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1. INTRODUCTION 

1 

Consider the following simple model of finite and infinite source interaction. Infinite source custo­
mers arrive at a single server queue Q according to a stationary Poisson process with rate 'A, requiring 
negative exponentially distributed service times with mean 1 / µp. There is one finite source (fs), hav­
ing negative exponentially distributed think times with mean 1 / y. The finite source customer requires 
at Q a negative exponentially distributed service time with mean 1 / µfs· Both customer types thus 
share Q ( cf. Fig. I). The queueing discipline at Q is FCFS; hence no customer type has priority over 
the other type. 

fs 

Fig. I The interaction model 

This model, and its generalization to the case of N identical finite sources, has been studied by Kauf­
man [2]. He points out that, if µp = µfa, the model is a simple product-form network,' whereas if 
µp =fa µfa, the resulting model is no longer product-form and "in fact appears to be intractable". Sub­
sequently he presents a very accurate approximation method for estimating all mean performance 
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,measures of interest, thus obtaining insight in the extent to which the fs (finite source) customer 
increases the congestion experienced by the Poisson customers. 

The main goal of the present paper is to give an exact analysis of the model described above, with 
one finite source. In Section 2 we obtain an explicit expression for the generating function of the 
joint distribution of queue length at Q and position of the fs customer in the system. From this gen­
erating function, exact formulas for all mean performance measures of interest are derived. In Section 
3 we study the asymptotic behavior of the queue length at Q, thus obtaining some extra insight into 
the interaction of the finite and infinite source customers - an interaction about which not much is 
known in non-product form networks. 

In the sequel we assume that 

i\ 
p := - < 1. 

/J.p 
(1.1) 

It is clear from MIMI 1 theory that this is a necessary condition for ergodicity of the system. It is not 
difficult to see that this condition is also sufficient. One can in fact extend the analysis of Section 2 to 
the time-dependent case, and use the thus obtained results to show the sufficiency of Condition (1.1); 
but heuristically it is quite clear that, with FCFS service in Q, the one fs customer should not be able 
to influence the ergodicity of the MIMI 1 queue. 

Remark concerning literature 
The method employed in the solution of the model is similar to the method used by Tak'acs [3] to 
analyse a model of two queues with alternating priority. The model is similar to one discussed by, 
a.o., Vinod and Solberg [4], the only difference being that in the model of [4] the fs customer has 
preemptive-resume priority over the Poisson customers - a fact which strongly influences the 
mathematical analysis. In their model Q represents a machine that can break down, after which it is 
repaired by the fs customer (who hence clearly has priority). 

2. ANALYSIS 

Let 

with 

here 

Then 

h(x,m) := Pr{x = x,n = x +m}, x,m = 0,1, ... , 

n : = the total number of customers in Q, 
x : = the position of the fs customer; 

x = 0 if the fs customer is in its source, 
x = i if the fs customer is in Qin position i (position I denoting: in service). 

(i\ +µ.p)h(x,m) = i\h(x,m -1) + µ.ph(x + l,m), x =2,3, ... , m = 1,2, ... ; 

(i\ +µ.fa)h(l,m) = i\h(l,m -1) + µ.ph(2,m), m = 1,2, ... ; 

(i\+µ.p)h(x, 0) = yh(O,x -1) + µ.ph(x + 1,0), x =2,3, ... ; 

(i\+µ.fa)h(l,O) = yh(O,O) + µ.ph(2,0); 

(i\+µ.p+y)h(O,m) = i\h(O,m -1) + µ.ph(O,m + 1) + JLfsh(l,m), m = 1,2, ... ; 

(i\+y)h(O,O) = µ.ph(O, 1) + µ.fah(l,O). 

(2.1) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

(2.2f) 



Introducing 
00 00 

H(w,z) := ~ ~ h(x,m)wx zm, lwlos;;;I, lzlos;;;I, 
x=O m=O 

00 

H 1(z) := ~ h(l,m)zm, lz I os;;;l, 
m=O 

it follows from (2.2a )-(2.2f) and (2.2e ), (2.2f), respectively, that for I w I .;;;;; 1, I z I .;;;;; 1, 

1 [A(l -z)+µ.p(l--)] H(w,z) = (µ.p-µ.fs)(w-1) H 1(z) 
w 

1 P.P P.P 
+ µ.p(l--) H(O,O) + ywH(O,w) + (----y) H(O,z), 

z z w 

1 1 P.P 1 
H 1(z) = -[>i.(1-z)+µp(l--)+y] H(O,z) - -(1--) H(O,O). 

