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Parametrization problems for spaces of linear input-output systems 

Michie! Hazewinkel 
Centre for Mathematics and Computer Science, Amsterdam 

This note introduces and discusses the general problem of finding good parametrizations of sets of possible 
models, mainly in the context of finite dimensional dynamic input-output models. The general problem is 
addressed in particular in the case where it is impossible to find one global parametrization. 
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1. INTRODUCTION 

This note is concerned with a fairly persvasive problem in modeling and identification. Namely the 
general problem: What is a "good" parametrization for a given model class? Where "good" of course 
has to be specified and may depend on other factors than just the model class in question. In some 
of its aspects it is a very old problem and has been with us ever since it was noted that there are 
several competing cartographic projections which can be used to map the earth and that none of them 
is perfect (or best) for all purposes. 

I shall try to address this question in the context of modeling by means of linear dynamical input
output systems of a priori known state-space dimension (MacMillan degree). That is, we shall assume 
that our input-output observations are to be modeled by means of a system 

x =Ax +Bu, y = Cx, xERn,uERm,yeRP (~) (1.1) 

where A,B, C are constant (unknown) matrices of the appropriate sizes, and where it is assumed that 
(1.1) is completely reachable (er) and completely observable (co). (For algebraic criteria for these two 
conditions c.f. below). A system like (1.1) induces an input-output map Vl:, which, assuming that the 
machine (i.e. the system. or the model) starts at x =Oat time t =O, is given by 

I 

Vl:: u(-).-+y(·), y(t) = jCe(t-T)ABu('r)dT (1.2) 
0 

The only data we have available are input-output data. So all that is knowable (identifiable) about 
(l.l) is the information about~ = (A,B,C) which is encoded in Vl:. However Vl: does not determine 
(A,B,C) uniquely, i.e. the map (A,B,C)i-+Vl: is not injective on the space L~:~~ of all er and co matrix 
triples (A,B, C) of the indicated dimensions. Indeed let SE G/n(R), i.e. S is an invertible real n Xn 
matrix. Consider 

Is = (A,B,C)s = (SAs- 1,SB,cs- 1) (1.3) 

It is totally elementary to observe that V~ = Vl:. The transformation (1.3) corresponds to a base 
change x' = Sx in state space. It is also a fact that this is the only redundancy in the description 
(A,B,C) =I with respect to Vl:. (I.e. if "2.,~'EL~:~~. and VI = VI', then 3SeG/n(R) such that 
I' = "2.s). The relation 
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(1.4) 

is of course an equivalence relation. The import of the remark above is thus that all we can identify 
on the basis of input-output data is the equivalence class of a system under this equivalence relation. 
Or, in other words, what can be identified is a point of the quotient space 

Mco,cr = Lco,cr /......., = Lco,cr / Gl (R) (1.5) m,n,p m,n,p m,n,p 11 

It now turns out that M~:~~ is in fact quite nice. It is a differentiable manifold (of dimension 
mn + np), c.f. below. That is, it is locally like Rmn +np and can be described by nm+ np coordinates 
((coordinate) charts) locally, together with correspondence rules, to yield an atlas, very much like an 
atlas of the world. Cf. below for an explicit atlas of this kind. It also turns out that if m > 1 and 
p > 1 it is not possible to make do with one particular chart. (Similarly it is not possible to have one 
global coordinate system for the whole earth (the sphere S 2) giving a unique correspondence (continu
ous both ways) between a part UcR2 and S2). 

Now imagine th~t y."e Aare engaged in a recursive identification procedure. So at time t we have 
("best") estimates A"B1,C1) for A,B,C CiUl<! Xi,. for the state x at time t). New information comes in 
and we want to update our estimates. (A1,B1oC1) determines a point in M~:~~ and we are looking for 
an opti.maj n~arl,?y point representing our updated estimate. This can be done using a coordinate chart 
valid at (A 1,B1,C1), calculating the relevant numerical coordinates, and calculating the updated ver
sions of these coordinates according to some criterium function as expressed in these same coordi
nilt~. fyoceec!ing ~this ,gives a sequence of points m1,m1 +1,m, +2,..... in M~;~~ (represented by, say, 
(A1,B1,C1), (A1+i.Bi+I>C1 +i), .... ) and there may come a time when it becomes necessary to switch 
to another chart, because, say, m1+k is no longer in the domain where the chart we are using is 
defined, or, in any case, is getting too near the "edge" of this chart to make these chart coordinates 
very reliable. Think again of using an ordinary street atlas, say, and changing charts when needed. In 
this framework one can make the general parametrization problem more precise; for instance as fol
lows. Given a differential equation (or class of them), what are good atlases and good switching rules 
between coordinate charts in order to be able to follow this differential equation well numerically. 

