Context-free-parser

begin
functions

scan
end Scanner,

STRING -> TOKEN-SEQUENCE

Syntax
begin

functions

rule
build

end Syntax

exports
begin

NON-TERMINAL
NON-TERMINAL # ATREE-ENV

BNF-patterns

-> PATTERN
-> ATREE

A trees

Tables

Atree­

environments

41

42

functions
parse NON-TERMINAL # STRING -> ATREE

end

imports Booleans, Strings, Token-sequences, BNF-patterns, Atree-environments

functions

parse-rule: NON-TERMINAL # TOKEN-SEQUENCE
-> CBOOL # ATREE # TOKEN-SEQUENCE)

parse-pat : PATTERN # TOKEN-SEQUENCE # ATREE-ENV

variables
x
p, p1, p2
env, env1, env2
atree, atree1, atree2
s, tail, tail1, tail2
id, val, str, lextype
r, r1, r2

equations

[179] parseCx, str)

[180] parse-ruleCx, s>

-> CBOOL # ATREE-ENV # TOKEN-SEQUENCE)

-> NON-TERMINAL
-> PATTERN
-> ATREE-ENV
-> ATREE
-> TOKEN-SEQUENCE
-> STRING
-> BOOL

= if(andCr, eq(tail, null-token-sequence)),
a tree,
error-atree)

when <r, atree, tail>= parse-ruleCx, scanCstr))

= ifCr, < true, buildCx, env>, tail >,
<false, error-atree, tail>>

when <r, env, tail>=
parse-patCruleCx>, s, null-atree-env>

[181] parse-pat(null-pattern, s, env)
= <true, env, s>

[182] parse-pat(p1 + p2, s, env1)
= ifCr, parse-patCp2, tail, env2>,

< false, env2, tail >>
when <r, env2, tail>= parse-pat(p1, s, env1)

[183] parse-patCp1 I p2, s, env)
= ifCnotCr1),

< r2, env2, tail2 >,
ifCnotCr2),

< r1, env1, tail1 >,
< false, env, s >>>

when <r1, env1, tail1> = parse-patCp1, s, env>,
<r2, env2, tail2> = parse-patCp2, s, env)

[184] parse-patCnCx>, s, env>
= <r, env, tail~

when <r, atree, tail>= parse-ruleCx, s)

[185] parse-patCnCx,id>, s, env>
= if(r, < true, table(id, atree, env), tail >,

<false, env, tail >>
when <r, atree, tail>= parse-rule(x, s)

[186] parse-pat(t(str), seq(tokenClextype, val), s), env)
= if(and(eq(str, val),

or(eq(lextype, "keyword"),
eq(lextype, "literal"))),

< true, env, s>,
< false, env, s>)

[187] parse-patCt<str>, null-token-sequence, env>
= if(eqCstr, null-string),

<true, env, null-token-sequence>,
<false, env, null-token-sequence>>

[188] parse-pat(t(str, id), seq(token(lextype, val), s), env>
= if(and(eq(str, val>,

or(eq(lextype, "keyword"),
eq(lextype, "literal"))),

< true,
table(id,

lexical-atree<token(lextype,str>>,
env>,

s>,
< false, env, s>)

[189] parse-pat(t(str, id), null-token-sequence, env>
= if(eq(str, null-string),

< true,
table< id,

lexical-atree(token("literal","")),
env>,

null-token-sequence>,
<false, env, null-token-sequence>>

[190] parse-patClexicalCstr), seq(token(lextype, val>, s>, env>
= ifCeq(lextype, str>,

< true, env, s >,
< false, env, s> >

[191] parse-pat(lexical(str), null-token-sequence, env)
= <false, env, null-token-sequence>

[192] parse-pat(lexical(str,id), seq(token(lextype, val), s>, env)

43

= if(eqClextype, str),
< true,

table(id,
lexical-atreeCtokenClextype,val>>,
env>,

s >,
< false, env, s> >

(193] parse-patClexicalCstr,id), null-token-sequence, env>
= <false, env, null-token-sequence>

end Context-free-parser

45

6. ALGEBRAIC SPECIFICATION OF PICO

After the preparations in the previous chapters, the following steps are still needed to obtain a
complete specification of PICO:

I) The notions of types and values in PICO programs have to be formalized (6.1).

2) The lexical syntax of PICO has to be specified. This is done by constructing a lexical scanner
on the basis of Context-free-parser as defined in the previous chapter (6.2).

3) The concrete syntax of PICO and the rules for the construction of abstract syntax trees have to
be specified. This is accomplished by a second application of Context-free-parser (6.3).

4) The static semantics of PICO has to be specified, defining certain constraints on programs, i.e.
constraints that do not depend on input data. For instance, in a "legal" program all variables
should have been declared, all expressions should be type consistent, etc. This is described in
6.4.

5) Dynamic semantics of PICO has to be specified, defining the meaning of a program, i.e. the
relation between its input and output data (6.5).

6) All the above components of the PICO specification have to be combined into one PICO system
(6.6).

46

6.1. Types and values

6.1.1. Types

6.1.1.a. Global descriptio1,1

The data type PICO-types defines the allowed types in PICO programs, i.e. integers and
strings. An additional error-type is introduced for describing typing errors.

6.1.1.b. Structure diagram

6.1.1.c. Specification

module PICO-types
begin

exports
begin

sorts PICO-TYPE

PICO-types

-> PICO-TYPE
-> PICO-TYPE
-> PICO-TYPE

functions
integer-type
string-type
error-type
eq PICO-TYPE # PICO-TYPE -> BOOL

end

imports Booleans

variables
x, y

equations

[194] eq(x,
[195] eq(x,

x)
y)

[196] eq(integer-type,
[197] eqCinteger-type,

-> PICO-TYPE

string-type)
error-type)

[198] eq(string-type, error-type)

end PICO-types

= true
= eq(y, x>
= false
= false
= false

47

6.1.2. Values

6.1.2.a. Global description

The data type PICO-values defines the allowed values as they may occur during the execution
of PICO programs, i.e. integers and strings. An additional error-value is introduced for describing
values that are the result of evaluating erroneous programs. Note that there is no integer or string
corresponding to error-va Lue. Two conversion functions are defined for converting Integers and
Strings into PICO-values.

6.1.2.b. Structure diagram

6.1.2.c. Specification

module PICO-values
begin

exports
begin

~II
~~

Integers

PICO-values

sorts PICO-VALUE

INTEGER
STRING

Characters

Sequences

Strings

functions
error-value
pico-value
pico-value
eq PICO-VALUE # PICO-VALUE

end

imports Booleans, Integers, Strings

variables
x, y
int, int1, int2
str, str1, str2

-> PICO-VALUE
-> INTEGER
-> STRING

-> PICO-VALUE
-> PICO-VALUE
-> PICO-VALUE
-> BOOL

49

u,:t .~ exicai syntax

The lexical syntax describes the lexical tokens that may occur in a PICO program. We
CPnsr.ruct a lexical scanner for PICO by means of Context-free-parser:

I) A character-level scanner is defined (6.2.1). This character-level scanner distinguishes characters
according to their character types, i.e. letter, digit, layout, etc.

2) The lexical syntax for PICO and the construction rules for lexical tokens are defined (6.2.2).
This amounts to defining the syntactic form of identifiers, strings, etc. and to defining the result
for each case, e.g. parsing the non-terminal integer-constant of the lexical syntax will have
as result token("integer-constant", x>, where x is the string representation of the integer
constant.

3) A lexical scanner for PICO is obtained by combining the results of the previous two steps with
Context-free-parser. (6.2.3).

50

6.2.1. Lexical character scanner

6.2.1.a. Global description

PICO-lexi ea l-cha rac ter-scanner defines the character-level scanner char-scatl which
distinguishes characters according to their character types, i.e. letter, digit, layout and literal, and
converts the input string into a Token-sequnece.