/Lfs z ,ILJs z 

Substitution of (2.6) into (2.5) yields after some calculations: 

1 /LP ywH(O,w) + [>i.(l-z)+µp(l--)+y] [-(w-1)-w]H(O,z) 
H(w,z) - H(O,z) = ----------z---1 ~/Lfi_-s _____ _ 

>i.(l-z)+µp(l--) 
w 

1 ILP µp(l--)[-(w -1)-w]H(O,O) 
z /Lfs 

>i.(1-z)+µp(l-_!_) 
w 

3 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Once H(O,z) is determined for lz I.;;;;;}, H(w,z) follows from (2.7). Determination of H(O,z) proceeds 
as follows. The denominator of the rhs. of (2. 7) becomes zero for 

w = 8(z) := [l+~(l-z)]- 1 • (2.8) 
ILP 

For I z I .;;;;; 1 , clearly I 8(z) I .;;;;; I (in fact, 8(z) is the LST of the service time distribution of the Poisson 
customers, evaluated at A( I - z) ). Since the lhs. of (2. 7) is analytic in I w I .;;;;; I, I z I .;;;;; I, the numerator 
of the rhs. of (2. 7) should be zero for w = 8(z ), I z I .;;;;; I. So for all z with I z I .;;;;; 1, 

H(O,z) = C(z) H(O,O) + D(z) H(0,8(z)), (2.9) 

with 

µp(l-J_) 
z C(z) := -----

1
--, 

>i.(I-z)+µp(l--)+y 
z 

(2.10) 

D(z):= /Lfs 
>i.(I-z)+µp(l-J_)+y >i.(I-z)+µfs 

z 

(2.11) 

Note that C(z) and D(z) have exactly one pole z 1, O<z 1 <l, in lz I.;;;;;}: 

(2.12) 
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REMARK 2.1 
In the extreme case y=O (the fs customer never leaves its source) it follows from (2.7) and (2.9), 
(2.10), (2.11) that 

ILP 
H(w,z) = H(O,z) = , _ H(O,O), lz I .;;;;1, 

µ.p-1\Z 

which indeed leads to standard MIMI 1 results. 

We have to determine H(O,z) from the conditions that, for all z with lz I .;;;;l, (i) it is an analytic 
function of z, and (ii) it satisfies (2.9). 8(z) and its iterates, defined below, play an essential role in 
this analysis. Define, for I z I .;;; I, 

u0>(z) : = z ' (2.13) 

un>(z) := 8(dn-l)(z))' n =1,2, .... 

For future reference we collect some results concerning un>(z) in the following lemma. 

LEMMA 2.1 
For lz I .;;;;1, n = 1,2, ... , 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

un>(z) = 1 - pn 1 - z 
n+I ' 

1 + (1-z)p-p 
1-p 

1-un>(z) - n) z 
1-un-1>(z) -pd(), 

1un>(z)l .;;;;I, 

1-un>(z) 
I 1-un-1>(z) I <I' 

1im un>(z) = I . 
n_.,oo 

PROOF 

Trivial. 

REMARK 2.2 
It follows from (2.10), (2.11) and Lemma 2.l(i) that for n-HX>: 

C(dn>(z)) ,..., pn , 

1 - D(dn>(z)) "'Pn . 

