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If for a process (En):i"=-oo the conditional distribution of En given the past does not depend on n for e.g. 

n ;;;;., 0, then the process may be called a chain with infinite connections. Under a well-known continuity 

condition on this conditional distribution the process is shown to be distributed as an instantaneous func­

tion of a countable state Markov chain. Also under a certain weaker continuity condition uniqueness of the 

distributions of the stationary chains is obtained. 
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SECTION 1. INTRODUCTION AND RESULTS 
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Let I be a finite or countable set. A non-negative function g on IX II I is called a g-function if 
n<-l 

~ g(i0 IL) = 1 forL EJ_ := II I. 
t
0
el n<-l 

With a g-function one associates I-valued processes as follows. Let us say that if for a process (~n) 
holds 

(1.1) 

for n ;;;;;. 0 (or for all n) then it develops according tog for these n. Suppose that the distribution of 

(~k)k<O is known. Then by (1.1) for n = 0, I,. .. one determines successively the distribution of 

(~k)k<n and then by Kolmogorov's extension theorem one finds the unique distribution of the entire 
sequence (~k)· These processes were introduced by DoEBLIN, FORTET [4] under the name chain with 

infinite connections. The distributions of the stationary processes of this form were called g-measures 

by KEANE [7]. 
We measure the continuity of g using rn,n ;;;;;. 0, defined by requiring 

r • g(io IL) e· = inf ...;;;__ __ _ 
g(Jolj-) 

where the infimum is taken over all i. and f such that i0 = j 0 ,. •. ,in =in· We will assume that g is a 
continuous strictly positive function, so then r 1 ;;;;;. r2 ;;;;;. • • • are finite. 

The following result discusses uniqueness of g-measures. 

THEOREM I. I. If g satisfies 

~ exp(-r1 - ... -rn) = oo 
n;;>l 

then there is a unique shift invariant g-measure µ. Under this measure the shift is a Bernoulli shift. 

This answers a question in LEDRAPPIER [9] which considers the traditional condition 

~ rn < 00, 
n;;>l 
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(1.2) 

(1.3) 
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that was discussed already by DoEBLIN, FORTET [4]. Our proof uses also coupling. Let us mention 
that under (1.3) the coupling contact can be made "lasting" while this may perhaps not always be 
true under the weaker condition (1.2). 

In a chain with infinite connections the distribution of En given the past may depend on the entire 
past (Ek)k<m which is an infinite sequence. Below we succeed to "simplify" the description of this pro­
cess at the cost of a randomization. We construct a Markov representation, i.e. a Markov chain 
(Xn)n;;.o with a countable state space S and a function f: S ~ I such that 

d 

if (Xn))n;;.O = (En)n;;.O· (1.4) 

The next result applies also in the non-stationary case. 

THEOREM 1.2. If g satisfies (1.3) and (En) is a chain with infinite connections such that (I.I) holds for 
n ;;;;. 0, then there exists a Markov representation (1.4) for (En). 

Let us mention that the Markov chain in the representation happens to be quite simple: it has the 
form Xn = (En-j),. •• ,;;j,,.;;O where Tn is a.s. finite. It was already known that in the stationary case a 
chain with infinite connections has very strong mixing properties. However BERBEE, BRADLEY [l] have 
shown by examples that existence of a Markov representation is only weakly related to mixing and so 
our result gives definite new information. Recently LALLEY [8] obtained by different methods then 
ours a similar result for the important subcase where rn ~ 0 at exponential rate. A remark at the end 
of section 3 indicates a problem for this case that is still open. 

Theorem 1.2 can be applied also to one-dimensional Ising systems where the continuity of the g­
function can be investigated using lemma I in GALLAVOITI [5]. We do not try here to get a generali­
zation of theorem 1.1 for Ising models. Let us just mention that the form of condition (1.2) seems to 
be pointing in the right direction by an example in HOFBAUER [6]. 

SECTION 2. A SEITING FOR MARKOV REPRESENTATION 
Suppose g is a given g-function. Let (En) be stationary such that (1.1) holds for all n. Assume there is 
a Markov representation as follows: there is a stationary Markov chain with a transition yrobability 

Q from a countable state S to itself and there is a function f: S ~ I such that if (Xn)) = (En). For 
the ease of the exposition we assume En = f(Xn). 
_ To the pair f,Q describing the representation there is associated in a natural way an entrance law 
Q from I_ to S calculated as 

Q; x := lim P(Xn=x IEn-1 =LI> ... ,En-k = Lk) P((Ek)k<n E dL)-a.s. (2.1) 
_, k-+oo 

TJle a.s.-existence of this limit is a consequence of the backward martingale theorem and by stationary 
Q does not depend on n. Because of (I.I) we have outside a null set 

~ Q;_,x = g(io IL). 
xer (io) 

(2.2) 

By the Markov property 

P(Xn=y l(Ek>k<n) = E(P(Xn=y IXn-1)l(Ek)k<n). (2.3) 

From this we can calculate P(En-1 =io, Xn =y l(Ek)k<n-1 =L) in two ways and we get the equality 
- -

g(io IL)Q;_;
0
,y = ~ Q;_,xQxy (2.4) 

xer (i.) 

