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The dynamics of a low order spectral model of the barotropic potential vorticity equation, forced by random 
perturbations, is studied as a function of the memory and intensity of the noise. The unperturbed deter­
ministic system has three equilibria, and for arbitrary initial conditions trajectories in phase space always 
tend to one of the two stable equilibria representing preferent circulation patterns of the atmosphere. The 
noise forces the system to visit alternately the two attraction domains of the stable equilibria. During the 
transition the system will remain for some time in a neighbourhood of the unstable equilibrium. Characteris­
tic residence times in the attraction domains and in the domain near the unstable equilibrium are calculated 
by combined analytical and numerical methods. Furthermore the alternation of preferent states is studied 
with a discrete state Markov process model. It consists of three states, which are related to the equilibria of 
the low order spectral model. Transition probabilities are derived from the characteristic residence times of 
the stochasticly forced dynamical system. The eigenvalues of the Markov model yield information about the · 
time scale over which the effect of the initial state is present in the system. 
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1. INTRODUCTION 

1 

The dynamics of the atmosphere has been extensively studied during the past decades. One of the 
main reasons for this investigation is the problem of weather forecasting, i.e. given an initial state to 
predict the flow at successive times. It appears that predicted- and actual flow states always tend to 
diverge after some time. For example, the characteristic error doubling time for the large scale 
phenomena (O(Hfm)) in a numerical model is of the order of a few days. The principal causes for 
this were sought in the inaccurate specification of the initial state and the limitations of the model to 
incorporate correctly certain physical processes and boundary conditions. However, recently it has 
been pointed out (cf. LORENZ, 1984) that the atmospheric flow, which possesses many scales of 
motion, has an intrinsicly finite range of predictability, which cannot be enlarged by improving the 
observations. 

Since it seems not to be possible to predict the actual flow state of the atmosphere with a 
sufficiently large probability, it becomes worthwhile to distinguish between weather regimes, i.e. clus­
ters of states representing nearly the same flow pattern. Observations indicate that roughly two pre­
ferent types of circulation can be recognized, viz. a high index state with strong westerlies and small 
wave amplitudes, and a low index state with large waves embedded in a weak zonal flow. The fre­
quently observed blockings, which correspond to highly persistent weather conditions, belong to the 
latter type. In our study we will identify a third preference regime, which is of transitional type. A 
more refined division are the Grosswetterlagen defined by Baur, see EGGER (1981). Within the frame­
work of long term weather forecasts it is important to obtain a better understanding of the dynamics 
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responsible for the vacillation between the various weather regimes. 
More information about the nature of atmospheric variability can be obtained from 500 rob geopo­

tential height analyses, see WALLACE & BLACKMON (1983). They found that the geographical distribu­
tion of the variance in the geopotential is mainly determined by the low frequency part of atmos­
pheric waves having time scales of ten days and more. Mechanisms contributing to the low frequency 
variability are partly external, such as diabatic heating and the large scale topography of the earth, 
but also internal, due to interactions with the higher frequency transient eddies( OPSTEEGH & VER­
NEKAR 1982, HOSKINS, JAMES & WHITE, 1983). On the other hand the position and stability of the low 
frequency waves determine the stormtracks and the structure of the transient perturbations, see e.g. 
FREDERIKSEN (1983a,b). These results suggest that for long term weather predictions a better under­
standing is required of the interactions between ultralong quasi-stationary waves and large scale tran­
sient eddies. 

In studies concerning this subject a planetary scale model is considered, in which the effect of the 
transient eddies is parameterized in some way. There are several propositions to solve this closure 
problem. One possibility is to use techniques, originating from turbulence theory, to express the eddy 
characteristics in terms of the resolved part of the flow. For gridpoint models this has been done by 
WHITE & GREEN (1982) and SHUTis (1983). An alternative method is to represent the eddy forcing by 
stochastic terms, see BALGOVIND et.al. (1983), who applied it to a gridpoint model. 

In this paper we study a stochasticly forced spectral model of the large scale atmospheric flow. 
Such a model can be formulated as a dynamical system of the type 

;: = fµ.(x)+ F(t) in RN. (1.1) 

Here the components x;(i = 1,2, ... ,N) of x are amplitudes of the N resolved large scale modes, fµ.(x) 
is a vectorfield, depending on parametersµ. = {µ.1>/kJ., ••• ,µ.,,,),which describes the internal dynamics 
of the resolved modes, and the components of F(t) are synoptic forcing terms representing the effect 
of the short scale unresolved modes on the resolved modes and additional processes not incorporated 
in the model. In the derivation of the spectral model, of which an example can be found in CHARNEY 
& DEVORE (1979), we have the freedom to choose the flow characteristics (e.g. barotropic or baroc­
linic), the geometry of the domain (e.g. a beta plane or the sphere) and the truncation number N. 

By application of coarse grain methods from nonequilibrium statistical mechanics, LINDENBERG & 
WEsr (1984) have shown that (1.1) is formally a stochastic differential equation with its stochastic 
character fully due to the uncertainty in the initial values of the unresolved modes. In some way it 
confirms the earlier intuitive ideas of CHARNEY & DEVORE (1979) and EGGER (1981) to represent the 
synoptic forcing terms by stochastic terms. EGGER & SCHILLING (1983,1984) have determined the 
statistical characteristics of the synoptic forcing terms from data and analysed the response of a 
linearized version of the barotropic potential vorticity equation. They found that a substantial part of 
the observed long term variability can be explained as a response of the ultralong waves to this forc­
ing. 