6.2.1.b. Structure diagram

Characters

Sequences

Strings

6.2.1.c. Specification

module PICO-lexical-character-scanner
begin

exports
begin

functions

Characters

Tokens

Sequences

Token-

sequences

PICO-lexical-

character-

scanner

char-scan STRING -> TOKEN-SEQUENCE
end

imports Booleans, Characters, Strings, Token-sequences

functions
char-scan1 CHAR -> TOKEN

is-layout CHAR -> BOOL

variables
c -> CHAR
str -> STRING

equations

[206] char-scanCseqCc, str)) = seq(char-scan1Cc>, char-scanCstr))

[207] char-scan("") = null-token-sequence

[208] char-scan1Cc) = ifCis-layoutCc>, tokenC"layout", string(c)),.
ifCis-letterCc>,tokenC"letter", string(c)),
if(is-digit(c),tokenC"digit", stringCc>>,

tokenC"literal", string(c)))))

[209] is-layout(c) = orCeqCc, char-space>,

end PICO-lexical-character-scanner

or(eqCc, char-ht),
eq(c, char-nl>?>

51

52

6.2.2. Lexical syntax and rules for token construction

6.2.2.a. Global description

The lexical syntax for PICO and the construction rules for lexical tokens are defined in this
section. This amounts to defining the syntactic form of identifiers, strings, etc. and to defining the
result for each case, e.g. parsing the non-terminal integer-constant of the lexical syntax will have
as result token("integer-constant", x), where x is the string representation of the integer
constant.

The following data types are defined here:
PICO-non-terminals-of-lexical-syntax: defines the sort LEX-NON-TERMINAL and all non­

terminals of the lexical syntax.
PICO-lex-BNF-patterns: defines a version of BNF-patterns with parameter Non-terminals

bound to PICO-non-terminals-of-lexical-syntax.
PICO-atree-operators-of-lexical-syntax: defines the sort LEX-OPERATOR and the operators for

constructing abstract syntax trees for the lexical syntax.
PICO-lex-atree-envi ronments: defines a version of Atree-envi ronments with parameter

Operators bound to PICO-atree-operators-of-lexical-syntax.
PICO-lexical-syntax: defines the lexical syntax for PICO and, the rules for token construction.

Essentially the grammar contains for each non-terminal pairs of equations for the functions
rule (i.e. the actual syntax rule) and build (i.e. the construction procedure for abstract syntax
trees). Note that all syntax rules with names starting with non-empty do not appear in the
original grammar. These rules are artefacts made necessary by limitations in the descriptive
power of BNF.;.patterns; most notably, it is impossible to associate different build functions
with the alternatives in one rule.

6.2.2.b. Structure diagrams

PICO-non­

terminals-of­

lexical-syntax

PICO-non­

ter111i na ls-of­

lexi ca l-syntax

Non-terminals

BNF-patterns

PICO-lex-BllF­

patterns

B
PICO-atree­

operators-of­

lexica l-syntax

53

54

B
PICO-atree­

operators-of­

lexical-syntax

A trees

Tables

Atree­

env i ronmen ts

PICO-lex­

atree­

envi ronments

PICO-non­

terminals-of­

lexical-syntax

BNF-patterns

PI CO-lex-BNF-

patterns

PICO-atree­

operators-of­

lexical-syntax

A tree-

environments

PICO-Lex-

atree­

environments

PICO-lexi cat-syntax

6.2.2.c. Specification

module PICO-non-terminals-of-lexical-syntax
begin

exports
begin

sorts LEX-NON-TERMINAL

functions
lexical-stream
non-empty-lexical-stream:
empty-lexical-stream
lexical-item
optional-layout
keyword-or-ident
ident
ident-chars
non-empty-ident-chars
ident-char
integer-const
digits
non-empty-digits
digit
string-const
string-tail
non-empty-string-tail
quote
any-char-but-quote
letter

55

Tokens

Sequences

Token-

sequences

-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL

56

end

layout
literal
concat
assign-or-colon
empty

end PICO-non-terminals-of-lexical-syntax

module PICO-lex-BNF-patterns
begin

imports BNF-patterns
{ renamed by

[PATTERN -> LEX-PATTERN,
t -> Lt J

Non-terminals bound by

-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL

[NON-TERMINAL -> LEX-NON-TERMINAL J
to PICO-non-terminals-of-lexical-syntax

}

end PICO-lex-BNF-patterns

module PICO-atree-operators-of-lexical-syntax
begin

exports
begin

sorts LEX-OPERATOR

-> LEX-OPERATOR
-> LEX-OPERATOR

functions
op-Lex-item
op-Lex-stream:
eq LEX-OPERATOR # LEX-OPERATOR -> BOOL

end

imports Booleans

variables
o1, o2 :-> LEX-OPERATOR

equations

[210]
[211]
[212]
[213]

eq(o1, o2>
eq(op-lex-item, op-Lex-item)
eq(op-lex-item, op-Lex-stream)
eq(op-lex-stream, op-Lex-stream)

end PICO-atre~-operators-of-lexical-syntax

= eq(o2, o1>
= true
= false
= true

module PICO-lex-atree-environments
begin

imports Atree-environments
< renamed by .

}

[ATREE -> LEX-ATREE,
atree -> lex-atree,
null-atree -> null-lex-atree,
error-atree -> error-lex-atree,
lexical-atree -> lexical-lex-atree,
ATREE-ENV -> LEX-ATREE-ENV,
null-atree-env -> null-lex-atree-env,
ATREE -> LEX-ATREE,
error-atree -> error-lex-atree J

Operators bound by
[OPERATOR -> LEX-OPERATOR,

eq -> eq J
to PICO-atree-operators-of-lexical-syntax

end PICO-lex-atree-environments

module PICO-lexical-syntax
begin

exports

LEX-NON-TERMINAL -> LEX-PATTERN

begin
functions

rule
build LEX-NON-TERMINAL # LEX-ATREE-ENV -> LEX-ATREE
Lex-stream TOKEN-SEQUENCE -> LEX-ATREE
Lex-item TOKEN -> LEX-ATREE

end

imports PICO-lex-BNF-patterns, PICO-lex-atree-environments, Token-sequences

variables
env :-> LEX-ATREE-ENV
l, t 1, l2 :-> TOKEN-SEQUENCE
t, t1, t2 :-> TOKEN
s, s1, s2 :-> STRING
d, d1, d2 :-> STRING

equations

C214J ruleClexical-stream) = nCnon-empty-lexical-stream,"ls")
n(empty-lexical-stream,"ls")

[215] buildClexical-stream, env)
= "ls" " env

57

58

[216] rule(non-empty-lexical-stream)
= nClexical-item,"t") + nClexical-stream,"l")

[217] · build(non-empty-lexical-stream, env)
= lex-atreeCop-lex-stream, Lex-stream(seqCt, l)))

when lex-atreeCop-Lex-item, lex-item(t))
= "t"Aenv,

lex-atree(op-lex-stream, lex-stream(l))
= "l" A env

[218] ruleCempty-lexical-stream)
= n(empty)

[219] buildCempty-lexical-stream, env)
= lex-atree(op-lex-stream,

lex-stream(null-token-sequence))

[220] ruleClexical-item> = nCoptional-layout) +
(nCkeyword-or-ident,"i")

nCinteger-const,"i") I
n(string-const,"i") I
nCliteral,"i")

)

[221] buildClexical-item, env>

[222]
[223]

[224]
[225]

= "i" A env

ruleCoptional-layout) = n(layout) nCempty)
buildCoptional-layout, env)

= null-lex-atree

ruleCkeyword-or-ident>= nCident,"i")
buildCkeyword-or-ident, env)

= ifCor(eqCs, "begin"),
orCeqCs, "end"),
orCeqCs, "declare"),
or(eq(s, "integer">,
orCeqCs, "string"),
orCeqCs, "if"),
orCeqCs, "then"),
or(eqCs, "else"),
orCeqCs, "fi"),
or(eqCs, "while"),
orCeqCs, "do">,

eq(s, "od">>>>>>>>>>>>,
lex-atree(op-lex-item,

lex-item(token("keyword",
lex-atree(op-lex-item,

lex-itemCtokenC"id", s))))

s))),

when Lexical-lex-atreeCtokenC"id",s)) = "i" A env

[226] ruleCident) = nCletter,"s1") + nCident-chars,"s2")