Iterating Relation (2.9) we obtain (an empty product being one, by definition): 
00 i-1 

H(O,z) = H(O,O) ~ {C(Ui)(z)) II D(dJ°>(z))} 
i=O j=O 

00 

+ H(0,1) II D(dJ°>(z)), lzl.;;;;I. 
j=O 

(2.14) 

(2.15) 
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We shall now determine the two unknowns H(O,O) and H(O, 1) in (2.15). One relation between 
H(O,O) and H(O, 1) is obtained by observing that H(O,z) should be_ analytic in lz I .;;;;;I. Using Lemma 

oo . oo z-1 
2.1 and (2.14) one can show that IlD(d/')(z)) and ~ {C(di)(z))IlD(dJ')(z))} are well-defined and 

j=O i=O j=O 

analytic in lz I .;;;;;l, except for those z for which a nonnegative integer n exists such that cS(n)(z) = z 1 
(cf. (2.12)); we omit the details. In particular, D(z), occurring in every term in the right-hand side of 
(2.15), has a pole at z=z 1• Divide both sides of (2.15) by D(z), and subsequently put z=z 1; the 
analyticity of H (O,z) in z = z 1 now implies that 

H (0, 0) [,~, { C(.J"l(z i)) '.Ii D (/J(J'(z 1 )) } + ~ ~:: ~ l + H (0, I) 
1
fl D (/J(J1(z 1 )) = 0 . (2.16) 

Here, by definition, 

C(z1) 1 1 A 
-- = µp(l--)-(l+-(l-z1)), 
D(zi) z1 y l'Js 

cf. (2.10) and (2.11 ). 
Similarly, divide both sides of (2.15) by D(z)D(8(z)), and put z =8-1(z 1); the analyticity of H(O,z) in 
z=8- 1(z 1) again implies relation (2.16). Continuing in the same way, it is seen that Condition (2.16) 
ensures the analyticity of H (O,z) at all those values of z, for which a positive integer n exists such that 
cS(n)(z)=z1 (the fact that one and the same condition takes care of all the singularities is a direct 
consequence of the structure of (2.9) and of C(.) and D(.)). 

Relation (2.16) provides one equation for determining the constants H(O,O) and H(0,1). The 
second equation is obtained by putting w =z in (2.5), dividing both sides by z -1 and subsequently 
substituting z = 1. This yields: 

p-1 = H 1(1)(!,E_-l) - H(O,O) - _LH(O,l). 
µp µp 

Putting z = 1 in (2.6) leads to the - obvious - relation 

Combination of (2.17) and (2.18) gives us a second relation between H(O,O) and H(O,l): 

Introduce 

H(O, 1) = !E_ (1-p-H(O,O)). 
y 

00 00 

Q(z) : = ~ { C(&i)(z)) / II D(d/')(z))} , I z I.;;;; l; 
i=O j=i 

combination of (2.15), (2.16) and (2.19) then leads to our main result: 

THEOREM 2.1 
00 

H(O,z) = ~ Pr{x = O,n = m}zm 
m=O 

= (1-p) ITD(di>(z)) Q(z) - Q(z1)' lzl.;;;;;1' 
j=O 1 - _y__Q(z1) 

l'Js 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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I-p H(O,O) = Pr{x = O,n = O} = __ __._ __ _ 
1 -'- ....LQ(z i) 

. µft 

Finally, the joint generating function H(w,z) of x and n follows from (2.7) and Theorem 2.1. 

REMARK2.3 

(2.22) 

In the special "product-form case" µp=µfs, cf. Section 1, it can easily be checked that substitution of 

1 
H(O,z) = H(0,0)-

1
-
-pz 

in (2.9) leads to an identity. 

REMARK 2.4 
It follows from (2.16) and (2.20) that 

- Q(z 1) = ~~~:~~ = Pr{n=O jx=O}. 

This interpretation implies in particular, cf. (2.22), that H(O,O)o;;;;I-p (cf. also (2.19)). 

Remark 2.2 implies that, in order to numerically evaluate the infinite sum and product in, e.g., 
Q(z 1 ), it is sufficient to take only a few terms of this sum and product - unless p is close to one. 
Extensive numerical experiments confirm this. We have calculated H(O,O) and H(O, 1) using (2.22) 
and (2.19), replacing Q (z 1) in (2.22) by 

N N 
Q(N)(zi): = ~ {C(di>(z1)) / IlD(l5<i>(z1))} · 

i=O j=i 

The numerical calculations suggest the following. For po;;;;0.6, N = 5 is already sufficient to calculate 
H (0, 0) and H (0, 1) with an error of at most 1 % ; and for N = 10, the error is already negligible. For 
p~0.75, N=IO leads to an error of approximately 1%; for p~0.9, N=20 may still yield an error of 
4%. The numerical calculations are extremely simple, hardly occupying any computer time .. 

