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Uniform asymptotic expansion for a class of polynomials 

biorthogonal on the unit circle 

N.M. Temme 
Centre tor Mathematics and Computer Science, Amsterdam 

An asymptotic expansion including error bounds is given for polynomials f Pn,On} that are biorthogonal on 
the unit circle with respect to the weight function (1-e16)a+P(1-e- 18 )a-P. The asymptotic parameter is n; 
the expansion is uniform with respect to z in compact subsets of C \ {O). The point z = 1 is an interesting 
point, where the asymptotic behaviour of the polynomials strongly changes. The approximants in the 
expansions are confluent hypergeometric functions. The polynomials are special cases of the Gauss hyper­
geometric functions. The results of the paper apply in fact on these functions for the case that in 
2F1(-a,b;c;n a is positive and large, band care fixed and! is the uniformity parameter with !=0 as 
"transition" point. 
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1. INTRODUCTION 

The polynomials considered are 
-n,a+/3+ 1 

{
Pn(z;.a,/3):2F1(. ~a+l ;1-z)= 

Qn(Z ,a,/3) -Pn(Z ,a, /3). 

The biorthogonality means that there is a weight function 

a(fJ) = (1-e;11t+P(1-e-;11t-P = (2-2cosfJ)0 (-ei9f 
such that 

,, 
2~ J Pn(e;11 ;a,{3)Qn(e-;11 ;a,{3)a(fJ)dfJ = 0, m=/=n, 

_,, 

= 
f(2a+ 1) n ! 

f(a+ .B+ l)f(a-,8+ 1) (2a+ 1),.' 
m=n. 

1 

(1.1) 

(1.2) 

(1.3) 

A proof of this can be found in [I]. In the same paper the polynomials.are considered for large values 
of n, especially for values of z near unity. It is shown that 

lim P (ei9f 11 ·a .8) = F (a+.B+l·2a+h8) n • • I I ' • (1.4) 
11-+00 

which is analogous to a well-known asymptotic result for Jacobi-polynomials in terms of Bessel func­
tions. Askey raised the question how to obtain more terms in the asymptotic result (1.4) and to give 
bounds on the error in the expansion. 

In this paper we give the full asymptotic expansion which gives (1.4) as a special case and we give 
the error bounds. The result is valid for z ranging in compact subsets of C \ {O}. So, especially our 
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expansion is holding in a neighborhood of z = 1. 
The point z = 1 is interesting, since a(IJ) is vanishing there (that is, a(O) vanishes at 8=0, and we 

write z = e;9 for z on the unit circle). As Askey remarked, one wants to understand the effect of 
zeros of the weight function on the asymptotic behaviour of orthogonal or biorthogonal polynomials. 
Also~ it is interesting to obtain information on the location of the zeros of Pn and Qn- A special case 
gives direct information. Let a = - fJ = ~ , then we have 

{ 

1 1 1-z"+I 
P,,(z;2,-2) = 1-z 

1 I 
Q,,(z ;2, -2) = zn. 

(1.5) 

In this simple case the zeros of P,, are uniformly distributed over the unit circle, but those of Qn all 
concentrate at z =O. 

The results of the paper do not apply just to P,,,Qn introduced in (1.1), but also to the more gen­
eral case of hypergeometric functions 

-ab 
2F1( c' ;n 

where a is positive and large, band care fixed and r is the uniformity parameter with r=o as "transi­
tion" point. 

2. THE ASYMPTOTIC EXPANSION 

The standard integral for 2F 1-functions gives 

where 

r(2a+l) 
Pn(z;a,fJ) = f(a+{J+l/"' 

I 

I = l f ta+ll(l-t)a-Jl- 1(1-tr}"dt r = 1-z. 
n f(a-/3) o , 

(2.1) 

(2.2) 

For convergence of the integral we have the conditions a+ fJ> - l, a- fJ>O, However, the reciprocal 
gamma function before the integral removes the singularity due to a = fJ. So we suppose that 

a+{J>-1. (2.3) 

Put 

1-tr = z" = eulnz, 

with 1n z the principal branch of the logarithm, which is real when z > 0. Then we have 

I = a-jl-1(~)2aJ 
n Z 1 n> z-

1 

J = 1 /f(u)ua+ll(l-u)a-Jl-le"'"du 
n f(a-/3) o , 

u 1 u-1 

f (u)=[ 1-z r+ll[ -z r-Jl-1, 
-u ln z (1-u)ln z 

(2.4) 

w = (n +l)ln z. 
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The function f is holomorphic in a neighborhood of [O, 1 ]; singularities occur at 

2hri 2m'ITi 
Uk= lnz • Um= 1+~, k,mEl\ {0}. (2.5) 

So when z ranges through compact subsets of C \ { 0}, the singularities of f are bounded away from 
[O, I]: 

Before constructing the uniform asymptotic expansion we first remark that simpler, i.e., non­
uniform expansions can be obtained for two separate cases: 

(i) Rew= (n+l)lnlzl < 0, z fixed. 