[227] buildCident, env> = lexical-lex-atreeCtokenC"id", concCs1, s2)))
when string-atreeCs1 > = "s1" A env,

string-atreeCs2> = "s2" A env

[228]
[229]

[230]

[231]

[232]
[233]

[234]
[235]

[236]
[237]

[238]
[239]

[240]
[241]

[242]
[243]

rule(ident-chars) = nCnon-empty-ident-chars,"s"> I nCempty,"s">
buildCident-chars, env)

= "s" A env
ruleCnon-empty-ident-chars>

= nCident-char,"s1") + nCident-chars,"s2")
build(non-empty-ident-chars, env>

= string-atree(conc(s1, s2>>
when string-atree(s1) = "s1" A env,

string-atreeCs2) = "s2" A env
ruleCident-char> = n<Letter,"x") I nCdigit,"x")
bui ldCident-char, env>= "x" A env

ruleCinteger-const) = n(digit,"d1") + n(digits,"d2")
buildCinteger-const, env>

ruleCdigits)
buildCdigits, env>

= lex-atree(op-lex-item,
lex-item(tokenC"integer-constant",

, concCd1, d2>>>>
when string-atreeCd1 > = "d1" A env,

string-atreeCd2) = "d2" A env

= n<non-empty-digits,"d") I nCempty,"d")
= "d" A env

ruleCnon-empty-digits>= nCdigit,"d1") + nCdigits,"d2")
buildCnon-empty-digits, env)

= string-atree(concCd1, d2))
when string-atreeCd1) = "d1" A env,

string-atree(d2) = "d2" A env

ruleCstring-const) = nCquote> + n<string-tail,"s">
buildCstring-const, env)

= lex-atree(op-lex-item,
lex-item<token("string-constant", s>>>

when string-atree(s) = "s""env

rule(string-tail) = n(non-empty-string-tail,"s'') I n(quote,"s")
build(string-tail, env)

= "s" A env
[244] rule(non-empty-string-tail)

59

= n(any-char-but-quote,"s1") + n<string-tail,"s2")
[245] buildCnon-empty-string-tail, env>

[246] ruleCquote)

= string-atree(conc(s1, s2))
when string-atreeCs1 > = "s1" A env,

string-atreeCs2) = "s2" A env

= ltCstring(char-quote))

60

[247] build(quote, env) = string-atree("">

[248] rule(any-char-but-quote)
= n(letter,"c")

n(digit,"c") I
nCliteral,"c")
n<layout,"c")

[249] build(any-char-but-quote, env)

[250] rule(letter)
[251] build(letter, env>

= "c" A env

= lexicalC"letter","s">
= string-atree(s)

when lexical-lex-atree(tokenC"letter",s)) = "s" "env

[252] ruleCdigit)
[253] build(digit, env>

= lexical("digit","d")
= string-atree(d)

when lexical-lex-atree(token("digit", d)) = "d" A env
[254] rule(layout)
[255] build(layout, env)

[256] rule(literal>

[257] build(literal, env)

[258] rule(concat)
[259] build<concat, env>

= lexical("layout","s")
= string-atree(s)

when lexical-lex-atree(token("layout",
= ltC"C","s") I

lt(")","s"> I
LtC"+","s") I
lt("-","s") I
ltC";","s") I
ltC", " ,"s"> I
nCconcat,"s">
nCassign-or-colon,"s")

= "s" A env

= ltC"I") + ltC"I">
= string-atreeC"ll")

[260]
[261]

ruleCassign-or-colon) = Lt(":") + CltC"=","s") I n(empty,"s"))
buildCassign-or-colon, env>

[262]
[263]

rule(empty)
buildCempty, env)

= ifCeqCs, "=">,
string-atree(":=">,
string-atreeC":"))

when string-atree(s) = "s" A env

= l t("")
= string-atreeC"")

s» = "s" "env

end PICO-lexical-syntax

61

6.2.3. Lexical scanner

6.2.3.a. Global description

In this section a lexical scanner for PICO is obtained by combining PICO-lexical­
character-scanner, PICO-lexical-syntax, PICO-non-terminals-of-lexical-syntax and
PICO-atree-operators-of-lexical-syntax with Context-free-parser.

6.2.3.b. Strucrure diagram

Characters PICO-lex-BNF-

patterns

PICO-lex­

atree­

envi ronments

Token-

sequences

PICO-lexical­

character-

scanner

6.2.3.c. Specification

Token-

sequences

Atree­

envi romaents

module PICO-lexical-scanner
begin

exports
begin

PICO-lexi cat-syntax

Syntax

Token-

sequences

Context-free-parser

PICO-lexical-scanner

functions
lex-scan STRING -> TOKEN-SEQUENCE

end

imports Co~text-free-parser
{ Scanner bound by

PICO-non­

terntinals-of­

lexical-syntax

Operators

Non- te rad na ls

BNF-patterns

PICO-atree­

operators-of­

lexical-syntax

62

}

[scan -> char-scan J
to PICO-lexical-character-scanner

Syntax bound by
[rule -> rule,

build-> build J
to PICO-lexical-syntax

Non-terminals bound by
[NON-TERMINAL -> LEX-NON-TERMINAL]
to PICO-non-terminals-of-lexical-syntax

Operators bound by
[OPERATOR -> LEX-OPERATOR,

eq -> eq J
to PICO-atree-operators-of-lexical-syntax

variables
l :-> TOKEN-SEQUENCE
s :-> STRING

equations

[264] lex-scan(s) = l
when lex-atree(op-lex-stream, lex-stream(l)) =

parse<lexical-stream, s)
end PICO-lexical-scanner

63

6.3. Abstract and concrete syntax

In this section we specify the abstract and concrete syntax for PICO; this will result in a
specification for a parser that transforms PICO-programs from their textual form into abstract syntax
trees. We proceed as follows:

1) The abstract syntax.for PICO is defined (6.3.1).

2) The concrete syntax and the rules for constructing abstract syntax trees are defined (6.3.2).

3) The lexical scanner (as defined in the previous section), the concrete syntax and the rules for the
construction of abstract syntax trees (both defined in this section) are combined with
Context-free-parser. In this way we obtain a parser that transforms PICO programs into
abstract syntax trees (6.3.3).

64

6.3.1. Abstract syntax

6.3.1.a. Global description

In this section the abstract syntax for PICO is defined. This involves the following data types:
PICO-atree-operators:· the operators for constructing abstract syntax trees.
PICO-atree-envi ronments: a version of Atree-envi ronments with parameter Operators bound

to PICO-atree-operators.

PICO-abstract-syntax: defines the actual abstract syntax. Essentially, this module defines higher­
level constructor functions (e.g. abs-if, abs-while, etc.) which allow a natural expression of
the PICO abstract syntax tree. These constructor functions are defined in terms of Atrees.

6.3.1.b. Structure diagrams

'=111 L::J L::J
Integers

PICO-atree-

operators

B
Integers

Characters

Sequences

Strings

PICO-atree­

operators

A trees

Tables

Atree­

envi ronments

PICO-atree­

envi ronments

B
PICO-types

PICO-abstract-syntax

PICO-atree­

operators

Atree­

environments

PICO-atree­

envi ronments

65

66

6.3.1.c. Specification

module PICO-atree-operators
begin

exports
begin

sorts PICO-OPERATOR

functions

op-pico-program
op-dee ls
op-empty-dee ls
op-series
op-empty-series
op-assign
op-if
op-while
op-plus
op-cone
op-var
op-integer-constant
op-string-constant
op-id
op-integer-type
op-string-type

-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR

ord
eq

PICO-OPERATOR -> INTEGER

end

imports Booleans, Integers

variables

c1, c2 :-> PICO-OPERATOR

equations

[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]

[274]

ord(op-pico-program)
ord(op-decls>
ord(op-empty-decls)
ord(op-series)
ord(op-empty-series)
ord(op-assign)
ord(op-if)
ord(op-while)
ord(op-plus)
ord(op-conc)

PICO-OPERATOR # PICO-OPERATOR -> BOOL

= 0
= succ(ord(op-pico-program))
= succ(ord(op-decls))
= succ(ord(op-empty-decls))
= succ(ord(op-series))
= succ(ord(op-empty-series))
= succ(ord(op-assign))
= succ(ord(op-if))
= succ(ord(op-while))
= succ(ord(op-plus))