-
valid outside a P (E- Edi _)-null set for a suitable version of Q. 

The relation (2.4) is crucial for the Markov representation. It reflects that Q in (2.1) does not 
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depend on n and that (2.2) holds. In section 3 where we assume (1.3) we find a representation with Q 
defined everywhere and also the relations above are valid everywhere. We mention that in case g is 
discontinuous, which may occur for nice processes one cannot always find these relations to be valid 
everywhere. 

The following converse is easily proved by an inductive calculation of (2.5) as described above. 

LEMMA 2.1. Let g be a g-function for I. Suppose f : S ~ I and assume Q and Q are transition probabil­
ities from I_ to S and from S to S respectively such that (2.4) holds for all i _ E I_ ,i0 E I and 
x,y ES. Let 

~-,Xo,Xi.··· 

describe a Markov chain with arbitrary initial distribution on I_ and transition probabilities Q,Q,Q, .... 
Then writing ~n : = f (Xn) for n ;;a.: 0 we have 

P(Xn=xl(~k)k<n) = Q(t,).<••x a.s. (2.5) 

for n = 0, 1, ... and because of (2.2) the process ~n develops as g for n ;;a.: 0. 

REMARK. Suppose Q has only one invariant distribution 'TT. If in lemma 2.1 the initial distribution is 
chosen such that the full sequeilce (~n) is stationary then X 0 has distribution '1T and there is only one 
g-measure. 

SECTION 3. THE MARKOV REPRESENTATION 

To prove theorem 1.2 we construct an el!.trance law Q from I_ to the state space S consisting of 
finite strings of /-elements. We construct Q;_,. uniquely for all i _ e/ _, using continuity of g. Basic in 
our use of continuity below and in section 4 are the functions 

g(iolL1 ... Ln) := inf g(iolL). (3.1) 
(i-1>1>• 

Clearly g(i0 li- 1 •• .i-n)tg(io Ii-) because rn ! 0 and we may decompose gas 

g(io IL) = ~ ag(io IL1 ... Ln) 
n;;.o 

which is a sum of the non-negative terms 

ag(io ILt···Ln) := g(io IL1 ... Ln)-g(io IL1···Ln+i> for n ;;a.: 1, 

:= g(io) for n = 0. 

(3.2) 

The split-up (3.2) suggests the construction of a Markov triple as follows. We construct a random vec­
tor (fu,Po) E JX{0,1,2, ... } such that 

(3.3) 

Note that fu will have by (3.2) the right marginal conditional distribution. Also introducing Po as 
above needs a randomization because Po is not given deterministically in terms of ~-values. . 

Let us mention that as follows one can also construct Po in steps, conditionally given ~- = i _ . 
Generate the event {P0 =0} such that P(fu=i0,P0 =01~- =L) = g(i0 ). Subsequently for n = 1,2, ... 
generate {Po =n} = {P0 :o;;;;;n} \ {P0:o;;;;;n - I} such that 

(3.4) 

This can be done consistently because the right hand side increases in n. Also the right hand side does 
not depend on ij for j < - n and one checks that 
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~- ,~=!.,~o 

forms a Markov triple. Here one writes ~:!i := (~m,~m+1' •.. ,~n), m.;;;;; n and one says that X,Y,Z 
forms a Markov triple if X and Z are independent given Y. 

Loosely speaking we may say that the random truncation~=!. of~- contains the relevant informa­
tion from the past ~- to "generate" fu. However it may be not true that we can truncate sub 
sequently (~=!. ,fu) such that this random vector contains the relevant information to generate ~1 • 
Related to this difficulty is that to the entrance law 

Q';_,x := P(X'o=xl~-=L)whereX'o := ~-v. 

one may not be able to find Q' link~ with Q' such that (2.4) holds. Note however that 
_, 

Q;_,x = Ag(io IL1>···,Ln) 

for x = (i _n
0

, ••• ,i0 ) has the property that it does not depend on ij, j < -n. This nice property also 
holds for the "right" entrance law Q that we define below and makes it quite simple to come to our 
Markov representation. 