To illustrate the point consider the following situation 

0 chart 1 ~ chart 2 
(chart chenge errors 
disregarded) 

~ ~ 
" chart chenge 1 ---7 2 

·======----..,..1--====· (totolly dUf
erent d1stort1on factors) 

follow 
equation 
in chart 2 



3 

We start in chart l with a point known up to a small uncertainty as indicated. At this point chart 2 is 
also applicable. Changing coordinates at this point changes the uncertainty circle into an ellipse. 
(Uncertainty less in y-direction, more in x-direction). Following the equation in chart 2 introduces 
some additional uncertainty fattening up the ellipse (and even if it did not the difficulties would 
remain). It now becomes necessary to transfer back to chart I again. But now at this point in space 
the distortion. factors may have changed totally. (In the picture a transformation 2f-+1 at the first point 
compresses in. the x-direction and magnifies in. they-direction; at the second point it magnifies in the 
x-direction and compresses in they-direction). The result is a very elongated ellipse of uncertainty in. 
chart l coordinates. Suppose we could also have worked with the coordinates of a chart 3 which as it 
happened had the following chart change distortion behaviour. 

0 

chart change 3 ~ 1 
(similar distort 1on) 

~ ~ 

(----------
-..... _,.,,,.) ---

fo11ow DE 
1n chart 3 

Obviously in this case having chart 3 available was advantageous even though the whole manifold 
could perhaps have been described in terms of charts I and 2 only. (It is by the way very easy to con
struct examples where this happens). 

As described the good-atlases-and-parametrizations-problem seems particularly relevant in the case 
of recursive identification procedures. The problem however does not go away in the non-recursive 
case. There remains selecting a best (or good) chart from the several which may be available (and 
discarding one which turns out to be unsuitable in favour of a new one). And even if one could make 
do with one chart (on the basis of prior (structural) information concerning the class of models (e.g. 
in case p =I or m = l this is always possible) this may not be a particularly good one to use for a 
given problem. (Think of using a map of the earth covering all except the North-pole with in fact the 
region of interest very near the North-pole but not including it). Algorithms for identification based 
on overlapping coordinate charts, i.e. atlases, have in fact been developed, c.f. [2, 7]. 

Related to the fact that as a rule it is impossible to use one chart to describe all of M~;~~ is the 
fact that it is impossible to select a complete distinguishable class of models in L'::;~~P which is con
tinous with respect to the data. (Nonexistence of continuous canonical forms [3,5]). All this means 
the following for a class C C L<;::;~~P 
(i) Complete: for every input-output operator V (of the type coming from a 2: as in (l.l)) there is in 

fact a 2:EC such that VI = V. 
(ii) Distinguishable: 2:1,}:2 EC and 2:1 =I= 2:1 ~ VI 1 =I= VI:.. 
(iii) Continuous: Let V ..... 2: be the map determined by (i). Then this map is continuous. 
So, roughly speaking it is not possible to select in a nice way one representant of each equivalence 
class of systems so as to remove the (statistical) indeterminacy of identifying A,B, C on the basis of 
input-output data alone. 

This note which contains material presented at a most stimulating conference in the Pfalz academy 
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in Lambrecht last March, is meant as an introduction to the problem and as an opportunity to intro
duce to the more applied community the sometimes advantageous possibility (and occasionally the 
necessity) of using several coordinate charts, and whole atlases. I hope and plan to write a much fuller 
version in the future. It is a pleasure to thank the organizer of the conference, Prof. H. N eunzert, for 
bringing this unusual group of scientists together. 

2. DESCRIPTION OF THE SPACES OF ALL LINEAR SYSTEMS OF A GIVEN DEGREE 

As in§ I above, let Lm,n,p be the space of all triples (A,B,C) of matrices of sizes n Xn,n Xm and p Xn 
respectively. The triple (A,B, C) (in fact the pair (A,B)) is called completely reachable if the 
(n + 1 )m X n reachability matrix 

R(A,B) = (BIABIA 2BI · · · IA"B) = R(A,B,C) = R(~) (2.1) 

has rank n. Dually the triple (A,B,C) (in fact the pair (A,C)) is called completely observable if the 
n X(n + l)p observability matrix 

c 
CA 

Q(A,C) = = Q(A,B,C) = Q(~) (2.2) 

CA" 

has rank n. The spaces of er, resp. co, resp. er and co triples are denoted L':.,n,p• L~.n.p• L~::.r All 
three are open dense subspaces of Lm,n,p (in the natural topology). 

