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For a wide class of host-parasitoid models a reduction to Arnold's normal form can be carried out in an 

explicit way. In the case of Hopf bifurcation the shape and size of the elliptic limit curve can be derived in 

terms of the parameters of the model. Some models have a rich bifurcation behaviour with both forward 

and backward Hopf bifurcation, and with a transition zone in the parameter plane for which there exists a 

pair of limit curves, one stable and one unstable. The theory is confirmed and illustrated by numerical 

experiments. 
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1. INTRODUCTION 

1 

Some time ago J.A.J. Metz showed me a number of intriguing computer experiments in connection 

with host-parasitoid models of the kind 

{

Xn+I = Xn</>(yn), 

Yn+I = OXn - Xn+I ' a > l, 
(1.1) 

where Xn , Yn are the numbers of hosts and parasitoids of generation n. The function </>(y) is assumed 

to be differentiable with <t>'(y) < 0, </>(O) = a and </>(oo) < 1. The function </>(y) contains a second 
parameter b > 0, which enables us to study bifurcation phenomena with respect to the non-trivial 

equilibrium for various combinations of a,b in the parameter plane. It is perhaps of interest to note 

that the iterative process (1.1) is invertible with 

{

Xn = (Xn+I + Yn+1)la, 
I (I.la) 

Yn = </>- (aXn+1l(Xn+I + Yn+1)). 

Metz and his coworkers [2,4,6] considered in particular the so-called Hassell-Varley (HV) model and a 

new model in which interaction between parasitoids was taken into account, the so-called parasitoid

parasitoid interaction (PP) model. The HY-model showed the usual characteristics of Hopf bifurcation 
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in the unstable part of the parameter plane. However, the bifurcation behaviour of the PP-model 
appeared to be much more complicated. Instead of a single invariant curve - the Hopf circle - two 
such curves could be present, one attracting and the other repelling. For some parameter values there 
was none such curve. Metz succeeded in giving a qualitative explanation of his findings based upon 
the theory of normal forms. In this paper his ideas are worked out in a quantitative way. Our results 
can also be applied to a recent model proposed by HASSELL [5]. This model appears to have the same 
complicated bifurcation behaviour as the PP-model. 

Leaving aside the trivial equilibrium x = y = 0 there exists a single non-trivial -ecfuilibrium 

c 
x = --1, y = c, a-

with c as the unique root of · 

</> (c) = 1. 

(1.2) 

(1.3) 

For a certain line in the parameter plane the eigenvalues A.,A. are complex and of modulus one. Across 
this line, the so-called Hopf line, we may expect Hopf bifurcation. aose to the Hopf line we may 
write 

A. = (1 +µ.)eia , 0 <a< 'IT, (1.4) 

whereµ is a small quantity, the bifurcation parameter. In the special cases considered in this paper 
the parameters µ,a are in a 1, I-correspondence with the model parameters a,b. Thus the Hopf line 
corresponds to a part of the unit circle in the complex "'A-plane. The eigenvalue equation of the non
trivial equilibrium is of the form 

A.2 -A.(l+L/a)+L=O, (1.5) 

where 

L= 
acp'(c) 
a-1 · 

At the Hopf line we have L = 1 so that A. + A. = 1 + 1 I a. This gives 

I 1 
cos a= 2(1 +-). 

a 

(1.6) 

(1.7) 

Since 1 < a < oo, the value of a is restricted to the interval 0 < a < 'IT/ 3. Thus a periodic solution 
of (1.1) would imply a period of 7 or more. Stated as a theorem 

THEOREM 

For any periodic solution of a model of the class (I. I) the period is seven or more. 