[275]
[276]
[277]
[278]
[279]
[280]

[281]

ordCop-var)
ordCop-integer-constant)
ordCop-string-constant)
ordCop-id)
ordCop-integer-type)
ordCop-string-type)

eqCc1, c2>

end PICO-atree-operators

module PICO-atree-environments
begin

imports Atree-environments
{ renamed by

[ATREE -> PICO-ATREE,
atree -> pico-atree,

= succCordCop-conc))
= succ(ordCop-var))
= succCordCop-integer-constant))
= succ(ord(op-string-constant))
= succ(ordCop-id))
= succ(ord(op-integer-type))

= eqCordCc1), ordCc2))

null-atree -> null-pico-atree,
error-atree -> error-pico~atree,
string-atree -> string-pico-atree,
integer-atree -> integer-pico-atree,
lexical-atree -> lexical-pico-atree,
ATREE-ENV -> PICO-ATREE-ENV,
null-atree-env -> null-pico-atree-envl

Operators bound by

}

variables

[OPERATOR -> PICO-OPERATOR,
eq -> eql

to PICO-atree-operators

s :-> STRING
e :-> PICO-ATREE-ENV
f :-> BOOL
v :-> PICO-ATREE

equations

[282] SA e = v
when <f, v> = lookupCs, e>

end PICO-atree-environments

module PICO-abstract-syntax
begin

exports
begin.

sorts PICO-PROGRAM, DECLS, EXP, ID, SERIES, STATEMENT

67

68

end

functions

abs-pico-program
abs-dee ls
abs-empty-de cl s
abs-series
abs-empty-series
abs-assign
abs-if
abs-while
abs-plus
abs-cone
abs-var
abs-integer-constant
abs-string-constant
abs-id

pico-program
decls
series
statement
exp
id

p-i co-type-a tree

append-statement

DECLS # SERIES
ID # PICO-TYPE # DECLS

STATEMENT # SERIES

ID # EXP
EXP # SERIES # SERIES
EXP # SERIES
EXP # EXP
EXP # EXP
ID
INTEGER
STRING
STRING

PICO-ATREE
PICO-ATREE
PICO-ATREE
PICO-ATREE
PICO-ATREE
PICO-ATREE

PICO-TYPE

SERIES # STATEMENT

-> PICO-PROGRAM
-> DEC LS
-> DEC LS
-> SERIES
-> SERIES
-> STATEMENT
-> STATEMENT
-> STATEMENT
-> EXP
-> EXP
-> EXP
-> EXP
-> EXP
-> ID

-> PICO-PROGRAM
-> DEC LS
-> SERIES
-> STATEMENT
-> EXP
-> ID

-> PICO-ATREE

-> SERIES

imports Integers, Strings, PICO-types, PICO-atree-environments

variables

ds
sr, sr1, sr2
st

t
x, x1, x2
str

:-> PICO-ATREE
:-> PICO-ATREE
:-> PICO-ATREE
:-> PICO-ATREE
:-> PICO-TYPE
:-> PICO-ATREE
:-> STRING

n :-> INTEGER
stat, stat1, stat2 :-> STATEMENT
ser :-> SERIES

equations

[283] abs-pico-program(decls(ds), series<sr))
= pico-program(pico-atree(op-pico-program, ds, sr))

[284] abs~decls(id(i), t, decls(ds))
= declsCpico-atreeCop-decls, i, pico-type-atree(t), ds))

[285]
[286]

[287]
[288]

[289]

[290]

abs-empty-decls = declsCpico-atreeCop-empty-decls>>
abs-seriesCstatementCst>, seriesCsr))

= seriesCpico-atreeCop-series, st, sr))
abs-empty-series = seriesCpico-atreeCop-empty-series>>
abs-assignCidCi>, expCx>>

= statementCpico-atreeCop-assign, i, x>>
abs-ifCexpCx>, seriesCsr1), series<sr2>>

= statementCpico-atreeCop-if, x, sr1, sr2))
abs-whileCexpCx>, seriesCsr>>

= statementCpico-atreeCop-while, x, sr>>
[291] abs-plusCexpCx1>, expCx2>>

[292]

[293]
[294]

= expCpico-atreeCop-plus, x1, x2>>
abs-concCexpCx1>, expCx2))

abs-varCid(i))
= expCpico-atree(op-conc, x1, x2))
= expCpico-atree(op-var, i))

abs-integer-constantCn>
= exp(pico-atreeCop-integer-constant,

integer-pico-atree(n)))
[295] abs-string-constant(str>

= expCpico-atree(op-string-constant,
string-pico-atree<str>>>

[296] abs-idCstr> = idCpico-atree(op-id, string-pico-atree(str>>>

[297] append-statementCabs-empty-series, stat)
= abs-seriesCstat, abs-empty-series>

C298J append-statementCabs-seriesCstat1, ser>, stat2>

69

= abs-seriesCstat1, append-statement(ser, stat2))

end PICO-abstract-syntax

70

6.3.2. Concrete syntax and rules for abstract syntax tree construction

6.3.2.a. Global description

In this section the concrete syntax and the rules for abstract syntax tree construction for PICO
are defined. 1bis involves. the following modules:
PICO-non-terminals-of-concrete-synyax: defines the sort PICO-NON-TERMINAL and all non­

terminals of the concrete syntax.

PICO-BNF-patterns: defines a version of BNF-patterns with parameter Non-terminals bound to
PICO-non-terminals-of-concrete-syntax.

PICO-concrete-syntax: defines the concrete syntax for PICO and the rules for abstract syntax tree
construction. Essentially the grammar contains for each non-terminal in the concrete syntax
pairs of equations for the functions rule (i.e. the actual syntax rule) and build (i.e. the
construction procedure for abstract syntax trees).

6.3.2.b. Structure diagrams

PICO-non­

terminals-of-

concrete-

syntax

PICO-non­

terminals-of-

concrete-

syntax

BNF-patterns

PICO-BNF-

p;itterns

PICO-non­

termi na ls-of-

concrete­

syntax

BNF-patterns

PICO-BNF-

patterns

PICO-concrete-syntax

6.3.2.c. Specification

module PICO-non-terminals-of-concrete-syntax
begin

exports
begin

sorts PICO-NON-TERMINAL

functions
pico-program
decls
empty-dee ls
id-type-list
type
type-integer
type-string
series
empty-series
non-empty-series:
stat
assign
if
while
exp
plus
cone
var
id
integer-constant:

PICO-a tree-

operators

Atree­

envi ronments

PICO-atree­

envi ronments

-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL

71

72

string-constant -> PICO-NON-TERMINAL
end

end PICO-non-terminals-of-concrete-syntax

module PICO-BNF-patterns
begin

imports BNF-patterns
{ renamed by

[PATTERN -> PICO-PATTERN,
t -> pt,
lexical -> plexical]

Non-terminals bound by
[NON-TERMINAL -> PICO-NON-TERMINAL]
to PICO-non-terminals-of-concrete-syntax

}

end PICO-BNF-patterns

module PICO-concrete-syntax
begin

exports
begin

functions
rule PICO-NON-TERMINAL -> PICO-PATTERN
build: PICO-NON-TERMINAL# PICO-ATREE-ENV -> PICO-ATREE

end

imports PICO-BNF-patterns, PICO-atree-environments

variables
env :-> PICO-ATREE-ENV
str :-> STRING

equations

[299] ruleCpico-program) = ptC"begin") + nCdecls,"d")
+ n<series,"s") + ptC"end")

[300] buildCpico-program, env)

[301] ruleCdecls)
[302] buildCdecls, env>

= pico-atree(op-pico-program, "d""' env, "s""' env)

= pt("declare") + n(id-type-list,"l") +pt(";")
= "l""' env

[303] rule(empty-decls) = pt("")
[304] build(empty-decls, env>= pico-atree(op-empty-decls)

[305] ruleCid-type-list) = n(id,"i") + pt(":") + n(type,"t") +

C n(empty-decls,"l") I
pt(","> + nCid-type-list,"l")