The group of invertible n X n real matrices G/n(R) acts on Lm,n,p by the formula given in (1.3) 
above. The subspaces of er, co, er and co systems are stable under this action. Indeed 

R((A,B,C)5 ) = R(SAS- 1,SB,cs- 1) = SR(A,B,C) (2.3) 

so that rk R(~)=n iff rk R(~5)=n. And Q((A,B,C)5) = s- 1Q(A,B,C). 
The quotient spaces of Lm,n,p• L'i:,n,p and L~:~~ by this action of Gln(R) are denoted 

M':.,n,p = LC,:,,n,p / Gln(R),M~,n.p = Lc;,n,p / Gln(R),M~;:,p = L~;:,p / Gln(R). All these quotient spaces 
are non-compact, smooth manifolds of dimension mn + np. 

Below in this section we shall give one detailed description of M':.,n,p in terms of (coordinate) charts 
and gluing ( = chart correspondence) rules, i.e. in terms of an atlas. To do this we need a few 
definitions. Consider an array Jm,n of n X(n + l)m dots as indicated below 

Jm,n = {(i,j): ie{O, ... ,n}, je{l, ... ,m}} (2.4) 

Js,1 =. (2.5) 

The first row of J m,n represents the col~s of the matrix B, the second one the columns of AB, etc. 
Thus (i,j)EJm,n represents the vector A'bj if B=(b1o · · · ,bm)- A subset a of size n of Jm,n is called a 
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nice selection if (i,j)ea, i ;;;i:: I ~ (i -1,j)ea. Pictorially, if a is depicted as a set of crosses in the 
array as visualized by (2.5), this means that if a cross appears anywhere then in the column above if 
there are only crosses. Thus e.g. the left subset of J 5,1 in (2.6) below is nice, the middle one is not. 

x 
x 

x x 
x 
x 
x 

x 
x 

x x x 
x 

x 
x 

x * x x * 
x * x 
* x 

x 
* (2.6) 

For a nice selection a andjel, ... ,m let s(a,j) be the element (k,j)eJ11,m determined by (k,j)~a and 
(i,j)ea for i ;;;;;;.k -1. This one is called the j-th successor index. In (2.6) above the successor indices 
of the nice selection on the left are indicated by * in the rightmost diagram. Given an n X(n + l)m 
matrix R and a subset a of J m,11 let Ra denote the matrix obtained from R by removing all columns 
whose index is not in a. 

LEMMA 2.7 Let (A,B,C)eL';;,n,p• then there is a nice selection a such that then Xn matrix R(A,B,C)a is 
invertible. 

1bis follows from the special structure of R (A,B, C) given that R (A,B, C) has rank n because (A,B, C) 
is er. 

Let La = {(A,B,C)eL';;,11,p: R(A,B)a is invertible}. Note that I 8 ELa if IeLa, for all SeGl11(R). 
Then by the lemma above 

~La = L':,,n,p 
amce 

(2.8) 

LEMMA 2.9 Let IeLa, a a nice selection. Then there is precisely one S eGl11 (R) such that R(I8 )a = 111, 

the n X n identity matrix (and I 5 E La of course). 

1bis follows immediately from the observation that 

R (I5 )a = S (R (I)a) all a CJ m,11 (2.10) 

LEMMA 2.11 Let a be a nice selection. Let x=(yl>···•Ym•z) be an element of R"11i+'!P written as a 
sequence of m n-vectors y 1 , •••• ,ym and a p X n matrix z. Then there is precisely one 
~a(X) = (Aa(X),Ba(x),Ca(X)) ELa CLC,::,,n,p such that 

R(~a(x))a = Im R(Ia(x))s(a,j) = yj,Ca(x)=z. (2.12) 

The matrices Ba(x),Aa(x) are very easy to write down explicitly. They always consist of columnvec
tors which are either equal to one of the standard basis vectors of R11 or to one of the vectors Yj· 
Indeed in the case of the example of the nice selection a of (2.6) above we have, writing e1>····•e1 for 
the standard basis of R7 : 

e1 Y2 e2 e3 Ys 
e4 Y3 es 
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I.e. label the crosses e1>···,e1, write in YJ for the successor spots * and read of Band A directly from 
the r~sulting pattern remembering that the first row represents the columns of B, the second one the 
columns of AB, etc.. From these three lemmas there follows immediately the following description of 
MC,:.,,,,p in terms of local coordinate charts and correspondence rules between these charts. 