According to the theory of normal forms, the two-dimensional map (1.1) can be written in the fol
lowing form 

Zn+I = Azn + A11 Z~Zn + h.o.t., (1.8) 

where z,z are local complex coordinates at the equilibrium. The constant A 21> taken at µ=O, is an 
essential parameter of the model. In the plane determined by the conjugate complex variables z,z we 
have an invariant circle, the Hopf circle, with its radius R given by 

(1.9) 

For the original variables x,y this corresponds to an invariant curve of elliptical shape surrounding 
the equilibrium point. If µI R 2 > 0 we have forward Hopf bifurcation, with an attracting invariant 
curve around an unstable equilibrium {µ>0). If µ / R 2 <0 we have backward Hopf bifurcation, with 
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a repelling invariant curve ~ound a stable equilibrium (p, < 0). In some models there exists a critical 
value ao for which Re(e -ia 0A 21 ) =O. Close to this critical value there is a bifurcation of a more 
complicated kind, called "crater bifurcation" by J.A.J Metz. It is characterized by the simultaneous 
occurrence of a stable and of an unstable invariant curve. A sketch of the mathematical theory will be 
given in the Appendix. 

In this paper the reduction of (1.1) to its normal form (1.5) is carried out in an explicit way. If cp(y) 
has the following Taylor expansion at the equilibrium value 

</>(c(l + t)) = 1- At + ABt2 - ACt3 + ... , (l.10) 

with (at the Hopf line) 

A = 1-1/a, (1.11) 

then the following results have been obtained. The radius R of the Hopf circle in the z,z-plane is 
given by 

2~ =A - (A+l)B + 4B2-3C. 
R 

The corresponding ellipse in the original x,y-plane is given by 

a(a-l)dx2 - (a-l)dxdy + dy2 = (3a+l)c2R2' 
a 

(1.12) 

(1.13) 

where dx,dy are local coordinates at the equilibrium x = cl (a-1), y = c. This theory will be 
applied to the following few special cases: 

<P(y) = 1 :yb ' (S), 

<P(y) = a exp(-yb), (HV), 

(HAsSELL and VARLEY [ 1 ]), 

Vi+Y-1 <P(y) =a exp(- b ) , (PP), 

{METZ, VAZ NUNEZ [2]), 

(1.14) 

(1.15) 

(1.16) 

<P(y) = a(Oe-y + (I-8)e-bY), (H), (1.17) 

(HAsSELL [5]), 
The main results are as follows. 

S-model. Unstable for b > I. Hamiltonian for b = 1 on a logarithmic scale. No Hopf bifurca
tion. Formally R = oo for all values of a. 
RV-model. Forward Hopf bifurcation for all a. 
PP-model. Forward Hopf bifurcation for a > 3.85 and backward Hopf bifurcation for 
a< 3.85. 
H-model. As in the previous model. If 8= 0 there is forward Hopf bifurcation for a > 2.29 and 
backward Hopf bifurcation for a < 2.29. ' 

2. REDUCTION TO THE NORMAL FORM 

In this section the reduction of (1.1) to the normal form (1.8) will be carried out explicitly. The first 
step is the use of a new variable 

w = xcp(y). (2.1) 

Then (1.1) can be replaced by 



4 

(2.2) 

Let A,X° be the eigenvalues of the equilibrium as determined by (1.5). Then by a linear transformation, 
x, w can be replaced by complex coordinates z,z where z is an eigenvector associated to A. Explicitly 

{

cz = ao (X°x - w) - c0, 

cz = ao (A.x - w) - c0 , -------- (
2

.3) 

where o is a scaling factor and where c0 is determined by the condition 

z=O for x=w=c!(a-1). 

The factor o is chosen in such a way that 

ax - w = c(l +z+Z). 

In the eigenvector coordinates z,z the map (2.2) takes the form 
_,_ 2 - ...2 

Zn+J, - l\Zn + 020Zn + OnZnZn + Oo2 Zn + h.o.t., 

and a similar relation with conjugate complex quantities. From (2.3) we obtain 

CZn+I = ao(A.xn+I - Wn+1) - co = 
= aown(A - q,(_axn - Wn)) - Co, 

so that in view of (2.4) 

CZn+I = aown(A - q,(_c(l +zn + Zn))) - Co. 

From (2.3) we obtain by inversion a relation of the kind 

W = ___£__} (I + C1Z + C2Z). a-

Using also the expansion (1.10), we obtain 

ao { - ) [°' - ) - 2 Zn+I = a-I (1+c1zn+C2Zn 1\-1 + A(zn+Zn -AB(zn+zn) + 

+AC (Zn + Zn)3 ... ] - (X-1)}, 

which is identical with (2.5). Although 

A = (1 +µ)eia 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

we need the coefficients a20 ,a n ,a02 etcetera only at the Hopf line where µ =O . Then the calculation 
may be simplified somewhat. We have 

{

A = I - lla = 2(1-cos a), 

c 1 = 1-A ,c2 = 1-A, 
(2.10) 

and 

1 
1 exp (; ia). 