)

[306] buildCid-type-list, env>

[307l ruleCtype)
[308] buildCtype, env)

[309] rule(type-integer)
[310] buildCtype-integer,

[311] rule(type-string)
[312] build(type-string,

[313] rule(series)
[314] buildCseries, env)

= pico-atreeCop-decls,
"i" A env,
"t"Aenv,
"l" A env)

= n(type-integer,"t") I nCtype-string,"t")
= "t" A env

= ptC"integer")
env)

= pico-atreeCop-integer-type)

= ptC"string")
env)

= pico-atree(op-string-type)

= n(empty-series,"s"> I ~Cnon-empty-series,"s">

= "s" A env

[315] rule(empty-series> = pt("")
[316] buildCem~ty-series, env>

= pico-atree(op-empty-series)

[317l rule(non-empty-series) = n<stat,"st") + (nCempty-series,"s")
ptC";"> + nCseries,"s">

)

[318] buildCnon-empty-series, env)

[319] ruleCstat)
[320] buildCstat, env)

[321l rule(assign)
[322] buildCassign,env>

[323] ruleCif)

= pico-atreeCop-series, "st" A env, "s" A env>
= n(assign,"st"> I nCif,"st") I nCwhile,"st")
= "st" A env

= n(id,"i") + ptC":="> + nCexp,"e")
= pico-atree(op-assign, "i" A env, "e" A env)

= pt("if") + nCexp,"e")
+ ptC"then") + n(series,"s1")

73

+ ptC"else") + n(series,"s2"> + ptC"fi")

[324] buildCif, env>

[325] ruleCwhile)

[326] ~uildCwhile, env>

= pico-atree(op-if,
"e" A env,
"s1" A env,
"s2" A env>

= ptC"while"> + nCexp,"e">
+ ptC"do"> + nCseries,"s"> + ptC"od")

= pico-atreeCop-whi le, "e" A env, "s" A env)

74

[327J rule(exp)

[328J buildCexp, env>

[329J rule(plus)
[330J buildCplus, env)

[331J rule(conc)
[332J build(conc, env)
[333J rule<var>
[334J buildCvar, env)

[335J rule(id)
[336J build(id, env>

= n(var,"e") I
n(integer-constant,"e") I
n(string-constant,"e") I
n(plus,"e") I
n(conc,"e")
(pt("(") + n(exp,"e") + pt(")"))

= "e" A env

= n(exp,"e1") + pt("+") + n(exp,"e2")
= pico-atree(op-plus, "e1" A env, "e2" A env)

= n(exp,"e1") + pt("l I") + n(exp,"e2")
= pico-atree(op-conc, "e1" A env, "e2" A env)
= n(id,"i")
= pico-atree(op-var, "i" A env>

= plexical("id","i")
= pico-atree(op-id, string-pico-atree(str))

when lexical-pico-atree(token("id", str)) = "i" A env

[337J rule(integer-constant) = plexical("integer-constant","i")

[338J build(integer-constant, env)
= pico-atree(op-integer-constant,

integer-pico-atree(str-to-int(str)))
when Lexical-pico-atree(token("integer-constant", str))

= "i" A env

[339J rule(string-constant) = plexical("string-constant","s'')
[340J build(string-constant, env)

= pico-atree(op-string-constant, string-pico-atree(str))
when lexical-pico-atree(token("string-constant", str))

= "s" A env

end PICO-concrete-syntax

6.3.3. Parser

6.3.3.a. Global description

In this section a parser for PICO is obtained by combining
concrete-syntax, PICO-non-terminals-of-concrete-syntax
of-concrete-syntax with Context-free-parser.

6.3.3.b. Structure diagram

Contoxt-froe­
paraer

PlCO-lexicol-scanner

6.3.3.c. Specification

module PICO-parser
begin

exports
begin

Sc11nnt1r

Atree­
envfrOflllWlnts

Context-fr.»e-parHr

PICO-parter

75

PICO-lexical-scanner, PICO­
and PICO-atree-operators-

I PICO-types I

functions
parse-and-construct STRING -> PICO-ATREE

end

imports Context-free-parser
{ Scanner bound by

[scan -> Lex-scan J
to PICO-lexical-scanner

Syntax bound by
[rule -> rule,

build-> build J
to PICO-concrete-syntax

Non-terminals bound by

76

[NON-TERMINAL -> PICO-NON-TERMINAL]
to PICO-non-terminals-of-concrete-syntax

Operators bound by

}

variables

[OPERATOR -> PICO-OPERATOR,
eq -> eq J

to PICO-abstract-syntax

str :-> STRING

equations

[341] parse-and-construct(str) = parse(pico-program, str)

end PICO-parser

77

6.4. Static semantics

6.4.a. Global description

In this section we specify the checking of static semantic constraints on PICO programs as
defined informally in section 3. The principal function is check which operates on an abstract PICO
program and checks whether this program is in accordance with the static semantic constraints. For
each construct in the abstract syntax tree these constraints are expressed as transformations on a
type-environment. Type-environments are defined as a combination of Tables and PICO-types.
Checking the declaration section of a PICO program amounts to constructing a type-environment,
and checking the statement section amounts to checking each statement for conformity with a given
type-environment.

6.4.b. Structure diagram

PICO-types

PICO-atree­

envi ronments

PICO-types

PICO-abstract-syntax

PI CO-static-type-checker

6.4.c. Specification

module PICO-static-type-checker
begin

exports
begin

end

functions
check: PICO-PROGRAM
check: DECLS # TYPE-ENV
check: SERIES # TYPE-ENV
check: STATEMENT # TYPE-ENV

-> BOOL
-> CBOOL # TYPE-ENV)
-> CBOOL # TYPE-ENV)
-> CBOOL # TYPE-ENV)

PICO-types

Tables

78

imports Booleans, PICO-types, PICO-abstract-syntax,
Tables

{ renamed by
[TABLE -> TYPE-ENV,

null-table -> null-type-env J
Entries bound by

[ENTRY -> PICO-TYPE,
eq -> eq,
error-entry -> error-type J

to PICO-types
}

functions
type-of-exp

variables
dee : -> DECLS

EXP # TYPE-ENV

ser, ser1, ser2 : -> SERIES
stat : -> STATEMENT
name : -> STRING
int -> INTEGER
typ : -> PICO-TYPE
str : -> STRING
x, x1, x2 : -> EXP
env, env1, env2 : -> TYPE-ENV
b, b1, b2, found : -> BOOL

equations

[342J checkCabs-pico-programCdec, ser))
= andCb1, b2)

-> PICO-TYPE

when <b1, env1> = checkCdec, null-type-env),
<b2, env2> = checkCser, env1)

[343] checkCabs-declsCabs-idCname), typ, dee), env)
= check(dec, table(name, typ, env))

[344J checkCabs-empty-decls, env)
= < true, env >

[345] checkCabs-seriesCstat, ser), env)
= < andCb1, b2), env2 >

when <b1, env1> = check(stat, env),
<b2, env2> = check<ser, env1)

[346] checkCabs-empty-series, env)
= < true, env >

[347J checkCabs-assign(abs-idCname), x>, env)
= < and(found, eq(typ, type-of-exp(x, env>>>, env >

when <found, typ> = Lookup(name, env>
[348] checkCabs-if(x, ser1, ser2), env)

= < andCeq(type-of-expCx,env),integer-type), andCb1,b2>>,

env2 >
when <b1, env1> = checkCser1, env>,

<b2, env2> = checkCser2, env1)
[349] checkCabs-whileCx, ser), env>

= < and(eq(type-of-expCx, env>, integer-type), b),
env1 >

when <b, env1> = checkCser, env)
[350] type-of-expCabs-plusCx1, x2>, env)

= if(andCeqCtype-of-expCx1, env), integer-type),
eqCtype-of-expCx2, env>, integer-type)),

integer-type,
error-type)

[351] type-of-expCabs-concCx1, x2>, env)
= if(andCeq(type-of-expCx1, env), string-type),

eqCtype-of-expCx2, env), string-type)),
string-type,
error-type)

[352] type-of-expCabs-integer-constantCint), env>
= integer-type

[353] type-of-expCabs-string-constantCstr>, env)
= string-type

[354] type-of-expCabs-var(abs-idCname)), env>
= ifCfound, typ, error-type)

when <found, typ> = lookup(name, env>

end PICO-static-type-checker

79

80

6.5. Dynamic semantics

6.5.a. Global description

In this section the evaluation of PICO programs is defined. To a first approximation, the
evaluation of programs is defined by defining the evaluation of each kind of construct that may
appear in the abstract syntax tree. Evaluation is expressed as transformation on value-environments
which describe the values of the variables in the program. Value-environments are defined as
combinations of Tables and PICO-values. However, since programs need not terminate this would
make the evaluation function a partial function. Therefore, we introduce the notion of a program­
state and define program evaluation as a function from program-states to program-states. This
transformation of program-states can be described by a total function. The cases in which programs
do not terminate are covered by conditional equations: conditions appearing in the when-parts of
equations which describe the evaluation of a certain language construct enforce the evaluation of that
construct to be only defined if the evaluation of all of its components terminates.