2.13 Description of the manifold M':.,n,p 
The manifold M':;~~ is the union of open neighborhoods Va,aCJm,n running through all nice selec
tions. Each Va is diffeomorphic to Rmn+np via a coordinate chart c?a:Va~Rnm+np. Let 
xeRmn+np = o/a(Va), x'ERmn+np = o/p(Vp). Then x and x' correspond to the same element of 
M':;~~P (i.e. o/p(o/;; 1(x))=x') iff 

R(}:p(x')) = (R(}:a(x))p)- 1 R(}:a(x)), z'=zR(}:a(x))p (2.14) 

where as above x =(yi, ... ,ym,z),x'=(y 1', •••• ,ym',z'). Note that if xeip11 (Va)=Rmn+np are the a

coordinates of PE Va CMC,:.,,,,p, then the ,8-coordinates of Pare defined iff R(}:11 (x))p is invertible, a 
condition which is purely in terms of the a-coordinates of P. Note also that because 
Y/ = R (}:p(x')s<flJ) the ,8-coordinates of P are then given in terms of explicit rational expressions in 
the a-coordinates. 

Thus (abstractly) 

Mcr = _l_I -V '/,..., 
m,n,p a nice a 

where Va'= Rm" + '¥' for each a and x ,.._, x', x E Va', x' E V p' iff (2.14) holds. 
The manifold M':;~~ is an open submanifold of MC,:.,,,,p obtained by gluing together in exactly the 

same way the open subsets ~° C Va defined by 

(2.15) 

Note that this is an explicit (polynomial) condition in terms of the coordinates of x. For more details 
and proofs of the above cf. [3,5]. 

3. Mco,cr AS AN IMBEDDED MANIFOLD m,n,p 
It is perhaps more customary to view a manifold like S2 , the sphere, as imbedded in some euclidean 
space like R3 and to view the distortions involved in taking local coordinates as measuring the 
differences between the geometry of the charts and the (true) geometry of the imbedded manifold 
(with its notions of distance etc. coming from the ambient euclidean space). As it happens the space 
M':;~~P does come with a natural imbedding into a euclidean space. This and the relation of this 
imbedding with various atlases for M':;~~ is the topic of this section. 

Let% be the space of all sequences of pXm matrices H 0 ,HI> ... ,H211 with the normal Euclidean 
topology. Define a map 

v: Lm,n,p ~ X., (A,B,C) i-+ (CB,CAB, .... ,CA 211B) (3.1) 

It is elementary to observe that v(~)=v(}:s) for all S EGln(R) so that v induces a quotient map also 
denoted v which can be restricted to M':;~~ 

v: Mco,cr ~:JC m,n,p (3.2) 

THEOREM 3.3 (Kalman). The map (3.2) is an injection. The image of (3.2) consists precisely of all 

sequences of matrices H 0 ,H l>·····H 211 such that 
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Ho H1 Hn-1 Ho H1 Hn 

H1 H2 Hn H, H2 Hn+I 

rk =n rk (3.4) 

Hn-1 Hn Hin-2 Hn Hn+I Hin 

In fact the map (3.2) is an imbedding of the differentiable manifold M~:~~ into X= Rmp(2n +I). It is 

worth noting that the matrices occuring in v (~) are directly related to the 'input-output operator V}; 

associated to ~. Indeed if y(t)= nu(t) and Y(s), U(s) denote the Laplace transforms of y(t),u(t), 
then 

Y(s)= T};(s)U(s) (3.5) 

with 

(3.6) 

the socalled transferfunction of ~. 
It follows that if H 0 ,H 1, ••. , H 2n is a sequence of p X m matrices such that condition (3.4) is 

fulfilled then there must be a~ =(A,B,C)EL~:~~P such that H; =CA; B. An algorithm for finding such 
an A,B,C is called a realization algorithm. And (clearly) such algorithms are not unrelated to the 

matter of finding coordinate charts for MC,::;~~. Here is one ([ 6]). First observe that if H; =CA; B then 
for the Hankel matrices of (H 0, .•. ,Hin) and (A,B,C) we have 