Recently, BENZI, HANSEN & SUTERA (1984) and MORITZ (1984) have studied the effect of white 
noise forcing on three component spectral models of the barotropic potential vorticity equation as a 
function of the zonal forcing. In this paper we will compute the responses as a function of the inten­
sity and memory of the noise. We assume the short scale waves to be in a statistical equilibrium, 
hence the F(t) are stationary stochastic terms. 

In section 2 a three-component spectral model of the barotropic potential vorticity equation is 
derived. It appears that for realistic parameter values three equilibria exist. The system always tends 
to one of the two stable equilibria, which both seem to resemble large scale preference states of the 
atmosphere ( CHARNEY & DEVORE, 1979). We will study the response of this model to white noise 
and coloured noise processes, which are assumed to represent the effect of the synoptic forcing terms. 
Mathematical aspects of stochastic processes are considered in more detail in section 3. Due to the 
noise forcing, transitions between the attraction domains will now occur. The characteristic time of 
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the system in an attraction domain may be a measure for the persistence of a large scale atmospheric 

preference state. A method to calculate residence times is discussed in section 4 and results are 

presented in section 5. Following the ideas of Ghil (pers.comm.) to model geophysical systems by 

discrete models, we consider in section 6 a Markov model of the atmosphere. It consists of three 

states, viz. a high index-, a low index- and a transitional state. Transition probabilities per unit of 

time are specified using the results of section 5. We then calculate the time evolution of the probabil­

ity distribution from the master equations. The eigenvalues of these equation.sdetermine the time 

scale over which the effect of the initial state is present in this distribution. 

2. DERIVATION AND ANALYSIS OF A LOW ORDER SPECTRAL MODEL 

Consider a large scale barotropic flow over a slowly varying topography in the midlatitude beta plane. 
Let it have a characteristic scale height H, a horizontal length scale k - l and time scale a - I, and let 

the topography have a characteristic amplitude h0 • If the meridional scale of the flow is assumed to 

be much smaller than the radius of the earth r 0 , the dynamics is fully governed by a potential vorti­

city equation. It reads in nondimensional form 

:
1 

v 2o/ + J(o/, v2o/)+yJ(o/,h)+P~+cv2(o/-o/*) = o, (2.1) 

where t is time, o/(x,y) the streamfunction, h the position of the lower boundary and t[;* is a forcing 

streamfunction. Furthermore 

\J = ( ax ' ay ), J (a,b) = ax ay - ay ax ' 

{ 

a a aa ab aa ab 

dx = ro coSf/>Qdll., dy = rodcfJ, (2.2) 

where II. is the longitude, cp the latitude and <Po a central latitude. All quantities have been scaled 

according to the scheme given above. The nondimensional parameters read 

/oho - Po - folJE 
y=-· P=-· C=-· (2.3) 

aH ' ak ' 2aH 

where /o = 2Usin<Po,/3o = (20 / r0)coSfi>o with U the angular speed of rotation of the earth. Finally 
6E is the depth of the Ekman layer near the boundary. A derivation of this equation can be found in 

PEDLOSKY (1979). 
We investigate the existence of travelling wave solutions in a rectangular channel with length Land 

width B. By letting k = 2'1T / L, the nondimensional length and width are 2'1T and 'TTb respectively, 

where 

b = 2B. 
L 

(2.4) 

At the boundaries y = 0 and y = 'TTb the meridional velocity vanishes and no circulation will 

develop. Thus the boundary conditions to (2.1) read 

{

o/(x,y,t) = o/(x +2'1T,y,t), 
(2.5) 

a.1, 2'1T a.1, 
~ = 0 and J ~dx = 0 at y = 0, y = 'TTb. 
ax 0 ay 

A spectral model is developed by expanding t[;,t[;* and h in orthonormal eigenfunctions {<P;}~ 1 of 
the two-dimensional Laplace operator. These eigenfunctions are defined in the channel and satisfy 

(2.5). We only retain the first three modes 

o/1<P1 = Y2tf;1cos(f ); o/2<P2 = 2o/2cos(nx)sin(f ); \f;3c/J3 = 2\f;3sin(nx)sin(f), (2.6) 
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with i/Ji.o/2 and i[;3 the amplitudes and nan integer. The model is further simplified by taking 

1 
if;* = o/i<t>1; h = 2<1>2· (2.7) 

Next the spectral model equations are developed for the velocity amplitudes 

{x1>X2,x:J = (o/1>o/2,o/3) / b of the modes. Putting a = foho / H, n = 1 and introducing a new time 

t = (4 V2 / 3w)t, we obtain · .-----

x1 = bx3-C(x1 -xi), 

X2 = -ab(x1 - ; {1)x3 -Cx2, (2.8) 

X3 = ab(x1-;f1)x2-;ax1-Cx3. 

Here 

Uk (2.9) 
(J 

with U a velocity scale of the zonal forcing and xi the driving Rossby number of the flow. Since these 
equations have been analyzed in detail by CHARNEY & DEVORE (1979) and EGGER (1981), we only 
summarize the results which are essentail for this paper. 

First we note that the divergence of_the three- dimensional vectorfield is negative, which means that 

trajectories are bounded and tha} for 1--'>00 the flow tends to a Aset of limit points of lower dimension. 