We constructed (fu,v0) given~-. Construct also (~i,v1 ),(~2 ,v2 ), ••• successively in the same way such 
that vk is indepen4ent of all other variables, given (~j)j<;,k· To this end one requires 

P(fu=io,vo=no, ... ,~N=iN,vN=nNI~- =i-) = (3.5) 

= Ag(iolL1 · · · Ln0 ) • • • tlg(iNliN-1'··.,iN-nJ 

Above we noted that (~-,~=!0 ,fu) is a Markov triple and similarly that (~~~1 ,~~=! .. ~k) is a Markov 
triple. We now want to form a Markov triple of the form (~=~,~=~0 ,(fu,~1>···)). Let Fk be the random 
set Fk : = {k -vk> ... ,k -1 }, take To such that 

{-To, ... ,-1} = [FoUF1 u ... ]n{ ... ,-2,-1} 

Lemma 3.3 will imply that To is finite a.s. Define similarly Tk := J'i'o {vk> ... ,vk+j-J, ... }. Then as 

we will see below 

~-,Xo := ~-.,.., ... ,Xk := ~~-.,. ••... (3.6) 

describes the Markov chain for our Markov representation. From (3.5) one notes that the entrance 
law 

Q;_,x = P(Xo=xl~- =L) 

is defined uniquely for all i _ E I_ as in lemma 2.1 and one takes f (x) as the last element in the 
string x of /-elements. 

We prove this lemma below. Using the trivial technical lemma 3.2 it follows that ~-,X0,X1 is also 
a Markov triple and one easily verifies (2.4). Thus lemma 2.1 gives us the Markov representation. 
Below we prove moreover that (3.6) gives us a representation, which needs some more arguments. 

- -I.:EM1¥ 3.2. If X, Y,Z is a Markov triple and X is (X, Y)-measurable and Z is (Y,Z)-measurable then 
X, Y,Z is a Markov triple. 

_To prove that (3.6) is a Markov chain we use lemma 3.1 again. Write for j ;;;;;.: 0 i = ~k+j, 
}(_j = X/£.+j, etc. Note_.!hat the distribution of (~j,vj)j~O g!_ven_~- = L is the same as the distribu­
tion of (~j;'iij)po given ~- = L. Thus by lemma 3.1 ~- ,X0,(~j,Pj)p 1 is a Markov triple. Because of 
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the conditional independence of (vj)j <k and the other variables, given E- = i _ it follows that 

(E- ,(fu,vo), .. .,(Ek-I •Pk-1)),Xk>((Ek +I •vk + 1), ... ) 

is a Markov triple. By lemma 3.2 it follows also that (E-,X0 , ••• ,Xk-d,Xk>Xk+I is a Markov triple for 
any_k and thus (3.6) describes a Markov chain. Because the conditional distribution given~- = i _ 
of (Ej,lij)po and so of Xk>Xk+I>··· does not depend on k the Markov chain (3.6) has stationary transi­
tion probabilities. 

PROOF of lemma 3.1. We will show for any N that 

(3.7) 

is a Markov triple. To get the assertion observe that then for each n .;;;;; N also E-,X'l},(Ej,vj)J=o 
forms a Markov triple. For fixed n let N ~ oo. Then Xff> is a vector increasing in length to Xo a.s., 
which has finite length by lemma 3.3. The assertion follows. 

To proved (3.7) we have to investigate the ratio of 

(3.8') 

and 

P(Xff> =xlE- =L), (3.8") 

and we want to show that this ratio depends only o~ x = (i0 , ... ,L1.) and (i0 ,n0 , ••• ,iN,nN). Rewrite 
(3.8' ) as the product 

= Jlg(iolLI>···•Ln.), ... ,Jlg(iNliN-l>···•iN-nN) 

in case t0 = n0 v(n 1 -l)v · · · v(nN-N) and as 

= 0 otherwise 

(3.9') 

(3.9') 

Note that x determines t0 • To find a similar expression for (3.8' ·) we have to sum (3.9') over all 
(i 0 ,n0 , ••• ,iN,nN) for which x = (i0 ,i -I · · · i-n.A(l-n,)A ... A(N-nJ· Now note that in these expressions 
no Lj occurs with}> t0 = n0 v · · · V(nN-N). This proves the assertion about the ratio and thus 
proves the lemma. 

LEMMA 3.3. If ~rn < oo then To = J~ (vj - J) is finite a.s. 