It is not difficult to evaluate various performance measures, starting from Theorem 2.1. Following 
Kaufman's [2] terminology, define Lfs and Lp to be the mean number of fs and Poisson customers, 
respectively, in Q at a random epoch, and let L=Lfs+Lp. (2.19) and (2.22) enable us to evaluate 

Lfs = 1-H(O, 1) = Prfjs customer is in Q}. (2.23) 

One can obtain the mean total ;reue length L in Q by performing some straightforward calculations, 

starting from the identity L = dz H (z,z )lz = 1> or one can, as in [2], use basic relations such as Little's 

law to obtain: 

L = Lp + L'fs = ( µp Lfs + 1 )_Ll + L'fis . (2.24) 
µfs -p 

Note that Lp = p / (1- p) in the case without finite source. 
Introduce, for the fs customer, A.fs• w1s,Sfs,n'ft> and n~d), denoting respectively his arrival rate at Q, 

his mean waiting time and mean sojourn time at Q, the mean number of customers found by him in 
Q upon arrival and left behind by him in Q upon departure. All these quantities can be expressed in 
Lfs = 1-H(O, 1): 

(2.25) 
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sJs = wJs+ 1 I ILJs = LJs /"'Aft = y(l-LJs) (2.26) 

/LP Lfs 
n<:ft> = /LP Wfs = - /Ljs + /LP y(l-Ljs) ; (2.27) 

.(.d) - - Lfs 
n13 - "'A.Sfs - "'A y(l -Lfs) . (2.28) 

It is now easy to evaluate these performance measures numerically. 

REMARK 2.5 
In all our numerical experiments n<;;>-;;;,: ( .;;;;;) n'rsd) i1f /Lfs-;;;,: ( .;;;;;) µp, with equality i1f /Lfs = µp. 

Kaufman's approximation [2] also predicts this result, which is intuitively obvious. Indeed, during an 
fs waiting time in Q, Q behaves like an ordinary MIM!l queue (for which the queue length distribu­
tions at arrival and departure epochs are the same); but when /Lfs > ( <) µp, the queue length in Q 
during an fs service on the average builds up less (more) than it does during a service in an ordinary 
MIMI l queue. 
The difference between nJ;> and n'rsd) becomes negligible for relatively large values of y - which is obvi­
ous as in this case each fs departure from Q is almost immediately followed by an fs arrival at Q. 

Tables 1 through 6 display numerical results for n<j;>, n'rsd), Lp, L, p / (1-p) (the mean queue 
length in the model without finite source) and Kaufman's approximation n<J:!K for n<;;>. In all six 
cases µp = 1. The six cases consider various combinations of relatively small and relatively large 
values of y and /Lfs. 
Kaufman [2] approximates Lfs by introducing one basic approximation assumption, viz. 

n~> ~ n~!K = ((~-l)Lfs+ l)_e_l , 
Ji Jl /Ljs -p 

(with Lfs yet to be determined). Comparison of nJ:> and n'J:!K shows the accuracy of Kaufman's 
approximation assumption. The approximation is exact when /Lfs = µp ( cf. Tables 2 and 5), and it is 
very accurate when y is relatively large (Table 3). 
Comparison of n<;;> and n}'f> confirms Remark 2.5 above concerning their relative order. 
In Tables 2 and 5 equality of /Lfs and µp leads to n<;;> = n<;J> = p / (1- p ). In this case we have, cf. 
Kaufman [2], 

L = 2_e_ + 
1-p 

A 

p-p 

l+p-p 
here p=y / µp. Hence the mean queue length at an arbitrary epoch can be much higher than the 
mean queue length at an arrival or departure epoch from the fs customer - as is confirmed by the 
tables. 
Finally, comparison of Lp and p / (1- p) shows the influence of the one fs customer on the mean 
queue length of the Poisson customers. This influence is small for small values of y and large values of 
/Lfs ( cf. Table 3), but very pronounced for large values of y and small values of /Lfs ( cf. Table 4). 
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TABLE 1 
Mean queue lengths; y=0.2 P.ts =0.2 µ.p = 1 

p n<;:> nJP n<f L Lp _p_ 
s,K 1-p 

0.15 0.54 0.37 0.81 1.15 0.63 0.18 
0.30 1.37 1.06 1.82 2.15 1.60 0.43 
0.45 2.76 2.31 3.29 3.84 3.25 0.82 
0.60 5.48 4.83 5.90 7.13 6.47 1.50 
0.75 12.17 11.22 12.16 15.23 14.47 3.00 
0.90 41.41 40.18 40.66 50.42 49.52 9.00 