The dominant point in the integral Jn is u =O, and the asymptotic expansion follows by expanding 
the function f ( u) at u = 0. The result is 

Pn(z;a,P)-- ~~a~;; [(n +l)(l-z)ra-P- 1• (2.6) 

(ii) Re w > 0, z fixed. 

Now the dominant point is u = 1 and an expansion off (u) at u = 1 has to be used. In this case 

P ( . IJ) ,..., f(2a+ 1) n+a-P( -1'8-a( + 1'8-a (2.7) 
nZ,a,tJ f(a+/3+l)z z 1 n 1 . 

In the uniform expansion contributions from both u =O and u = l will be taken into account. In 
this way we can allow Rew to be negative as well as positive; even w=O is accepted. 

Observe that Re w > 0, Re w < 0 is equivalent with I z I > 1, I z I < 1 respectively, so that in fact all 
points on the unit circle in the z-plane are "transition" points; i.e., points for which the asymptotic 
behaviour of the polynomials Pn,Qn will change drastically. For polynomials this is not surprising, of 
course. However, in (2.2), (2.6), (2.7) and in the following analysis n need not be an integer. 

A uniform expansion for Jn of (2.4) is obtained as follows. We write 

j(u) = ao+/3ou+u(l-u)go(u) 

with ao = f (0), /3o = f (1)-f (0). Then Jn of (2.4) equals 

Jn = ao<Po + /304'1 + Hn, 

with 

{
"'- = f(a+,B+l) F (a+a+1·2a+h.i) 
'1'll f(2a+ 1) I I P ' ' 

f(a+a+2) d 
.i.. = ,., F (a+a+2·2a+2·w) = -.i..-. 
'I"! f(2a+2) 1 1 ,., ' ' dw'l'li 

Partial integration gives for Hn, when w=FO, 

with 

I 

Hn = l j g(u)ua+P+l(l-u)"-pde"'" 
wf (a - /3) 0 

I 
1 j j 1(u)ua+P(t-u)a-P-le"'"du, 

wf(a-/3) 0 

f1(u) = [(2a+ l)u -a-/3-l]go(u)-u(l-u)g'o(u). 

(2.8) 

(2.9) 

(2.10) 

This new j 1 has the same domain of regularity as g0 and f. By repeating the above procedure, we 
obtain the formal expansion 



with 

{ 
am = /m(O), /3rn = fm(l)-/m(O), Jo = /1, 

fm(u) = [(2a + l)u -a-/3- l]gm -1(u)-u(l -u)g'm-1 (u) (m ~l) 

= am+/3mu+u(l-u)gm(u) (m~O) 

and where w = (n + l)ln z. 
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(2.11) .. 

(2.12) 

The restrictions on a,/3 are as in (2.3). For w we temporarily suppose w=:;i=O. In the following sec­
tion we prove that 

(2.13) 

are regular functions of z in C \ { 0}. So, the complete expansion for P n is 

p ( /3) I'(2a+ 1) a-/3-1 lnz 2a [ ~ Am 00 Bm ] 
n Z ;a, ,...., f(a+ /3+ 1) Z [ Z -1] 4'IJ m~O (n + lr + </>1 m~O (n + lr (2.14) 

and the same for Qn(z ;a,/3) with f3 replaced by -/3 (also in (2.3)). So we have for both Pn and Qn an 
expansion as in (2.14) when -a-I<P<a+ 1 

An error bound for the expansion in (2.14) follows easily from the integration by parts procedure. 
Writing for Jn of (2.4) 

k-1 A k-1 B 
J -,i,._ "'\:' m + "'\:' m +R k 01 

n - 'l'U m~O (n +lr c/>J m~O (n +lr k> = , , ... , (2.15) 

we have for Rk the representation 

I 

R = l j I'. (u)ua+/3(1-u)a-{J-lew"du. 
k i..iI'(a-{3) o Jk 

(2.16) 

Again, Jk(u) / lnk z is regular (see the next section) and we define positive numbers Mk not depending 
on u such that 

l/k(u)I ~ llnkzlMk> u E[O,l], zEC\{O}. (2.17) 

Then we obtain 

where <P1J is <P1J of (2.9) with w replaced by Re w. This gives an error bound for the asymptotic expan­
sion and it shows the asymptotic nature of (2.14). 

3. ON THE REGULARITY OF Arn,BmAT Z = 1 
In this section we show that the coefficients of (2.14) defined in (2.13) are regular functions of z, espe­

cially when A : = 1n z = 0. Also, we show that l/k( u) I can be bounded as in (2.17), again when A= 0. 

We suppose in this section that IA.I is small, say IA.I ~Ao, where Ao is a fixed small positive number. 