Ho H1 Hn CB CAB CAnB 

CAB CA 2B ··· CAn+iB 

CAnB CA 2nB 

= Q(A,B, C)R(A,B, C) = :H(A,B, C) 

Now because (A,B,C) is er there is a nice selection ac of the columns of R(A,B,C) such that 

R(A,B, C)a, is invertible. Similary there is a nice selection aR of the rows of Q(A,B, C) such that 

Q(A,B, C)a. is invertible. Now observe that 

(3.7) 

where of course Ha, ,a, means the matrix obtained from H by retaining only those columns whose 

index is in aR and only those rows whose index is in ac. The first step of the realization algorithm is 

hence to find a nice aR and ac such that S =H "'•·"'' is invertible. These given (3.4) exist. We now also 

know that among all the (A,B,C) with this given Hankel matrix there is precisely one with Ra, =111 • 

This is the one we are going to construct. Then of course Q "'• = S which is now known. Also 

H"'"=Qa,R so that we know R(A,B)=Q;;_1H"'• from which A and B can be recovered (Lemma 2.11). 

In fact A and B consist of column vectors which are either standard basis vectors or the vectors 

labelled by the succes indices s( ac ,j) of Q "'• H "'•. Finally if p denotes the lables of the first p rows of 

H we have C = Hp,a,. -

This particular-realization algorithm is clearly much related to the coordinate charts described in § 

2 above. 
The reader may wonder what the role is of the two rank conditions (3.4) in this algorithm. The first 
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condition in fact ensures that there are nice aR and ac such that Ha a is invertible. The second one 
R• ' 

sees to it that the construction in fact yields an A,B, C such that Hi= CA i B for all i. 

4. CAN THE DISTORTIONS INVOLVED IN THE COORDINATE CHANGES BE KEPT UNDER CONTROL? 
As a' start and for the purpose of this note. I shall interpret this question as follows. Consider M';;·~rP .. ' ' 
as imbedded in X. Consider a set of coordinate charts M=Mco,cr -::JU ~Rmn+1¥'. Give Mco,cr the 

~' a ~' (Riemanian) metric induced by the imbedding. (This is not the only natural metric on M,cf.[4] for 
another important one). Is it true that one can find an atlas (Ua,</>a)a such that for all PeM there is 
a good chart in that for a certain predetermined t: the Jacobian of <Pa at P and its inverse are both at 
least t: away from the subset of singular matrices in the space of all square matrices of size 
dimMXdimM? This would for example be the case of we could find a finite atlas (Ua,<l>a)a (i.e. one 
with finitely many charts) such that for each a there is a compact set Da C</>a(Ua) such that for each 
PeM there is an a such that «Pa(P)EDa. This, however, would imply that Mis compact (as image of 

J!.Da) which is never the case. 
a 

The question is open but is obviously of great relevance for accurate numerical (recursive) 
identification problems. 

The following observation of BoSGRA and VAN DER WEIDEN [l] is probably going to be of impor
tance here. Consider again the realization algorithm described in § 3 above. Because of the Hankel 
structure of H there are indentical ones among the entries of H which are actually used in construct
ing (A,B,C). It turns out that in fact precisely nm+np entries of the matrices H 0, ••• ,H2n are used. 
This means that to each pair of nice selections (aR,ac) there is associated a subset of size nm +np of 
the mp(2n + 1) coordinates of :JC such that projection onto these nm +np coordinates is in fact a local 
coordinate chart. And of course the coordinate neighborhoods thus obtained cover all of M. This cer
tainly does not yet give a positive answer to the question asked above but it is a positive indicator in 
that it is so particularly simple to indicate for a particular P eM which subsets of the coordinates of 
:JC of the type determined by a pair of nice selections (aR,ac) may be used as local coord.inate charts 
around PeM. Of course in itself, abstractly, the fact that for an imbedded manifold dimension r, say 
M cRN the r-element set projections RN ~R" restricted to M may be used as coordinate charts means 
nothing. Indeed let PeMcRN. Locally around P the manifold M is then the image of a 
differentiable map i:R" ~RN,Oi-+P, of rank r near 0. That means that the Jacobian matrix J(iXO) of i 
at 0 has rank r and so there is a subset a of size r of N such that J(f){_O)a is invertible. Let 
'1Ta:RN ~Rr be the projection corresponding to a. Then Rr ~RN ~R" is a diffeomorphism near 0 so 
that '1Ta is a good coordinate chart for M near P. 
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