2cos 2a 
(2.11) 

Thus the nonlinear terms of (2.5) can be derived from 

Zn+I = o[l + (1-A)Zn + (1-A)Zn)J [zn + Zn - (2.12) 



- B(zn + zn)2 + C(zn + Zn)3 
• • • ] + linear terms. 

Without difficulty we read off the following expressions 

a20 = o (1-i\-B), 

and also 

a 11 = o (2-i\-i\-2B), 

ao2 = o (1 -i\ - B), 

a11 = o (A. + 2i\-3)B + 3o C. 

From the theory of normal forms the following formula can be derived 

....J!:.... - J_ 2 2 _ (2-i\)a11a20 - -
R2 - 2 1 a11l +lao2I Re i\(l-i\) Re i\a 21 . 
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(2.13) 

Substitution of the expressions for the coefficients obtained above gives the surprisingly simple result 

4 =A - (A +l)B + 4B2 
- 3C, (2.14) 

R 

where R is the radius of the Hopf circle in the coordinates z,z of (2.3) and (2.5). However, in the ori
ginal x,y coordinates the Hopf circle is transformed into an invariant curve of elliptical shape. From 
(2.1) and (2.3) we obtain the local linear transformation 

cdz = o (a(i\- l)dx + dy) 

written in local infinitesimal coordinates. The Hopf circle, small by nature, is given by 

dz di= R 2
, 

(2.15) 

(2.16) 

where R 2 is determined by (2.14). Substitution of (2.15) gives an ellipse described in local 
infinitesimal coordinates dx,dy by 

a(a -1) dx2 - (a - l)dxdy + dy2 (2.17) 

Its position, semi-axes, etcetera can be derived from this equation by standard analysis. However, no 
simple expressions can be obtained for the general case. Its area is given by 

2'!Tca2 R 2 ... f3ci+l, v -;=-I ' (2.18) 

perhaps the simplest formula of this kind. 
It should be noted that a Hopf circle, or better a Hopf ellipse, is merely an invariant curve in the 

x,y -plane. For a starting point x 0 ,y0 on the Hopf curve the two-dimensional dynamic behaviour of 
the model is reduced to one-dimensional dynamic behaviour. The motion can be aperiodic with a 
dense covering of the Hopf curve by successive points. However, if i\ = (1 +µ.)exp ia is close to a 
point of the unit circle with a low-order rational rotation number, i.e. if a~ mln, we may have 
periodic orbits. This is a case of weak resonance. The simplest cases are here 1:7, 1:8, 2:15, etcetera. 
According to Arnold, the regions in the parameter plane, for which a case of weak resonance occurs, 
have the shape of thin tongues or horns, with their pointed end at the Hopf line, and fanning well out 
in the unstable region. Tongues with a different rotation may even intersect each other. The general 
situation is sketched in Fig. 1. 
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b 

stable 

Hopf line 
unstable 

a 

Fig. 1 Hopf bifurcation and Arnold tongues 

We conclude this section by giving an alternative expression for the Hopf radius when the given 
model is of the form 

{

Xn +I : Xn e~ ( - f(yn)), 

Yn+I - axn Xn+J. 

where 

/(c(l +t)) =At + AB1t2 + AC1t 3 + 

Then we have 

B = ; A - B 1 , C = ! A 2 
- AB 1 + C 1' 

and (2.14) passes into 

1:1!.:_ = 2
1 

A + Bi + 4Bt - 3C1. 
R2 

3. A SIMPLE MODEL 

In this section we consider the model 

axn 
x ---

n+I - 1 + b' 
Yn 

OX,J!~ 
Yn+I = -1+ b' 

Yn 
b>O. 