6.5.b. Structure diagram

r-:::-i II
~~

Integers

PICO-values

Tables

Sequences

Strings

PICO-values

PICO-evaluator

Integers

PICO-atree­

envi ronments

PI CO-abstract-syntax

PICO-types

6.5.c. Specification

module PICO-evaluator
begin

exports
begin

sorts PROGRAM-STATE

functions
program-state PICO-PROGRAM
program-state SERIES # VALUE-ENV
program-state STATEMENT # VALUE-ENV
program-state EXP # VALUE-ENV
program-state VALUE-ENV

eval PROGRAM-STATE
eval-decls DECLS # VALUE-ENV
eval-exp EXP # VALUE-ENV

end

-> PROGRAM-STATE
-> PROGRAM-STATE
-> PROGRAM-STATE
-> PROGRAM-STATE
-> PROGRAM-STATE

-> PROGRAM-STATE
-> VALUE-ENV
-> PICO-VALUE

imports Booleans, Integers, Strings, PICO-values, PICO-abstract-syntax,
Tables

variables

{ renamed by

}

[TABLE -> VALUE-ENV,
null-table -> null-value-envl

Entries bound by
[ENTRY -> PICO-VALUE,

eq -> eq,
error-entry -> error-value]

to PICO-values

dee : -> DECLS
ser, ser1, ser2 : -> SERIES
stm : -> STATEMENT
name : -> STRING
int, int1, int2 -> INTEGER
val, val1, val2 : ->PICO-VALUE
str, str1, str2 : -> STRING
x, x1, x2 : -> EXP
env, env1, env2 : -> VALUE-ENV
found : -> BOOL

equations

[3551 evalCprogram-state(abs-pico-programCdec, ser)))
= evalCprogram-stateCser, eval-declsCdec, null-value-env)))

[3561 eval-declsCabs-declsCabs-idCname), integer-type, dee), env)

81

82

= eval-declsCdec, tableCname, pico-valueCO>, env))
[357] eval-declsCabs-declsCabs-idCname), string-type, dee), env)

= eval-declsCdec, tableCname, pico-value(null-string), env))
[358] eval-declsCabs-empty-decls, env)

= env

[359] eval(program-state(abs-series(stm, ser), env))
= evalCprogram-stateCser, env1))

when evalCprogram-state<stm, env)) = program-state(env1>

[360] evalCprogram-state(abs-empty-series, env))
= program-state(env)

[361] evalCprogram-stateCabs-assignCabs-id(name), x>, env))
= program-state(tableCname, eval-expCx, env), env))

[362] evalCprogram-state(abs-if(x, ser1, ser2), env))
= if(eq(eval-expCx,env), pico-valueCO>>,

evalCprogram-stateCser2, env>>,
evalCprogram-stateCser1, env)))

[363] eval(program-state(abs-whileCx, ser), env))
= ifCeqCeval-expCx,env>, pico-valueCO>>,

program-stateCenv),
evalCprogram-stateCappend-statementCser, abs-whileCx,ser)),

env>>>

[364] eval-expCabs-plus(x1, x2>, env>
= pico-valueCaddCint1,int2>>

when pico-valueCint1) = eval-expCx1,env),
pico-value(int2) = eval-expCx2,env)

[365] eval-exp(abs-conc(x1, x2), env)
= pico-valueCconc(str1, str2))

when pico-valueCstr1) = eval-exp(x1, env),
pico-value(str2) = eval-expCx2, env)

[366] eval-exp(abs-integer-constant(int), env)
= pico-valueCint)

[367] eval-expCabs-string-constantCstr), env)
= pico-valueCstr)

[368] eval-expCabs-varCabs-idCname)), env)
= val

when <found, val> = lookup(name, env)

end PICO-evaluator

83

6.6. The .PICO system

6.6.a. Global description

In this final section we combine all previously defined modules to form a PICO system. The
top level function is run which converts, if this is possible, a string into a PICO-value. The following
steps are necessary:

1) The input string is parsed and converted into an abstract syntax tree using parse-and­
construct as defined in PICO-parser.

2) The types of the, syntactically correct, program are checked using check as defined in PICO­
stati c-type-checker.

3) The, statically correct, program is evaluated using eval as defined in PICO-evaluator. If this
evaluation terminates it produces a value-environment. The result of evaluating the original
program is the final value of the variable output as extracted from this value-environment.

6.6.b. Structure diagram

Strings

P1CO-non­

teru1n&ls-of-

Non-toratnals

ContHt-frw­

perser

PICG-parser

I -····· 11 ,....... 11 • .. '"·· I .__._ •• o-v_ .. _ •• _

PICO-&bstract-

11yntax

PICO-v&luos

T&blH

PICO-ev&luator

6.6.c. Specification

module PICO-system
begin

exports
begin

functions

PICO-syztflll'l

PICO-abstr11ct­

ayntu

Operators

run: STRING -> PICO-VALUE
end

I Boolean• 11 PIC0-"1>os

Tables

PICO-stetfc­

type-chockor

PICO-abatract­

synt•x

84

imports Strings, PICO-parser, PICO-static-type-checker, PICO-evaluator

functions
run1: PICO-ATREE
run2: PICO-PROGRAM

variables
s
p

-> STRING
-> PICO-ATREE

-> PICO-VALUE
-> PICO-VALUE

abs-prog: -> PICO-PROGRAM
has-output: -> BOOL
v -> PICO-VALUE
env : -> VALUE-ENV

equations

[369]

[370]
[371]

[372]

run<s>

run1(error-pico-atree)
run1Cp)

run2Cabs-prog)

= run1Cparse-and-construct(s))

= error-value
= ifCcheckCpico-program(p)),

run2Cpico-program(p)),
error-value)

= ifChas-output, v, error-value)

when program-state(env) =
evalCprogram-stateCabs-prog)),

<has-output, v> =
lookupC"output", env)

end PICO-system

85

7. UTERATURE

[BBC83] Bowen, D.L., Byrd, L.M. & Clocksin, W.F., "A portable PROLOG compiler",
Proceedings of the Logic Programming Workshop 1983, Portugal, 74 - 83.

[BHK84]

[BIE84]

[BK81]

[B081]

[BT79]

[DE84]

[GAU80]

[GAU84]

[GAN82]

[GM82]

[GP81]

[HEE85]

[HOD82]

[KLA83]

[KL83]

[LOE84]

Bergstra, J.A., Heering, J. & Klop, J.W., "Object-oriented algebraic specifications:
proposal for a notation and 12 examples", Centre for Mathematics and Computer
Science, Report CS-R8411, 1984.

Biebow, B., "Specification of a telephone subscriber connection unit using abstract
algebraic data types in the language PLUSS", Laboratoire de Marcoussi, Centre de
Recherche de la C.G.E., France, 1984.

Bergstra, J.A. & Klop, J.W., "Conditional rewrite rules", Centre for Mathematics
and Computer Science, Report IW198/82, 1982.

Bothe, K., "Restructuring a compiler by abstract data types - an experiment in
using abstractions for software modularization", Humboldt University Berlin,
Seminar Bericht Nr. 40, 1981.