A stationary point x satisfies fp.(x) = 0. For this model x = (xi.x 2,x3) is found from a cubic equa­
tion: 

(2.10) 

Here a2 ,a 1 and a0 are known functions of the model parameters, and for each .X 1 we obtain a unique 

x 2 and x 3 • There may be one- or three real stationary points, which correspond to equilibrium flow 
patterns of the basic potential vorticity equation. The set of parameter values for which a transition 
from one-to three equilibrium states occurs, is called the bifurcation set. In this case it is given by 

1 1 1 1 
q3 +r2 = O; q = 3a1 -9a~; r = 6(a 1a2-3ao)-

27 
a~. (2.11) 

---------------------
0L0~.~00=---,-J4.~oo::--~,a~.n.oo.--~"12~.Noo.--~,.1s~.oo;n-~<2in"o.oo o.oo 4.00 a.oo 12.00 1s.oo 20.00 

Figure 1 

Figure 2 

-x * -xf 

Position of the bifurcation set in the b,xi -parameter space for the atmospheric spectral 

model described in section 2. 

Equilibrium solution x 1 as a function of x i for b = 1. 
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In the region where (q 3 + r2
) is negative, called the catastrophe set, three real steady states occur. 

We have taken b and xi as free parameters. Furthermore L = 3.106m, ho = 500m, C = 0.2 

(corresponding to a damping time scale of about fifteen days), H = 104m and at the central latitude 

c/>o = 45°, fo = l.10-4s-l and {J = 2.55. These values are close to those of EGGER (1981). In figure 

1 the bifurcation set of the model in the b,xi-parameter space, enclosing the catastrophe set, is shown. 

In figure 2 the equilibrium solution x 1 is presented as a function of x i for b = C 
For fixed b and large xi there exists one equilibrium E 1, and a linear stability analysis shows that 

it is always stable. For decreasing xi two more equilibria appear. The intermediate one (£2) appears 

to be unstable, while the lower one (£3) is stable. For small xi only one equilibrium (£3) remains. 

Trajectories in phase space always tend to one of the stable equilibria of the model, except those 

which (in the case of three equilibria) lie on the separatrix between the attraction domains of E 1 and 

E 3• Therefore E 2 is of little dynamical significance in this deterministic model. The model behaviour 

is unrealistic in the sense that the system always ends in an equilibrium state. For a system resem­

bling more closely the atmospheric behaviour we expect frequent transitions between the steady states. 

This is provided by adding stochastic forcing terms to the equations which will be considered in more 

detail in the following sections. 

3. DYNAMICAL SYSTEMS PERTURBED BY NOISE 

In this section we will study a randomly forced dynamical system of the type (1.1). It may be written 

as a system of stochastic differential equations, i.e. 

{

dx = J,,(1x)dt+t:~(x).d<I>(t), (3.1) 

<I>(t) = J 11(s)ds. 

'• 
For a derivation of these equations see GARDINER (1983). In (3.1) t: is a measure of the noise inten-

sity, a(x) is the (NXN) diffusion matrix and the N components of 11(t) represent the random forcing. 

The fatter are assumed to be stationary continuous processes, i.e. they are specified by a probability 

distribution over their range of possible values. 
In this way a multivariate stochastic process XE(11,t) is generated, which takes on the realisations x. 

In general the evolution at any time will depend on the history of the process, which appears to be 

fundamental difficulty in the analysis of the dynamics. This problem can be met by choosing the 11(t) 

to be white noise processes «t) with the properties 

<W)> = 0; C(T) = <W)«t +T)> = la{_T). (3.2) 

Here < > denotes an ensemble average over a large number of realisations, and C is the correlation 

matrix. Furthermore I is the (NXN) unity matrix and 5(T) the Dirac delta function with argument T. 

Equation (3.2) shows ihat white noise processes have zero mean and are fully uncorrelated. 

With this choice «I>(t) becomes a multivariate Wiener process W(t), and the stochastic dynamical 

system reads 

dx = f,,(x)dt + t:~(x)"dW(t). (3.3) 

Now XE(~,t) is a Markov process, i.e. its realisation at any time in the future only depends on its 

present state. Such a process is fully described by the conditional probability density p(x,t lx',t'), 

which denotes the probability density for the XE(~,t) to have the realisation x at time t, given it had 

realisation x' at time t'~t. It can be shown that p(x,t lx',t') is the solution of the Fokker-Planck 

equation 

:
1
p(x,t lx',t') = -'V·[f,,(x)p(x,t lx',t')]+ 

l 
+1t:2'V'V:[~(x)"~T(x)p(x,t lx',t')], 

(3.4) 
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where oT is the adjungated of o (GARDINER, 1983). The solution of (3.4) gives a complete description 
of the stochastic dynamical system (3.3). Another method of obtaining information about the system 
is the statistical analysis of a large number of simulations of (3.3) by means of a related system of sto­
chastic difference equations, see the appendix. 

Representing certain physical processes by white noise can be misleading, because white noise is 
uncorrelated and its energy is equally distributed over all frequencies in the wectral time domain. 
Consequently, the noise energy is infinite, and hence the process has no physical relevance. Alterna­
tively we may assume 11(t) in (3.1) to be coloured noise processes t(t), which are described by the sto­
chastic differential equations 

(3.5) 

with a and a' nonnegative constants. In order for white noise and coloured noise to result in equal 
variances of the increments dx(t), we take a' = a. We then obtain 

<t(t)> = 0, C('r) = ; ae -aJ-rl I (3.6) 

It follows that a - l is a measure for the correlation time, and the case a ~ oo corresponds to the 

white noise limit. Some spectral energy distributions of coloured noise for different values of a are 
shown in figure 3. 