(2.19) 

(2.20) 

(2.21) 

(3.1) 

This is perhaps the simplest possible model, as we soon shall see. So we call it the S-model 
(S=simple). The non-trivial equilibrium is given by 

(a-1)11b-I , c = (a-1)11h. (3.2) 
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The eigenvalue equation is 

A.2 
- (1 + bla) A. + b = 0. (3.3) 

Thus in the a,b-parameter plane the regions of stability and instability are separated by the Hopf line 
b = 1. The expansion 

cf>(c(l +t)) = _a_ = 1 - et/a + c2 t 2 /a2 - c3t 3 !a 3 + · · · 
a+ct 

with c =a - I on the Hopf line gives 

A = c/a , B = cla, C=c2 ta2• 

Substitution of these values in (1.12) gives 

.2£:._1= 0 
R2 ' 

(3.4) 

(3.5) 

(3.6) 

for all values of a. Thus we have no Hopf bifurcation in this case. Computer experiments suggest that 
for b < 1 all orbits converge to the equilibrium (3.2), and that for b > 1 all orbits disappear into 
infinity. For b = 1 we have the very simple model 

axn 
Xn+I = I+yn' 

ax,,yn 
Yn+I = I+yn · 

Its inverse is even simpler 

{

x, : (x,+1 + y,+1) I a, 

Yn - Yn+I IXn+I. 

(3.7) 

(3.8) 

Computer experiments show that for a > 1 the map (3.7) is very much like a Hamiltoni~ map. A 
few typical orbits are shown in Fig 2. There are periodic cycles of any order from 9 upwards. In 
particular the point x 0 = 0.713 ,y0 =2.090 is an element of a 9-cycle, and x 0 =0.469,yo=3.796 is 
an element of a 10-cycle. It is perhaps a surprise that on a logarithmic scale the map (3.8) is indeed 
Hamiltonian, i.e. area-preserving. With the variables u, v defined by 

u = logx , v = log(Y/(a-1)), (3.9) 

the map (3.8) takes the form 

{ 

I 
e"+(a-I)ev 

u ~ og , 
a 

v ~ v-u. (3.10) 

In Fig. 3 an illustration is given, again for a = 2. An orbit consisting of an island chain is clearly visi
ble. The parameter a is a sort of degree of stochasticity. As a increases more and more orbits disin
tegrate into stochastic rings. An extreme case is shown in Fig. 4 for a = 8, where a single orbit is 
shown, starting from x 0 = 0, y 0 = -20. Of course, such extreme situations have hardly any biolog
ical meaning. 
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4. THE HASSEL-VARLEY MODEL 
The HY-model 

f Xn+I = axn exp (-y~), 
1!n+l = axn - Xn+I> 0 < b ~l, (4.1) 

proposed by HASSELL and VARLEY [l] is a generalization of the Nicholson-Bailey model, to which it 
reduces for b= 1. The non-trivial equilibrium is here 

(loga)11b /(a-1) , c = (loga) 11b. 

The eigenvalue equation 

(a- l)A.2 - (a-·1 + b loga)A. + ab loga = 0 

shows stability for 

ab loga< a - I. 

The corresponding regions of stability and instability are sketched in Fig. 5. 
Taylor expansion of 

f(c(l+t)) = ((l+t)b-l)loga 

gives in the notation of (2.19), ( 2.20) the coefficients 
l l 

A = bloga, B 1 = T(b-1), C 1 = 6(b-l)(b-2). 

Then from (2.21) we obtain at once the simple result 

jJ!:... = b2 + b Ioga -1 
Ri ' 

or expressed in a only 

.../!:_ _ (a -1)2 - a Iog2 a 
R 2 - 4a2 log2 a 

(4.2) 

(4.3) 

(4.4) 

On the Hopf line the 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Elementary calculus shows that for a> 1 this expression is always positive. In Table 1 we have col
lected a few values of a, a and b on the Hopf line, together with the equilibrium x 0 ,y0 and the quan
tity µI R 2 determining the size of the Hopf curve. A typical orbit is given in Fig. 6 

a a b Xeq Yeq µIR 2 

30 1.366 0.859 0.704 0.258 0.0015 
40 1.879 0.742 0.611 0.537 0.0045 
45 2.414 0.664 0.585 0.827 0.0069 
50 3.502 0.570 0.594 1.486 0.0098 
53 4.911 0.500 0.647 2.531 0.0117 
56 8.447 0.413 0.841 6.261 0.0131 
59 33.25 0.277 2.876 92.76 0.0117 

Table 1 

5. THE PARASITOID-PARASITOID INTERACTION MODEL 
According to Metz, the parasitoids are divided into two groups. The first group consists of single indi
viduals looking for a host. The second group consists of pairs of parasitoids more interested in 
fighting each other. It is like a chemical reaction of the kind 

p + p µPi. 