PROOF. Write 

P(T0-;;;a.n IE- =L) = fun P(vo-;;;a.n, •.. ,vN-;;;a.n +NIE- =L). 
N-+oo 

The expression in the funit can be written as 

~ g(io I i-l···i-n)g(i 1 I io .. .i-n), ... ,g(iN I iN-1··.i -n). (3.10) 
io • 0 

• jN 

Note that as N increases this descends, say to qn0-) for N ~ oo. Clearly P(To<oo IE- =L) = 1 if 
and only if 

%(L)jl as n ~ oo. 

We prove this for ~rn < oo. We bound qn(i-) from below. By the definition of rn we have 

g(io IL1 .. .i-n) -;;;a, e -r. g(io IL). 

Hence (3.10) is bounded from below by 

(3.11) 
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e -r.- ... -r.+N ~ g(io IL)g(i1 l(ioL)), ... ,g(iN I .. ). 
io•··iN 

Because g is a g-function the sum above equals I. Hence 

So if ~rn < oo we indeed have (3.11). D 

NOTE: The condition ~rn < oo is a smooth uniform continuity condition on g. By the proof above it 
can be related to (3.11), retaining a.s. finiteness of T0 • 

REMARK. We mention an open problem. Let (~n) be a chain with infinite connections for which 
rn ~ 0 exponentially. For this case BOWEN [3] in the proof of 1.25 verifies the o/-mixing (or *-mixing) 
rate to be exponential. BLUM, HANSON, KOOPMANS [2] introduce this mixing condition and prove 
that a o/-mixing Markov chain is exponentially o/-mixing. The question arises whether if rn ~ 0 
exponentially there is a Markov representation based on a o/-mixing Markov chain. The Markov 
chain constructed above is obtained as a truncation of the past and does not help to answer this, 
loosely speaking because too much detailed information of the past may be preserved. 

SECTION 4. UNIQUENESS OF g-MEASURES 
We prove theorem 1.2. We study measuresµ. on Iz (provided of the product a-field) and we do not 
yet assume shift invariance of µ.. Let ~n be the projection on the nth coordinate. Assume for 
n = 0, 1, ... that ~n develops as g, i.e. (1.1) holds. Then as we noted in the introductionµ. is determined 
uniquely by the distribution P.- of ~- : = (~k)k <O under P. .• In case ~- = i _ P.. a.s. where i _ E I_ 
we write µ. = P.L . 

We investigate the dependence of JL;_ on ; _ and do this by formalizing the classical coupling of 
DOEBLIN, FORTET [4]. Suppose ~-1 = Li> ... • ~-n = Ln is given but ~-n-1 is "unknown under 
µ.". Then {fu=io} underµ. has at least mass (3.1). So despite our lack of knowledge concerning 
~-n-I this gives some information concerning the distribution of fu. We will try to make similar 
statements below (e.g. (4.2)). We will express absence of knowledge concerning ~-n-I by ~-n-I =a 
where a is some point outside I. Write I a : = I U{ a}. We extend the g-function g defined with respect 
to I to a g-function ga with respect to I a such that 

· ga(Jolj-i.j-2, ... ) := g(iolL1 ... Ln) (4.1) 

in case j -n -I = a, and i0 = jo, ... , i -n = j -n are in I. Here n = oo is allowed and we may con­
sider g0 as a continuous extension of g. Let p.a on I~ be such that ~n = a for n < 0 while ~n develops 
according to g0 for n ;;;;;., 0. We prove uniformly for the measuresµ. in the first paragraph that 

(4.2) 

for O.;;;;n0 <n 1 <... and all ij E I. We also show that (1.2) implies the important property 
P.a(~n =o) ~ 0 as n ~ oo, so under P.a we have for n < 0 that ~n equals a 'so is "unknown" while it 
becomes "known" for large n. This will imply our results. 

To get ( 4.2) we construct step by step a coupling. Order I a partially by letting i ,,;;;;; j if j = a or 
i = j. We construct a probability Pon (la Xla)z. Let (~m~~) on this product space be the projec­
tion on then -th coordinate. We assume that (~n•~~), n < 0, under P has an arbitrary distribution 
subject to the condition that ~n ,,;;;;; ~~. n < 0, a.s .. We want to construct P such that this inequality 
holds for all n and such that marginally both ~n and~! develop according to g 3, for n ;;;;;., 0. Let us 
specify for n ;;;;;., 0 

(4.3) 



where i _ 1 ~ J-I>i- 2 ~ J-2, .... In case io EI and Jo = io define (4.3) as 

ga(io IJ-i.J-2, ... ) 

and if io EI and Jo = ()as 

ga(io I L1>L2, ... )-ga(io IJ-i.J-2, ... ) 
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which is easily verified to be non-negative because i _ ~ J _ . Make ( 4.3) a g-function for I a X I a, so a 
conditional probability, by assigning the remaining mass g 0(0IL1>L2, ••• ) to (4.3) for i0 =Jo = a. 
Now let (~n•~~) develop according to (4.3) for n ;;;;., 0. This determines P and describes a "coupling". 