TABLE2 
Mean queue lengths; y = 0.2 P.fs = I µ.p = 1 

p n<;:> n'fe> n)f> L Lp _p_ 
s,K I-p 

0.15 0.18 0.18 0.18 0.40 0.21 0.18 
0.30 0.43 0.43 0.43 0.75 0.52 0.43 
0.45 0.82 0.82 0.82 1.30 1.04 0.82 
0.60 1.50 1.50 1.50 2.33 2.00 1.50 
0.75 3.00 3.00 3.00 4.78 4.33 3.00 
0.90 9.00 9.00 9.00 15.67 15.00 9.00 

TABLE3 
Mean queue lengths; y=0.2 P.fs =9 µ.p = 1 

p n'J> n'fe> n)f> L Lp _p_ 
s,K I-p 

0.15 0.17 0.15 0.04 0.23 0.18 0.18 
0.30 0.40 0.35 0.14 0.52 0.43 0.43 
0.45 0.72 0.64 0.34 0.96 0.83 0.82 
0.60 1.24 1.12 0.74 1.73 1.53 1.50 
0.75 2.19 2.07 1.64 3.41 3.10 3.00 
0.90 4.85 5.28 4.85 10.04 9.52 9.00 
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TABLE4, 
Mean queue lengths; y=9 ILJs =0.2 µp = 1 

p n';:.) n<;:> n~d) L Lp _e_ 
s,K 1-p 

0.15 0.87 0.84 0.88 2.02 1.04 0.18 
0.30 2.12 2.08 2.12 3.52 2.54 0.43 
0.45 4.05 4.01 4.05 5.85 4.86 0.82 
0.60 7.45 7.40 7.44 9.92 8.93 1.50 
0.75 14.93 14.89 14.92 18.91 17.92 3.00 
0.90 44.92 44.89 44.90 54.90 53.90 9.00 

TABLES 
Mean queue lengths; y = 9 ILJs = 1 µp = 1 

p n<;:.> n<;:> n}'P L Lp _e_ 
s,K 1-p 

0.15 0.18 0.18 0.18 1.25 0.34 0.18 
0.30 0.43 0.43 0.43 1.75 0.83 0.43 
0.45 0.82 0.82 0.82 2.53 1.59 0.82 
0.60 1.50 1.50 1.50 3.89 2.94 1.50 
0.75 3.00 3.00 3.00 6.89 5.92 3.00 
0.90 9.00 9.00 9.00 18.89 17.90 9.00 

TABLE6 
Mean queue lengths; 'Y = 9 ILfs = 9 µp = 1 

p n<;:.> n'fa> n~d) L Lp _e_ 
s,K 1-p 

0.15 0.09 0.04 0.02 0.76 0.19 0.18 
0.30 0.19 0.08 0.06 1.10 0.46 0.43 
0.45 0.30 0.16 0.12 1.59 0.88 0.82 
0.60 0.46 0.28 0.24 2.41 1.63 1.50 
0.75 0.72 0.55 0.50 4.14 3.29 3.00 
0.90 1.50 1.57 1.51 10.88 9.94 9.00 
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3. ASYMPTOTICS 

In this section we study the asymptotic behavior of h(O,m) for m~oo. In the special case y=O the 
fs customer does not influence the service of the Poisson stream of customers, and MIMI 1 theory 
yields: 

H(O,z) = (1-p) / (1-pz), 

hence 

h(O,m) = (1-p)pm, m =O, I, ... ; 

and trivially we see that asymptotically h (O,m) ,.._, pm. 
In the following let y>O. We want to investigate the influence of the fs customer on the asymptotic 
behavior of h(O,m), by exploiting our knowledge of H(O,z) (cf. (2.21)). 