If u is the number of single parasitoids, v the number of competing pairs, so that P = u + 2v, then 
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reaction kinetics requires an equation of the form 

u = -a1u2+2a2v. 

or 

Equilibrium, on a small time scale, requires that 

a1u2 - 2a2v = 0, 

a1 u
2 + a2 u - a2P = 0. 

Solving this for u we have 

2a1u = - a2 + Va~ + 4a1a2P. 

If this expression is used in combination with the Nicholson-Bailey model 

x' = ax exp (-u), y' = ax-x', 

Fig. 6 

HASSELL-VARLEY 

----- A•S , e.g. 5 

11 

SCALE 0,1.8,0,7.2 

START 0.5,2 & 0.9,7 

(5.1) 

we obtain af{: :m~ ::~~the Jf1wiII~ ~ed parasitoid-parasitoid interaction (PP) model 

y' = ax - x', b > 0. (5.2) 

For a small value of b also x and y are small and then Vi+Y - I~ y / 2. This shows that in that 
case the mq<lel is very close to the Nicholson-Bailey model. If bis large, then also y is large, and then 

Vi+Y ~y T. In that case the model is an approximation of the Hassell-Varley model with exponent 
~. The non-trivial equilibrium is here c/(a -1), c with 

c = (1 + b loga)2 -1. (5.3) 
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The eigenvalues follow from 

and 

A A _ a loga (2 + b loga) 
1 2 

- 2(a-l) (1 + bloga) 

b 

stable 

unstable 

Fig. 7 

The stability condition "A1"A2 < 1 can be written as 

(5.4) 

(5.5) 

a 

b > a - - 1- (5 6) 
2(a -1)-a loga loga' · 

with a < 4.92155, the value for which 2(a-1) = a loga. The corresponding regions of stability and 
instability are illustrated in Fig. 7. On the Hopf line, the Taylor expansion of 

I I 

f(c(I +t)) = ((1 +c+ct)2 -(1 +c)2 )lb 

leads to the following expansion for the Hopf radius 

_/!:_ - c 
R 2 - 8b -v'i"+c 

3c2 +2c 
16(1 +c)2 · 

On the Hopf line the relations (5.3) and 

b = a __ 1_ 
2(a-1)-a loga loga 

enable us to express µI R 2 as a function of a only. Then the following Table 2 can be constructed 

a a b Xeq Yeq µIR 2 

24 1.209 1.144 2.302 0.481 -0.00399 
30 1.366 1.258 2.565 0.939 -0.00820 
40 1.879 1.695 3.733 3.283 -0.01556 
45 2.414 2.311 5.815 8.224 -0.01469 
50 3.502 4.897 19.96 49.94 -0.00401 
51 3.866 6.929 37.17 106.5 0.00016 
52 4.323 12.938 119.4 396.6 0.00530 
53 4.911 774.88 3.895E5 1.523E6 0.01159 

Table 2 

(5.7) 

(5.8) 

(5.9) 
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It appears that here (5.8) changes sign at the critical value a = ao = 50°.96. This means that for 
a> ao we have forward Hopf bifurcation, and for a<ao backward Hopf bifurcation. According to 
the theory, for a> ao and a close to ao we may expect two invariant Hopf curves. The inner Hopf 
curve is attracting, and it is either densely filled by successive iteration points, or it contains a 
periodic cycle with a rotation number close to 1 :7. The outer Hopf curve is repelling and seperates 
the bounded orbits from the unbounded ones. A typical case is illustrated in Fig. 8 for 
a =4.2, b = 10 corresponding to a = 51°.8, µ = 0.00156. The equilibrium is at x = 73.3, y = 234.6. 
The start 125, 929 gives the stable Hopf curve. The start 125, 1284 gives the separatrix, the unstable 
Hopf curve. 