1 .... .... 
er, 

- w 

Figure 3 Distribution of energy in the spectral time domain of a coloured noise process for 
different values of a. The dashed line represents the white noise limit a~ oo. 

Applying the coloured noise forcing to (3.1) and transforming £t(t) = y(t), we obtain the system 

d = dt +£ a -· r ·dW m IR , [
xl [f,.(x)+~(x)yl [e e] . 2N 

y -ay u u=. (3.7) 

which is of the same type as (3.3). Thus (X.(t,t)J(~,t)) is again a Markov process, and a Fokker­
Planck equation for the conditional probability density can be derived from (3. 7) in an analogous 
manner as (3.4) follows from (3.3). 

4 . .ANALYSIS OF THE STOCHASTICLY PERTURBED SYSTEM 
We consider the stochasticly perturbed dynamical system (3.3) and assume that the unperturbed sys­
tem (t:=O) has a stable stationary point E. Define in state space a domain 0 C: Oa containing E, 
where Oa is the attraction domain of E. At the boundary oO the deterministic vectorfield satisfies 
f,.(x)·v(x) .;;;;; O, where v(x) is the outward normal to the boundary. Starting in x E 0 at time t =O, 
the perturbed system will remain in 0 for a finite time, as shown by MATKOWSKY & SCHUSS (1977). 
In this section we will derive an expression for the expected residence time T(x) in Il. 

We first analyse the function 'l'(x), satisfying the stationary Fokker-Planck equation 



7 

L;i' = ~ ~'V'V:[a(x)i'(x)]-'V"[f,.(x)i'(x)] = 0, (4.1) 

where 

~(x) = ~(x)"_~((x), . (4.2) 

see GARDINER (1983). Here the normalisation condition i'(E) = I is proposed. 

For low intensity noise (0<£<<1), an approximate solution is assumed to be of the form 

i'(x) ,...., w(x)e-Q(x)/l, (4.3) 

with w(E) = 1 and Q(E) = 0. Both w(x) and Q(x) are required to be nonnegative. This WK.BJ 

approximation originates from geometrical optics, see GOLDSTEIN (1980). It is only valid within the 

attraction domain of E. H 0 coincides with Oa, additional boundary layer corrections for w(x) are 

needed (MATKOWSKY, SCHUSS & TIER, 1983). 
Substituting ( 4.3) in ( 4.1) and collecting terms with equal power in E:, we obtain in lowest order the 

so-called eikonal equation 
I 

[2a(x)·'VQ(x)+ J,.(x)]·'VQ(x) = O; Q(E) = 0, (4.4) 

and in next order the transport equation 

{[~(~ )" \l Q (x) + J,.(x )]· \lw (x) + [\7 ·~(x )· \l Q (x) + 

+1a(x):'V'VQ(x)+'Vf,.(x)]w(x) = O; w(E) = 1. 
(4.5) 

In our analysis we restrict ourselves to the solution of (4.4). In case a potential function V,.(x) exists, 

such that 

then 

1
/,.(x) = jf>(x)+ f;>(x), 

~- 1 (x)·jf>(x) = -'VV,.(x), 

'VV,.(x)·f;>(x) = 0, 

Q(x) = 2{V,.(x)-V,.(E)}. 

(4.6) 

(4.7) 

When the deterministic system is not of gradient type, a solution is found by writing the left hand 

side as a Hamiltonian H (x,p ), where 

p = 'VQ, (4.8) 

see LUDWIG (1975). The associated Hamilton equations read 

{

':;; = ~(x)p+/,.(x), 

1£- = -{ ~ \l~(x)p+'Vf,.(x)}p, 
(4.9) 

where s is a parameter varying along a bicharacteristic in (x,p) space. Along these bicharacteristics we 

have 

dr> dx I 
~ = p·- = 2a(x):pp. 
ds ds ~ 

(4.10) 

We wish i.o obtain values for Q at each point x Eil, given Q(E) = 0. However, from (4.4) and (4.8) 

it follows that p =O for x =E, which makes it a stationary point of the Hamilton system (4.9). We 

therefore proceed as follows: near x = E the functions Q (x) and p (x) are approximated by Taylor 

series: 
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JQ(x) = ;~: (x-E)(x-E)+O(lx-E1 3
), 

r(x) = ~-(x -E)+O(lx -El 2
), 

(4.11) 

where Pisa constant matrix. EXpanding the vectorfieldj,.(x) and a(x) near E in--'faylor series, substi­
tuting the expansions in ( 4.4) and collecting terms of equal power in (x - E), we obtain in lowest 
order a matrix Ricatti equation for P, which can be solved by standard methods ( LUDWIG, 1975). 
Thus we have initial values (x0 ,p0 ,QO) for (4.9) and (4.10) on a small sphere around E. Integration of 
the Hamilton equations yields a path in x-space, called a ray. In this way the solution Q(x) in U is 
constructed. 