Bergstra, J.A. & Tucker, J.V., "Algebraic specifications of computable and semi­
computable data structures", Centre for Mathematics and Computer Science, Report
IW 115179, 1979.

Drosten, K. & Ehrich, H.-D., "Translating algebraic specifications to PROLOG
programs", Informatik Bericht Nr. 84-08, Techtµsche Universitat Braunschweig,
1984.

Gaudel, M.C., "Specification of compilers as abstract data type representations",
Springer Lecture Notes in Computer Science, Volume 94, 1980.

Gaudel, M.C., "Introduction to PLUSS", draft document, Paris, 1984.

Ganzinger, H., "Denotational semantics for languages with modules", Proceedings
of IFIP Working Conference Formal Description of Programming Concepts, North­
Holland, 1982.

Goguen, J.A. & Meseguer, J., "An Initiality Primer", in Nivat, M., & Reynolds, J.,
(eds), Application of Algebra to Language Definition and Compilation, North-Holland,
1983.

Goguen, J.A. & Parsaye-Ghomi, K., "Algebraic denotational semantics using
parameterized abstract modules", in Diaz, J. & Ramos, I. (eds.) Formalizing
Programming Concepts, Springer Lecture Notes in Computer Science, Volume 107,
1981, 292-309,

Heering, J., "Partial evaluation and w-completeness of algebraic specifications",
Centre for Mathematics and Computer Science, Report CS-R8501, 1985.

Hoffmann, C.M. & O'Donnell, M.J., "Programming with equations", ACM
Transactions on Programming Languages and Systems, 4(1982)1, 83-112.

Klaeren, H.A., Algebraische Spezifikationen: Eine Einfi.ihrung, Springer-Verlag, 1983.

Kutzler, B. & Lichtenberg, F., "Bibliography on abstract data types", Informatik
Fachberichte 68, Springer, 1983.

Loeckx, J., "Algorithmic specifications: a constructive method for abstract data
types", Report A84/03, Universitat des Saarlandes, 1984.

86

[RZ84]

[W83]

Remy, J.L. & Zhang, H., "Reveur4: a system for validating conditional algebraic
specifications of abstract data types", European Conference on Artificial Intelligence
84, 563-572, 1984.

Wirsing, M., "A Specification Language", Dissertation, Miinich University, 1983.

APPEND.IX A.1. Dependency hierarchy of modules

Module

Atree-environments:

A trees:

BNF-patterns:

Boo leans:

Characters:

Context-free-parser:

Integers:

PICO-BNF-patterns:

PICO-abstract-syntax:

PICO-atree-environments:

imports the modules

Tables

Booleans, Integers, Strings, Tokens

Strings

Booleans, Integers

Atree-environments, BNF-patterns,
Strings, Token-sequences

Boo leans

BNF-patterns

Integers,
Strings

PICO-atree-environments,

Atree-environments

PICO-atree-operators: Booleans, Integers

PICO-atree-operators-of-lexical-syntax:
Boo leans

87

Boo leans,

PICO-types,

PICO-concrete-syntax:

PICO-eva Lua tor:

PICO-BNF-patterns, PICO-atree-environments

Booleans, Integers, PICO-abstract-syntax, PICO­
values, Strings, Tables

PICO-lex-BNF-patterns: BNF-patterns

PICO-lex-atree-environments: Atree-environments

PICO-lexical-character-scanner: Booleans, Characters, Strings, Token-sequences

PICO-lexical-scanner: Context-free-parser

PICO-lexical-syntax: PICO-lex-BNF-patterns, PICO-lex-atree­
environments, Token-sequences

PICO-non-terminals-of-concrete-syntax:

PICO-non-terminals-of-lexical-syntax:

PICO-parser: Context-free-parser

PICO-static-type-checker: Booleans, PICO-abstract-syntax, PICO-types, Tables

PICO-system:

PICO-types:

PICO-values:

PICO-evaluator, PICO-parser,
checker, Strings

Boo leans

Booleans, Integers, Strings

PICO-static-type-

88

Sequences:

Strings:

Tables:

Token-sequences:

Tokens:

Boo leans

Sequences

Booleans, Strings

Sequences

Booleans, Strings

APPENDIX A.2. Declaration of sorts per module

Module declares the sorts

Atree-environments:

A trees:

BNF-patterns:

Boo leans:

Characters:

Context-free-parser:

Integers:

PICO-BNF-patterns:

PICO-abstract-syntax:

PICO-atree-environments:

PICO-atree-operators:

ATREE, OPERATOR

NON-TERMINAL, PATTERN

BOOL

CHAR

INTEGER

DECLS, EXP, ID, PICO-PROGRAM, SERIES, STATEMENT

PICO-OPERATOR

PICO-atree-operators-of-lexical-syntax:
LEX-OPERATOR

PICO-concrete-syntax:

PICO-evaluator: PROGRAM-STATE

PICO-lex-BNF-patterns:

PICO-lex-atree-environments:

PICO-lexical-character-scanner:

PICO-lexical-scanner:

PICO-lexical-syntax:

PICO-non-terminals-of-concrete-syntax:
PICO-NON-TERMINAL

PICO-non-terminals-of-lexical-syntax:

PICO-parser:

PICO-static-type-checker:

PICO-system:

PICO-types:

PICO-values:

Sequences:

Strings:

Tables:

Token-sequences:

LEX-NON-TERMINAL

PICO-TYPE

PICO-VALUE

ITEM, SEQ

ENTRY, TABLE

89

90

Tokens: TOKEN

91

APPENDIX A.3. Declaration of functions per module

Module

Atree-environments:

A trees:

BNF-patterns:

Boo leans:

Characters:

Context-free-parser:

Integers:

PICO-BNF-patterns:

PICO-abstract-syntax:

PICO-atree-environments:

PICO-atree-operators:

declares the functions

A

atree, eq, error-atree, integer-atree, lexical­
atree, nul l-atree, string-atree

+,_I_, lexical, n, null-pattern, t

and, false, if, not, or, true

char-0, char-1, char-2, char-3, char-4, char-5,
char-6, char-7, char-8, char-9, char-A, char-B,
char-C, char-D, char-E, char-F, char-G, char-H,
char-I, char-J, char-K, char-L, char-M, char-N,
char-0, char-P, char-Q, char-R, char-S, char-T,
char-U, char-V, char-W, char-X, char-Y, char-Z,
char-a, char-b, char-bar, char-c, char-colon, char­
comma, char-d, char-e, char-equal, char-f, char-g,
char-h, char-ht, char,..;, char-j, char-k, char-l,
char-lpar, char-m, char-minus, char-n, char-nl,
char-o, char-p, char-plus, char-point, char-q,
char-quote, char-r, char-rpar, char-s, char-semi,
char-slash, char-space, char-t, char-times, char-u,
char-v, char-w, char-x, char-y, char-z, eq, is-digit,
is-letter, is-lower, is-upper, ord

build, parse, parse-pat, parse-rule, rule, scan

0, 1, 10, add, eq, greater, greatereq, less, lesseq,
mul, succ

abs-assign, abs-cone, abs-decls, abs-empty-decls,
abs-empty-series, abs-id, abs-if, abs-integer­
cons tant, abs-pi co-program, abs-plus, abs-series,
abs-string-constant, abs-var, abs-while, append­
statement, decls, exp, id, pico-program, pico-type­
atree, series, statement

eq, op-assign, op-cone, op-decls, op-empty-decls,
op-empty-series, op-id, op-if, op-integer-constant,
op-integer-type, op-pico-program, op-plus, op­
series, op-string-constant, op-string-type, op-var,
op-while, ord

PICO-atree-operators-of-lexical-syntax:
eq, op-lex-i tem, op-Lex-stream

92

PICO-concrete-syntax: build, rule
PICO-evaluator: eval, eval-decls, eval-exp, program-state
PICO-lex-BNF-patterns:

PICO-lex-atree-environments:

PICO-lexical-character-scanner: char-scan, char-scan1, is-layout
PICO-lexical-scanner: Lex-scan