6. HASSELL'S MODEL 

In his recent paper on parasitism in patchy environments [5], Hassell considers the model 

where 

with 

{

Nn+i = F Nnf (Pn), 

Pn+i = C Nn (1-J(Pn)), (6.1) 

[ 
1-a ]" 

g= (n 0
-l)a · 

Fig. 8 

PP-INTERACTION 

A-4. 2 , B•UJ 

SCALE e,see,e,1see 

(6.2) 

(6.3) 

START 2se,1eee & 2se,11ee 
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Realistic values are 

0.3 ,,.;;;; a ,,.;;;; 0.6 , n0 ~ 10 , F ~2 , - 3..,;; µ ,,.;;;; 3. 

With the following scaling and change of notation 

{

N = F x I (af3c) , P = y I (a/3), 
F = a , g = b , a = 0, (6.4) 

we obtain in our notation the model (1.1) with 

q,(y) = a (Oe-y + (1-0)e-bY), b > 0, 0 < 0 < 1. (6.5) 

In view of the symmetry relations 

x ""'xlb, Y""'Ylb, 0""'1-0, b ""'lib, (6.6) 

it is sufficient to consider only the case b > 1. The equilibrium of the model is determined by 

a 0 e-c + a(l-O)e-bc = 1. (6.7) 

The product L of its eigenvalues is given by 
2 

L = ...!!....£_ (Oe-c + (1-0)be-bc). (6.8) 
a-1 

For given values of 0, a andµ the corresponding values of a,b and c can be determined by solving 
(6.7) and (6.8), where 

a= LI (2(l+µ)cosa -1) 

and 

L = (1+µ)2. 

Perhaps the simplest way of solving these equatons is as follows. We write 

u = a 0 e-c, v = a(I-O)e-bc, 

and replace (6.7), (6.8) by 

{ 
: + v = l, v a-1 

u log 0 + v log 
1 

_
0 

= log a - -a- L, 

with u, v E (0, 1 ). Then we have to solve 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

f(u) = ulog (u/O) + (1-u) log ((1-u) I (1-0)) - log a + L(a-1)/a = 0. (6.13) 

A possible root of f(u) = 0 should result in a positive value of c and in b > 1. This imposes the 
conditions 

O<u<Oa. 

Since dfldu >0 for 0 < u .;;;;; l, the equation (6.13) yields a single root, provided 

ff(I) > O if Oa > 1, 
f(O) < O, Lf<Oa) > 0 if Oa < 1. 

(6.14) 

(6.15) 

By these conditions in the a,0-plane a region of admissible values is determined. For µ=0 this region 
is sketched in Fig. 9. Its boundaries are determined by 

Oa = exp ( 1 - 1 /a), (6.16) 



and 

a-I a-I 
a log (l + I -fia) = I -fia · 

In particular, for fi = ~ we have 1 <a < 4.3111. 

a 

5 

4 

3 

2 

0 .5 

Fig. 9 Admissible values of fi,a 

e-

The Hopf line in the a,b-parameter plane is determined by (6.13) with L = 1, i.e. by 

u log(u/fi) + (l-u)log((l-u)/(1-0)) =log a - (a-I)/a. 

The corresponding illustration for the special case fi= ~ is given in Fig. 10. 

b stable 

unstable 

4.31 a~ 

Fig. 10. 

15 

(6.17) 
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The expansion of the Hopf radius is determined by the Taylor expansion of 

cf>(c(l +t)) = ue-ct + ve-bc', 

from which 

A = c(u+bv) = 1-1/a, 

AB = ~ c2(u+b 2v), 

AC = ! c 3(u +b3v). 