THEOREM 3.1 
For y>O fixed, 

>. m 
h(O,m) ,.._, {max[p,-,--1} , m~oo. 

I\+ P.fs 

PROOF 

(3.1) 

The pole of H(O,z) with the smallest absolute value will determine the asymptotic behavior of h (O,m) 
for m~oo; if this pole is x, then h(O,m) ,.._, (l/xr, m~oo. Starting-point is Expression (2.21) for 
H (O,z ). First consider the poles of C (z) and D (z ), rewriting (2.10) and (2.11 ): ' 

_!_(1-z) 

C(z) = (z-z1)(z-z
2

) ' (3.2) 

'YP,fsZ I A2 

Here z 1 and z2 are the two zeros of z[l\(1-z)+µ,p(l-.l)+y]; z 1 has been defined in (2.12), where it 
z 

was observed that O<z 1 <l, and 

Z2 = [>.+µ,p+y + y(>.+µ,p+y)2 - 4Aµ,p] /2A = -
1
- > _!_ > 1 ; 

Z1P p 

Z3 = (A+P.Js)/A > 1. 

(3.3) 

(3.4) 

We not only have to consider these poles ZJ.z 2 ,z 3 ; we also have to consider the points z for which an 
n E {1,2, ... } exists, such that ~n>(z) equals z 1 or z2 or z 3• Introduce the inverse e(.) of 8(.): for 
jz I o;:;;I, 

e(z) : = e(l>(z) : = I +.l __ l , 
P pz 

(3.5) 

e(n)(z) : = e(e<n -I>(z)) , n =2,3, .... 

Now we consider in tum the singularities e(n)(z i), e(n)(z 2), e(n)(z 3), n =O, 1, ... (with e<0>(z)=Z) of the 
expression for H(O,z) in (2.21). It is clear that e(n)(z 1), n =O, 1, ... , is a removable singularity of 
H(O,z). 
Next consider e<n>(z 2 ), n =O, 1, .... The fact that z 2> 1 / p implies that 

1 1 - < e<n>(z 2 ) < 1 +-, n = 1,2, ... ; 
p p 



and ( cf. Lemma 2.1 ), 

l-e<n-I)(z2) 
----- = p e<n-I)(z2) > I ' . 

l -e(n)(z2) 

so 

e(n)(z2) < e<n-I)(z2); 

for n~oo, it follows that 

e(n)(z2) J, I/ p. 

Finally consider e<n)(z 3), n =O, 1, .... 

11 

(3.6) 

If l\+µts>µp, then z3> 1 / p, and e<n)(z3) J, I/ p for n~oo. 
If}\ +µfs =µp, then e<n)(z3)= I/ p for n =O, 1, .... 
If l\+µts<µp, then e<n)(z3)>e<n-I)(z3)> · · · >z3=(l\+µfs)/l\; only in this last case z 3 is the pole 
of H (O,z) with smallest absolute value. This concludes the proof. 

REMARK 3.1 
It can easily be derived from Theorem 3.1 and Formula (2.7) with w =z, that, globally speaking, 
Pr{n = m} has a similar asymptotic behavior as Pr{x = 0,n = m}. 
The interpretation of Theorem 3.1 is the following. For l\<µp<l\+µfn the Poisson customers dom­
inate the queue length behavior at Q. For larger values of µp this domination disappears. Indeed, in 
the limiting case µp~oo the queue at Q can only build up during service times of the fs customer at 

Q. In this respect the term { '+}\ r is significant, as it denotes the probability of m Poisson arrivals 
I\ µfs 

during one fs service in Q. 

NOTE 

During the preparation of this manuscript it came to the author's attention that Dr. B.T. Doshi and 
Dr. W.S. Wong of AT&T Bell Laboratories recently have also analysed the model under consideration 
[l]. Their approach is different, and they obtain the generating function of the queue Ieng$ distribu­
tion at Q seen by the arriving fa customer (which is different from H(O,z), but which also yields Lts 
and Sfs). They also consider the case of LIFO service in Q. 
In a future study we shall determine the joint distribution of queue length at Q and position of the fs 
customer at departure epochs from Q, for completely general service time distributions in Q; this will 
enable us to obtain the waiting time and sojourn time distributions of the fs customer in Q. 
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