The expected residence time T(x), defined in the beginning of this section, satisfies Dynkin's equa­
tion 

LET(x) = -1 in U; T(x) = 0 at an, (4.12) 

where 

(4.13) 

is the backward Kolmogorov operator, being the formal adjungated of L; in (4.1), see GARDINER 

(1983). An approximate solution of (4.12) is found in the low noise intensity limit (O<t:<<l) by 
means of singular perturbation techniques. Using the maximum principle we obtain an asymptotic 
solution of the form 

and 

T -C0eK ;.' outside a neighbourhood of au, 

T,....., C0eK ;.' {1-e-pf.'} near an withf,.(x)-P(x) < 0, 

2 ~s(x) _..!..s2 
T,...., CoeK /E - f e 2 as near an with/,.(x)-v(x) = 0, 

'TT 0 

(4.14) 

Furthermore p is the distance to the nearest point at the boundary and (a/ av) is the derivative along 
the normal v. Details can be found in MATKOWSKY, SCHUSS & TIER (1983). The constants Co and K 
can be determined from 'l'(x), following a method developed by MATKOWSKY & SCHUSS (1977). 
Application of the divergence theorem to the functions 'l'(x) and T(x) yields 

f . f 1 ar aq, 1 
{'l'LET-TLE 'l'}dV = {-2~['1'~-T-;-]-2~'1'T('\7·~)-v+'l'Tf,.·v}dS. 

0 ao un un 
(4.15) 

Here a/ an = ~(x):v'\7 is the conormal derivative. Using (4.3) and (4.12) we obtain 

f 2 1 , f 2 ar - we-Q /E dV = 2c we-Q /E -dS. 
!l ao an (4.16) 

Both integrals are of Laplace type. Substituting (4.14) in (4.16) we see that the surface integral con­
tains exp[-[Q(x)-K] I~}. Its main contribution comes from the point XJDin E au where [Q(x)-K] 
attains a minimum. Since the volume integral is of algebraic order in t:, the exponentially large contri­
bution from the surface integral only cancels if 

K = Q(xmin) = min Q(x). 
ao (4.17) 
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An integral expression for C0 can also be found from (4.16). Its analysis requires knowlectge of the 

function w(x), which will not be considered here. In a similar way asymptotic approximations for the 

distribution of exit points on the boundary aO can be derived. As found by MATKOWSKY, SCHUSS & 

TIER (1983) an £-neighbourhood of xmin is the most probable exit region. 

From now on ':Ye will assum~ that O coincides with the attraction domain oCE-and an contains a 

stationary point E of f µ.(x ). This also applies to tpe three- component model studied in section 2. 

From the eikonal equation it then follows xmin = E. It implies that unstable equiJ!bria of fµ.(x) may 

be of fundamental importance for the dynamics of the stochastic model. As x _,,. E the deterministic 

chan~ tends to zero. Consequently, the stochastic system slows down and remains a characteristic 

time T near that point. Locally, the dynamics is governed by the linearized system 

dz = D·z (4.18) 
dt - ' 

where D has at least one eigenvalue with positive real part. Starting from an initial point z0 = O(t:), 

the eigenvalue with largest positive real part Ap determines the characteristic time: 

- d 1 
T = -ln(-)+0(1); t: _,,. 0, (4.19) 

'Ap t: 

where dis an 0(1) constant. 
We now discuss in more detail the_ computation of K = Q(E). We introduce in x-space spheres 

with radius R at the points E and E. Next mesh points x 0 are chosen on the sphere at E. The 

corresponding values of p 0 and Q0 follow from (4.11). Then equations (4.9)-(4.10) are ll!.tegrated at 

eac~ of the mesh points x 0 for the initial valu~s (x0 ,p0 ,Qo)· If a ray enters the sphere at E, the value 

Q(E) is obtained from a Taylor expansion at E similar to (4.11). Next an iteration is carried out: the 

radius of the spheres is decreased and at each stop a shooting method is applied with the result at the 

previous step as starting approximation for the angular variables on the s12here at E. The fundamental 

difficulty in this method is the strong divergence of the rays approaching E. 

5. RESULTS FOR THE LOW ORDER SPECTRAL MODEL 

The theory of sections 3 and 4 will be applied to the three-component spectral model (2.8) with fixed 

parameter values b = 1 and xi = 4.19 (corresponding to a channel width of 1,5.Hfm and a zonal 

forcing of lOms - I). Then three equilibria exist: 

EI ,_, (3.91,0.74, -0.06), E2 ,_, (1.88, 1.40, -0.46), £3 ,_, (0.94, -1.06, -0.65). (5.1) 

The corresponding streamfunction patterns are shown in figure 4. According to CHARNEY & DEVORE 

(1979) E 1 and E 3 resemble a zonal- and blocked preference state of the atmosphere respectively. 

Adding stochastic terms to the equations we obtain a stochastic dynamical system of the type (3.3) or 

(3.7); we have taken a unity diffusion matrix. 
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Figure 4 

0 

a) 

4 

2 0 

0 

b) 

0 

c) 

Dimensional streamfunction patterns (106 m 2 s - I, solid lines) for the equilibrium states 
E l(a),E2(b) and E3(c) of the atmospheric spectral model described in section 2. The 
dashed lines represent contours of the orography. The characteristic forcing velocity is 
10 ms- 1• 
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We first consider the characteristic residence times near the unstable equilibrium E 2• From a linear 

stability analysis it was found that >y = 0.715 is the only eigenvalue with positive real part. To verify 

expression (4.19) a large number (200) of simulations of the system starting in E 2 , forced by red noise 

processes with different values of a, have been carried out. Results are shown in figure 5, where T is 

plotted against ln(l / £) for white noise and a red noise process with a = 3.5. The latter value 

corresponds to a dimensional correlation time of about 1 day, which is represelillve for the atmos­

pheric flow ( EGGER & ScmLUNG, 1983). In agreement with (4.19) we find for small £ a slope of 

1.42 = 1 / Ap, independent of the value of a. 