Thus the same numerical procedure enables us to calculate (1.12). A few results are collected in Table 
1 

3 for the case 8=2· . 

a a b Xeq Yeq µIR 2 

24 1.209 18.373 0.102 0.021 0.01035 
30 1.366 12.247 0.147 0.054 0.02376 
40 1.879 7.600 0.216 0.190 0.03931 
45 2.414 6.531 0.236 0.334 -0.02068 
48 2.956 6.282 0.241 0.471 -0.12926 
50 3.502 6.521 0.238 0.597 -0.21569 
51 3.866 7.096 0.236 0.675 -0.19912 

51.9 4.272 10.285 0.232 0.760 0.08046 

Table 3 

The expression of the Hopf radius changes sign at a=44°.05 (a=2.286) and at a=51°.79 (a=4.220) 
close to the boundary a=51°.977 (a=4.311). This means that close to the Hopf line we have two 
regions of forward Hopf bifurcation and backward Hopf bifurcation for 44°.05<a<51°.79. Close to 
the boundaries a~2.29, a ~ 4.22 we have anomalous Hopf bifurcation with two Hopf curves. A typ
ical case is given in Fig. 11 for fJ=0.5, a =2, b =7.1. In this case there is an attracting Hopf curve 
and a second unstable Hopf curve separating the bounded and the unbounded orbits. The 
corresponding position on the Hopf line is a=2, b=7.231. For a=2 and b=7.06 the two Hopf 
curves coalesce, annihilating each other. Thus for a=2, b < 7.06 all orbits are unbounded. 

APPENDIX 

In this appendix a theory is given of normal and anomalous Hopf bifurcation. Our starting-point is 
the following normal form in complex coordinates z,z where z = x + iy or z = rexp i (} in polar coordi
nates 

, - "\_ Q 2- h z - "" - z z + .o.t., 

with 

A = (1 +µ)eia. 

By suitable scaling it can be arranged that IQI = 1. Accordingly we write 

Q =exp iy. 

From (Al) we obtain for the square modulus s = r2 = zz the transformation 

s' = (1 +2µ)s - 2cos (a-y)s2 + h.o.t., 

(Al) 

(A2) 

(A3) 

(A4) 

where the higher order terms contain all terms of order µ3 and higher, assuming that s = O(µ). For 
s'=s we obtain the well-known relation for the radius of the Hopf circle 

s = µI cos(a-y) 



or 

... , .... , ... 
"':-<~) ~? /":~·t·:·;.. 

·'I 

!"·· . ··::• ..... :·.·.. . . .. . 
a::.;..··.::\\' , .... :: -:.···· ...... :.;-: 
i"·· ••.• ' \ ~ • • • • . • ........ ·::::··"' !n::::.····· .. ...-~.;.' 
~~ ... - ·····. . ... r;.:·...,.· .. :·:·::::9-.l.·~~l.!: :; : ... ···~ ·.•""Ji 

SttJP~' 

~ = cos(a-y). 
R 

Fig. 11 

HASSB.L 

T-S.5 • A-2, 8•7.1 

-------
SCALE e, e. S. e, e. 5 

ST ART e. 25, e. 25 
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(AS) 

If cos(a-y) is not small we obtain either forward or backward Hopf bifurcation depending on the 
sign of cos(a-y). However, if cos(a-y) is small the analysis breaks down. It becomes necessary to 
extend the normal form (A 1) by taking 

z' = 'Az - Q z 2z + Q1 z
3z2 + O(z6

). (A6) 

This normal form holds when lower resonances up to the order 6 are excluded. Fortunately, this is no 
restriction in the host-parasitoid models. Proceeding as before, we have for s = r2 the transformation 

s' = (1 +2µ)s - 2 cos (a-y)s 2 + Cs 3 + h.o.t., (A7) 

where 

c = 1 + eiaQ1 + e-iaQ1. 

For an invariant circle we should have s'=s. This gives at the lowest order of approximation the qua
dratic equation 

C s2 - 2s cos(a-y) + 2µ = 0, (AS) 

from which 

Cs = cos (a-y) +Vcos2 (a-y) -2µC. (A9) 

Depending on the signs ofµ, C and cos(a-y), there may be two roots, giving two Hopf circles. One 
of the possibilities is sketched in the bifurcation diagram of Fig. 12 
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t 

µ-

Fig. 12 

The bifurcation line is determined by (A8) with s = r 2
• If µ > 0 and sufficiently small we have two 

Hopf circles. It can be shown that the inner circle is stable and that. the outer one is unstable. If µ 
increases gradually, the two circles aproach each other, coalesce and disappear. 
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