Before proving the regularity of Arn and Bm we remark that f (u) of (2.4) depends in a crucial way 
on the uniformity parameter In z. The result (2.14) is certainly not true for more general functions, 

say functions just regular on a set in the complex u-plane containing [O, l] in its interior. 
Inspection off of (2.4) shows that it can be written as 



f (u) = q,(_Xu}KX(u -1)), A = In z, 

where 
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(3.1) 

(3.2) 

The fact that in both q,{_a) and 1/.(x) the same function of x appears is not so important. Crucial is that 
the parameter A appears in both If> and l/; in (3.1 ). We expand f ( u) in powers of A. That is, we write 

00 00 00 

/(u) = ~ PmAmum ~ qmAm(u -1r = ~ rm(u)'>..m (3.3) 
m =O m =O m=O 

where 
m 

rm(u) = ~ Pkqm-kuk(u -1r-k. 
k=O 

Observe that r m is a polynomial in u of degree m. Since I A I is small, the manipulations of the series 
in (3.3) holds for u-values in a set U in the u-plane that contains [O, 1] in its interior; the r m-series in 
(3.3) converges uniformly with respect to u EU. 

By using (3.3) and (2.8) we infer that g 0 can be written in the form 
00 

go(u) = ~ sm(u)Am, with so = s1 = 0, (3.4) 
m=O 

and sm a polynomial in u of degree m -2 (m;;;;i.2). 

The proof of this is most easily established by using a Cauchy integral representation for g0• From 
(2.8) it follows that 

O(u) = _l_ J f(v) dv (3 5) 
g 2'1Ti c v(l -v)(v -u) ' · 

where C is a contour in the above mentioned domain U; C encloses the interval [0,1]. This represen­
tation follows by writing /(u), f (1), /(0) as similar contour integrals. Substituting therm-series of 
(3.3) we obtain for Sm in (3.4) 

sm(u) = _1_ J rm(v) dv. 
2'1Ti c v(l -v)(v -u) 

Since rm(v) is a polynomial of degree m, s0 = s 1 = 0, which establishes (3.4); it is also clear that 
sm(u) is a polynomial of degree m -2 form ;;;i. 2. 

We next consider / 1 of (2.10). Writing 
00 

/1(u) = ~ rg>(u)Am 
m=O 

we obtain 

rg>(u) = [(2a+ l)u -a-{3- l]sm(u)-u(l -u)sm'(u)]. 

So, ,.<~> is a polynomial of degree m - 1, r&1> = r\1> = 0. This shows that f 1 (u) /A is regular for all 
u E U and IXI < Xo; so A i.B 1 are regular for IXI <Ao· The same procedure can be used for the 
higher coefficients Ak>Bk in (2.14) and to establish the meaning of (2.17) for z --+ 1, or A--+ 0, for all 
k ;;;i. 0. 

As remarked earlier, the special form of If> and o/ in (3.1) is not important. In fact the method 
applies to more general functions f, or If> and t/J, as long as the representation (3.1) remains and If> and 
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"1 are regular in s.ome .neighbOUrhood of [0,1]. Use of analytic functions and of Cauc?y integr~s is not 
11eeded. The verifica~on of the regularity of fk(u) /lnkz as z ~ 1 can be proved without usmg (3.5), 
but the present proof is rather elegant and short. 

4. CONCLUDING REMARKS 

(i) Althou~ the coefficients ~m• fim in (2.11) are defined in terms of a recursion relation (2.12), the 
evaluation of these coefficients, and hence of Am, Bm in (2.12), is a tedious process. Especially the 
evaluation of Am, Bm for z at or near unity is difficult. A completely different approach to 
obtain (2.14) can be based on the differential equation of the Gauss functions. By substitution 
(2.14) into a transfonned version of this equation a recursive system is obtained for Am, Bm and 
their ~erivatives. Taylor eit.pansions of Am, Bm around z = 1 can then be substituted to compute 
coeffictents of these expansions. In OLVER [2] asymptotic methods for special functions are usu­
ally based on differential equations. 

(il) In the discussion around (2.6), (2.7) we observed that the role of the critical points u = 0, u = 1 
of Jn in (2.4) is interchanged when log I z I changes sign. The confluent hypergeometric functions 
<Po, <1>1 of (2.9) are exponentially large when Re w~ + oo. When Re w~ - oo they are of algebraic . 
growth in w, and not exponentially small. These asymptotic features and the use of confluent 
hypergeometric functions as approximants in such problems are not discussed earlier in the 
asymptotic literature, as far as I know. 

(iil) The special case 2(a+fi+ 1) = 2a+ 1 (or fi = -+ ) makes a Bessel function of <Po in (2.9). 

Also, it gives the integrand of Jn in (2.4) some symmetry. In this form the asymptotic problem 
resemrles that of ~rtain Legendre functions, as considered by URSELL in (3]. The simple case 
a = 2• /J = -2 yields for <Po the spherical Bessel function of order zero (see (1.5)). 
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