Figure 5 

Figure 6 
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- ln(E:) 

Residence time T near E2 as a function of ln(l / £). The solid- and dashed line show the 

behaviour of T for£~ 0 for white noise and red noise respectively. The data points for 

white noise forcing are denoted 0, and for the red noise +. 

ln T (T residence time) in Il1 (data points x) and Il3 (data points 0) as a function of 

1 / ~. The solid line and dashed line represent the asymptotic behaviour in the limit 

t ~ 0 for 0 1 and Il3 respectively. 

Next we study the residence times in the attraction domains 0 1 and 03 • We distinguish between the 

white- and coloured noise case. For the first type of stochastic forcing we obtain, by the method of 

integration along rays, for K in ( 4.17) the values 

{

K(l) = K(01) = 0.23, 

K(3) = K(03) = 0.52. 
(5.2) 

Again the results were verified by means of numerical simulations. Figure 6 shows ln(T) as a func­

tion of 1 /;for the domains 0 1 and 03• The data are fitted with 

- 1 -
ln T = K7° + Co, (5.3) 
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- -
The results for Kand C0 are 

{~(I) : 0.24, ~o(l) : 8.5, 

K(3) - 0.53, C0(3) - 7.0, 

- -

(5.4) 

within an accuracy in K and C0 of 10% and 25% respectively. The K-values agree well with the 
values in (5.2). Furthermore it appears that the numerical constant C0 in (4.14) has a significant 
influence on the expected residence time. 

In the case of coloured noise forcing the Hamilton system ( 4.9) is twelve-dimensional. A shooting 
method failed, because the bicharacteristics had a strongly diverging character at some distance of E 2• 

The results for the constants Kand C0 as a function of the noise memory, presented in table 1, are 
based on numerical simulations only. We remark at this point that in section 2 we have chosen the 
noise parameterizations in such a way that they result in equal variances of the increments tu (t), 
where x are the state variables. 

It appears that for O<t:< < 1 the residence times of the system in the two attraction domains 
increase with increasing noise memory. This can be explained as follows: the time evolution of a sys­
tem, perturbed by coloured noise, will have some memory of its own. Consequently, larger correla­
tion times cause the system to be persistently driven further away from equilibrium in an arbitrary 
direction. In the limit t: --,) 0 it is known that exit through the boundary of an attraction domain will 
only occur near the unstable equilibrium E 2• Since there is no preference for the perturbation to drive 
the system right away to this point, it will take a longer time on the average to reach the boundary. 

The results shown are based on the assumption that the noise has a low intensity (O<t:<<l). We 
obtained a reasonable agreement between the asymptotic values for the expected residence times and 
the outcome from simulations for t:2 smaller than 0.3. Estimates of t: for atmospheric models are 
given by EGGER (1981) and EGGER and SCHILLING (1983). They found t:2 ,.,., 0.2 for the three­
component model considered here. In case of white noise forcing it then follows characteristic 
residence times of about 90 days for the high index state, 10 days for the intermediate state and about 
310 days for the low index state. These values seem to be rather large compared with observational 
data. They even increase by some 10% if coloured noise forcing is applied with a correlation time of 
one day (a = 3.5). Nevertheless, it is remarked that they are of the same order as the average dura­
tion of the two preferent weather regimes occuring in the low order baroclinic model of REINHOLD & 
PIERREHUMBERT (1982), see table la in their paper. 

6. A DISCRETE STATE MARKOV MODEL OF THE ATMOSPHERIC CIRCULATION 
As soon as a stochasticly forced dynamical system of the type (3.1) is in statistical equilibrium, the 
expected residence times of the preference states yield information about the expected durances of 
such states. However, in this way no information is obtained about the time scale over which the tran­
sient effect of initial conditions are important. To find this time scale in general requires the solution 
of the full Fokker-Planck equation, but for small noise intensities it appears that most of the time the 
system is close to a stationary point of the deterministic equations. This suggests the introduction of 
a discrete state Markov model, with which we can study the evolution of the probability distribution 
in time for any initial conditions. For the randomly forced spectral model, studied in the previous sec­
tion, we can develop such a model with three states, viz. a zonal state (1 ), a transitional state (2) and 
a blocking state (3). 