PICO-lexi ea l-syntax: build, lex-i tem, Lex-stream, rule
PICO-non-terminals-of-concrete-syntax:

assign, cone, decls, empty-decls, empty-series, exp,
id, id-type-list, if, integer-constant, non-empty­
series, pico-program, plus, series, stat, string­
constant, type, type-integer, type-string, var,
while

PICO-non-terminals-of-lexical-syntax:

PICO-parser:

PICO~static-type-checker:

PICO-system:

PICO-types:

PICO-values:

Sequences:

Strings:

Tables:

Token-sequences:

Tokens:

any-char-but-quote, assign-or-colon, concat, digit,
digits, empty, empty-Lexical-stream, ident, ident­
char, ident-chars, integer-const, keyword-or-ident,
Layout, letter, lexic~l-item, lexical-stream,
literal, non-empty-digits, non-empty-ident-chars,
non-empty-lexi ea l-stream, non-empty-string-tail,
optional-layout, quote, string-const, string-tail
parse-and-construct

chec~ type-of-exp

run, run1, run2

eq, error-type, integer-type, string-type
eq, error·value, pico-value

cone, conv-to-seq, eq, null, seq

str-to-int

delete, eq, error-entry, lookup, null-table, table

eq, token

93

APPENDIX A.4. Modules in which each function is declared

Function

O:

1:

10:

+ :
" .
I :

abs-assign:

abs-cone:

abs-dee ls:

abs-empty-dee ls:

abs-empty-series:

abs-id:

abs-if:

abs-integer-constant:

abs-pico-program:

abs-plus:

abs-series:

abs-string-constant:

abs-var:

abs-while:

add:

and:

any-char-but-quote:

append-statement:

assign:

assign-or-colon:

a tree:

build:

char-0:

char-1:

char-2:

is declared in module

Integers

Integers

Integers

BNF-patterns

Atree-environments

BNF-patterns

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

Integers

Boo leans

PICO-non-terminals-of-lexical-syntax

PICO-abstract-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

A trees

Context-free-parser, PICO-concrete-syntax, PICO­
lexi cal-syntax

Characters

Characters

Characters

94

char-3: Characters

char-4: Characters

char-5: Characters

char-6: Characters

char-7: Characters

char-8: Characters

char-9: Characters

char-A: Characters

char-B: Characters
char-C: Characters

char-D: Characters

char-E: Characters

char-F: Characters

char-G: Characters

char-H: Characters

char-I: Characters

char-J: Characters

char-K: Characters

char-L: Characters

char-M: Characters

char-Ill: Characters

char-0: Characters

char-P: Characters

char-Q: Characters

char-R: Characters

char-S: Characters

char-T: Characters

char-U: Characters

char-V: Characters

char-W: Characters

char-X: Characters

char-Y: Characters

char-Z: Characters

char-a: Characters

char-b: Characters
char-bar: Characters

char-c:

char-colon:

char-comma:

char-d:

char-e:

char-equal:

char-f:

char-g:

char-h:

char-ht:

char-i:

char-j:

char-k:

char-l:

char-lpar:

char-m:

char-minus:

char-n:

char-nl:

char-o:

char-p:

char-plus:

char-point:

char-q:

char-quote:

char-r:

char-rpar:

char-s:

char-scan:

char-scan1:

char-semi:

char-slash:

char-space:

char-t:

char-times:

char-u:

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

PICO-lexical-character-scanner

PICO-lexical-character-scanner

Characters

Characters

Characters

Characters

Characters

Characters

95

96

char-v:

char-w:

char-x:

char-y:

char-z:

check:

cone:

con cat:

conv-to-seq:

dee ls:

delete:

digit:

digits:

empty:

empty-dee ls:

empty-lexical-stream:

empty-series:

eq:

error-a tree:

error-entry:

error-type:

error-value:

eval:

eval-decls:

eval-exp:

exp:

false:

greater:

greatereq:

id:

id-type-list:

ident:

ident-char:

Characters

Characters

Characters

Characters

Characters

PICO-static-type-checker

PICO-non-terminals-of-concrete-syntax, Sequences
PICO-non-terminals-of-lexical-syntax

Sequences

PICO-abstract-syntax, PICO-non-terminals-of-
concrete-syntax

Tables

PICO-non-terminals-of-lexical-syntax
PICO-non-terminals-of-lexical-syntax
PICO-non-terminals-of-lexical-syntax
PICO-non-terminals-of-conc~ete-syntax

PICO-non-terminals-of-lexical-syntax
PICO-non-terminals-of-concrete-syntax
Atrees, Characters, Integers, PICO-atree-operators,
PICO-atree-operators-of-lexical-syntax, PICO­
types, PICO-values, Sequences, Tables, Tokens

A trees

Tables

PICO-types

PICO-values

PICO-evaluator

PICO-evaluator

PICO-evaluator

PICO-abstract-syntax,
concrete-syntax

Boo leans

Integers

Integers

PICO-abstract-syntax,
concrete-syntax

PICO-non-terminals-of-

PICO-non-terminals-of-

PICO-non-terminals-of-concrete-syntax
PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

ident-chars:

if:

integer-a tree:

integer-const:

integer-constant:

integer-type:

is-digit:

is-layout:

is-letter:

is-lower:

is-upper:

keyword-or-ident:

Layout:

less:

lesseq:

letter:

lex-i tem:

Lex-scan:

Lex-stream:

lexi ea l:

lexical-atree:

lexical··item:

lexical-stream:

literal:

lookup:

mul:

n:
non-empty-digits:

non-empty-ident-chars:

non-empty-Lexical-stream:

non-empty-series:

non-empty-string-tail:

not:

null:

null-a tree:

null-pattern:

PICO-non-terminals-of-lexical-syntax

Booleans, PICO-non-terminals-of-concrete-syntax

A trees

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-types

Characters

PICO-lexical-character-scanner

Characters

Characters

Characters

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

Integers

Integers

PICO-non-terminals-of-lexical-syntax

PICO-lexical-syntax

PICO-lexical-scanner

PICO-lexical-syntax

BNF-patterns

A trees

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

Tables

Integers

BNF-patterns

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexicat-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

Boo leans

Sequences

A trees

BNF-patterns

97

98

null-table:

op-assign:

op-cone:

op-dee ls:

op-empty-dee ls:

op-empty-series:

op-id:

op-if:

op-integer-constant:

op-integer-type:

op-Lex-item:

op-Lex-stream:

op-pico-program:

op-plus:

op-series:

op-string-constant:

op-string-type:

op-var:

op-while:

optional-layout:

or:

ord:

parse:

parse-and-construct:

parse-pat:

parse-rule:

pico-program:

pico-type-atree:

pi co-va Lue:

plus:

program-state:

quote:

rule:

run:

run1:

Tables

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-a tree-operators

PICO-atree-operators-of-lexical-syntax

PICO-atree-operators-of-lexical-syntax

PICO-atree-operators

PICO-a tree-operators

PICO-a tree-operators

PICO-atree-operators

PICO-atree-operators '

PICO-atree-operators

PICO-atree-operators

PICO-non-terminals-of-lexical-syntax

Boo leans

Characters, PICO-atree-operators

Context-free-parser

PICO-parser

Context-free-parser

Context-free-parser

PICO-abstract-syntax,
concrete-syntax

PICO-abstract-syntax

PICO-values

PICO-non-terminals-of-

PICO-non-terminals-of-concrete-syntax

PICO-evaluator

PICO-non-terminals-of-lexical-syntax

Context-free-parser, PICO-concrete-syntax, PICO­
lexi cal-syntax

PICO-system

PICO-system

run2:

scan:

seq:

series:

stat:

statement:

str-to-int:

stri ng-atree:

stri ng-const:

string-constant:

string-tail:

string-type:

succ:

t:

table:

token:

true:

type:

. type-integer:

type-of-exp:

type-string:

var:

while:

99

PICO-system

Context-free-parser

Sequences

PICO-abstract-syntax, PICO-non-terminals-of-
concrete-syntax

PICO-non-terminals-of-concrete-syntax

PICO-abstract-syntax

Strings

A trees

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

PICO-types

Integers

BNF-patterns

Tables

Tokens

Boo leans

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-concrete-syntax

PICO-static-type-checker

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-concrete-syntax