Let Q;j denote the transition probability per unit time to go from state i to state j (i,j = 1,2,3), let 
p;(t) denote the probability to be in state i at time t, and let T; be the characteristic residence time of 
this state. The latter is a measure of predictability when i is the initial state. The set of discrete time 
master equations are 



1
p 1(t +At) = p1(t)Q11At + p2(t)Q21At + p3(t)Q31At, 

p2(t +At) = p1(t)Q12At + p2(t)Q22At + p3(t)Q32At, 

p 3(t +At) = p1(t)Q13At + p2(t)Q23At + p3(t)Q33At, 

13 

(6.1) 

with At a small but finite time step. Since the sum of the probabilities is equal to-<Yne, the model can 

be reduced to two dynamical equations for e.g. p 1(t) and p 3(t) and one passive equation for p2(t). To 

arrive at the time-continuous model we use the identities 

3 
~ QijAt = 1 for i = 1,2,3, 
j=l 

and take the limit At ~ 0. The result is 

dp1 dt = -(Q12 +Q13 +Q21)P1 + (Q31 -Q2i)p3 + Q2i. 

dp3 dt = (Q13-Q23)p1 - (Q31 +Q32 +Q23)p3 + Qm 

P2 = 1 - P1 - p3. 

(6.2) 

(6.3) 

To specify the transition probabilities we use the results of section 5. There it was found that for 

small noise intensities the transition from the zonal state to the blocking state, and vice versa, occurs 

by way of the transitional state. Furthermore, given the system is in the transitional state, it has 

equal probability to go to the zonal state or the blocking state. Hence 

Qn = Q31 = 0; Q23 = Q21 (6.4) 

must hold. The remaining unknown coefficients Q 12 ,Q21 and Q 32 in the equations (6.3) can be related 

to the characteristic residence times in the following way. Define X;(t) as the conditional probability 

for the system to be in state i at time t, given it was in i at t =O. Since X;(t)-X;(t +At) is the proba­

bility for exit of state i in the time interval [t,t +At], it follows -dXildt a probability density distri­

bution over the time domain. Consequently the characteristic residence time is 

00 dX; 00 

T; = - f tdt = f X;dt, (6.5) 
0 0 

where in the last step partial integration has been applied. In this case we have 

{

x1(t)-x1(t +At) = x1(t)Q12At, 

Xi(t)-Xi(t +At) = 2Xi(t)Q21At, 

X3(t)-X3(t +At) = X3(t)Q 32At. 

Developing for At ~ 0 and using (6.5) we finally obtain 

I I 1 
Q12 = T1' Q21 = 2T2' Q32 = T3 . 

(6.6) 

(6.7) 

Our model now consists of (6.3), (6.4) and (6.7). The general solution of this inhomogeneous linear 

system can be written 

f P1] f P1sl 
l1'3 l1'3s 

(6.8) 

where 

f P1sl 
l1'3s 

1 (6.9) 
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is the equilibrium point of the model, which corresponds to the stationary probability distribution. 
Furthermore A1 and A2 are eigenvalues of the homogeneous system with (uu,u 13 ) and (u2i.u23 ) the 
eigenvectors; a 1 and a2 are integration constants determined by the initial conditions. It can be 
shown that A1 and A2 are real negative constants, so the stationary point is always stable. 

As a specific example we have analysed the model for T1 = 9, T 2 = 1 and T 3 = 31, which are 
scaled values of the explicitly calculated residence times of section 5. The eigenval'iies in this case are 

A1 = -0.070, Az = -1.073. (6.10) 

As can be seen from (6.8) they represent a slow- and fast exponential decay towards the stationary 
probability distribution. In figure 7a) trajectories of the system in the pi.p3 -phase plane are shown 
with initial values (1,0), (0,0) and (0,1), denoting that at t = 0 the system is in state 1, 2 or 3 with 
probability 1. From the numerical experiments it follows that if the system starts in state 1 or 3, the 
transient evolution of the probability distribution is mainly determined by A1• If state 2 is the initial 
state the decay in p 2 is in a first instance controlled by A2 = 0 (1 / T 2) and hereafter by A1• Thus the 
predictability is then lower, as the model will almost certain have undergone a transition either to 
state 1 or state 3. Whenever this happens the dynamics is from then on controlled by A1, as we have 
seen. This is illustrated in the figures 7b), c) and d), which show the time evolution of the probability 
distribution, starting in the initial states 1, 2 and 3, respectively. The dotted lines show the stationary 
probability distribution. 

Figure 7 ' 

- P1 

8 
o·~o~.oo,,---~~~~-~-t~~~~...-m.oo 

8 
0·~0~.00,,----~~-'-~~~~~~~m.oo· 

- t 

Evolution in time of the probability distribution of the Markov chain model for T 1 = 9, 
T2 = 1 and T 3 = 31, starting in the states 1, 2 and 3. In (a) the trajectories in the 
P1>Pr plane are shown. In (b)(c) and (d) the explicit time dependence is shown; the dot­
ted lines represent the stationary probability distribution. 
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7. CONCLUDING REMARKS 
In this paper we have studied the effect of stochastic perturbations on a three component spectral 

model of the barotropic potential vorticity equation on a beta plane. The unperturbed system is con­

sidered in section 2. It appeared that for parameter value's, representive for the atmosphere, three 

equilibria Ei.E 2 and E 3 exist'. The former and latter are stable, while thejntermediate one is 

unstable. 
In section 3 we have parameterised the effect of unresolved modes on the resolved modes, including 

additional processes not incorporated in the model, by stationary stochastic terms, being of the white 

noise or coloured noise type. We have taken the diffusion matrix to be the unity matrix. One may 

include the state dependent sensitivity of the large scale circulation model for transient perturbations 

by letting the components of the diffusion matrix be functions of the state variables x, but it is not 

clear how these functions should be specified. 
The perturbed system shows frequent transitions between the attraction domains of the stable 

equilibria E 1 and E 3 • As noticed in section 4, for small noise intensities (O<e<<l), the system will 

also remain for some time in a neighbourhood of the unstable equilibrium E 2 , hence the latter is 

significant for the dynamics of the perturbed system. A method is described to calculate the asymp­

totic behaviour of the residence times in the neighbourhood of the equilibria for e ~ 0. BENZI, HAN­

SEN & SUTERA (1984) have carried out such an asymptotic analysis. The method we presented extends 

to unstable equilibria of the unperturbed system and to systems that are not necessarily of gradient 

type. 
In section 5 results were presented for the three component spectral model of atmospheric flow per­

turbed by noise with different correlation times. It appeared that the shooting method for solving the 

Hamilton equations was only applicable in the white noise case. For coloured noise forcing results 

could only be obtained from numerical simulations. The computation of Q (x) by me~s of integra­

tion along rays brings about the difficulty of constructing the ray that connects E with E (see section 

4). Presently, we are investigating the possibility of solving a two-point 12oundary value problem for 

the Hamilton equations (4.9) with (x,p)~(E, 0) for s~-oo and (x,p) ~ (E,O) for s ~ oo. 
Since the solution of the stochasticly perturbed model remains most of the time near the three 

equilibria of the unperturbed system, we formulated a stochastic dynamical system which may take 

only three discrete states. In section 6 a time-continuous Markov model is derived to study the tran­

sient effects of initial conditions on the evolution of the probability distribution over the three states 

of the model studied in section 5. From the results it can be concluded that the predictability of the 

states is closely connected with the eigenvalues of the Markov model. In a first instance the residence 

times T; yield information on the expected durance of the preference state i. In addition to this the 

value 1 /i\1 in (6.10) gives an indication of the time scale over which the effect of the initial state is 

present in the system. In this time span the initial state can be utilized in the process of computing 

the probability distribution over the three preference states. 
Concerning the validity of the stochasticly forced spectral equations as a model of the atmospheric 

circulation, it appears that the persistence of the zonal state E 1 and the blocked state E 3 are too large 

(by a facator of 10) compared to meteorological data. This may be due to the fact that a three com­

ponent spectral model of the barotropic potential vorticity equation does not include barotropic- and 

baroclinic instability mechanisms ( CHARNEY & DEVORE, 1979). The unstable equilibrium E 2 is due 

to topographic instability, but it seems that in more complicated models this mechanism is of less 

importance ( HOSKINS & REVELL, 1984). The two stable equilibria E 1 and E 3 , representing a zonal­

and blocked flow respectively, suggest bimodality in the atmosphere. Although there are some recent 

indications of the phenomenon, it is not yet confirmed in a systematic data analysis. 

Barotropic instability mechanisms can be included in the model by increasing the number of 

resolved modes. Consequently, the dynamics of the unperturbed system will show a much richer 

behaviour. From the structure of the spectral model equations it follows that the equilibria of a low 

order model are also equilibria of higher order models, but their stability properties can be affected by 

the unresolved modes. For example, a six component spectral model of the barotropic potential 
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vorticity equation shows in certain domains of the parameter space an unstable equilibrium E 3, with 
additional equilibria and periodic and aperiodic solutions ( CHARNEY & DEVORE, 1979). In a subse­
quent paper the relation with the stochasticly perturbed three component model will be investigated. 
A more realistic description of the atmospheric flow is obtained by including vertical resolution in the 
model. In that case the flow may be baroclinically unstable and show chaotic b_diaviour ( REINHOLD 

& PIERREHUMBERT, 1982). 

APPENDIX 

Consider the finite difference scheme of (2.3), which reads 

x(t +at) = x(t) + fµ.(x(t))at + £~(x(t))·aW(t). (1) 

For numerical simulations we make the substitution 

aw(t) = W(t +at)-W(t) = A(at)G. (2) 

Here the components of G are mutually independent Gaussian random generators with zero mean 
and unit standard deviation, a choice based on the properties of the Wiener process. Furthermore 
A (at) is a function of the time step at which has to be chosen in such a way that the parameterisa­
tion (2) does not affect the variances of the increments <ax(t)ax(t)> in (1), i.e. 

<aW(t)aW(t)> = A 2(at)<GG> (3) 

must hold. Using the property 

<W(t)W(t +T)> = min(t,t +T)l, (4) 

we find that the left hand side of expression (3) equals atJ. For the chosen random generators 
< GG > = I, and thus from (3) -

A (at) = Vil (5) 

Hence the numerical scheme for equation (2.3) reads 

x(t +at) = x(t)+ fµ.(x(t))at+£~(x(t))·G-.fii. (6) 

Finally we remark that there are two conditions on the time step. First, 

at<< 1, (7) 

in order to avoid instabilities due to the deterministic integration. Secondly, in the limit £ ~ 0 we 
expect the variance of the difference between the stochastic- and deterministic trajectories to be zero. 
Therefore we must also require 

at = 0(£); £ ~ 0. (8) 
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Table 1 

- -The coefficients C0 and K of (5.3) for different values of a 

-------
a Co(l) K(l) Co(3) K(3) 

(+25%) (+10%) (+25%) (+10%) 

1.0 11.0 0.32 11.3 0.68 
1.75 10.6 0.30 9.8 0.66 
2.5 10.8 0.25 9.3 0.55 
3.5 10.2 0.24 8.4 0.53 
00 8.5 0.23 7.2 0.52 