We get (4.2) if we specify~~ = a, n < 0, and let (~n)n<O be distributed under Pas underµ. Then 
marginally ~- and ~~ have distribution µ and P.a and using that a.s. ~n ~ ~~ (so ~n =~~ as soon as 
~~ E I) we easily obtain ( 4.2). 

We can also get more information about µ.0 in this way. Replace µ in the argument in the last 
paragraph by r- 1 µ.0 , where T is the shift on sequence space. Becaused now also ~n ~ ~~ a.s. for 
n < 0 and consequently for all n, we have 

P.a(~no =io, ...• ~n. =ik) ~ T- 1 µ.a(~no =io, ...• ~n. =ik) 

where all ij E /.Hence p.a(~n.+m=io, ...• ~n.+m=ik) is increasing in m and then r-mP.a converges 
weakly to a shift invariant measure P.a• on (/al. If µ. on JZ in (4.2) is required to be translation 
invariant then we can improve ( 4.2) to 

(4.4) 

This follows because r-mµ. =µ.and by replacing nj by nj+m, m ~ oo in (4.2). 
By lemma 4.1 below (1.2) implies that µ.0 (~n =o) descends to 0. Thend µa.(fu =o) = 0 and P.a• is 

concentrated on fZ. Then we should have equality in ( 4.4) and so there is only one translation invari­
ant measureµ.= P.a• on fZ. for which (1.1) holds for n ;;;;., 0. 

Let us now proceed to show that the shift T under this unique P-a• is a Bernoulli shift. Let us verify 
the very weak Bernoulli condition (see SHIELDS [11] and SCHWARZ [IOD. 

We claim first that ~n develops as g under P.a•· To this end note that ~n develops as ga under P.a for 
n ;;;;., 0, and by lemma 4.1 takes the value a increasingly less often. Moreover ga is a continuous exten­
sion of . g. The claim follows now easily by evaluating and estimating 
P.a•(fu =io l~-1 =i-1 · · · ~-n =i-n) using that P.a• is a weak limit of r-mµ.0. 

Consider now P = P. as above such that~- and~? are distributed as P.a• and µa respectively. Simi­
larly we can define P = P _ such that these marginal distributions are JL;- and p.a respectively. Now 
we construct a new probability space with processes r' ~-- and ~? such that 
(i) (r .~?) has distribution P. 
(ii) (f- .~?) has distribution P _ 

This could be done e.g. by letting r and ~-- be independent given ~? such that (i) and (ii) hold. On 
this new probability space we have clearly that as soon as ~~ =I= a then ~: = ~;; = ~~ a.s. and so 

1 n 1 n 

n + 1 k;O IE;~; ~ n + 1 k;O lt,=a· 

So the d-distance of (fu, ... • ~n) and (fu, ... • ~n)l(~j=ij)j<O is at most 

-+1 
I ± P(~i =o) 

n k=O 

and tends to 0 for n ~ oo. Note that this holds even uniformly in L = (ij)j<O· Thus the coupling 
has lead us very easily to the verification of the very weak Bernoulli condition and so the shift is a 
Bernoulli shift under µ = P.a•. 

Using the notation of the proof above we have the following comparison lemma. 
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LEMMA 4.1. Suppose En = a, n < 0, and let En for n ;;;;;.. 0 develop according toga, the continuous e~ten­
sion of g determined by (4.1). If (1.2) holds for g then 

lim P(En=Cl) = 0. 
n->OO 

PROOF. The process (En) has distribution JLa. We want to compare £n := l{~=a},n E Z, with a 
simpler process. By (1.1) for n ;;;;;.. 0 

P(£n=01En-i.En-2•···);;;;;.. 

;;;;;.. Pm:= _in! ~ g(io IL1 · · · Lm) 
'-1·h'-m io 

on the set {An =m} where An is the smallest m ;;;;;.. 0 for which En -m _ 1 = a. Hence taking conditional 
expectations we have on {An=m} = {fn-1 = · · · = fn-m = 0,fn-m-1 = l} 

(4.5) 

If equality would hold above then£. would be a renewal process. We construct En ;;;;;.. £n satisfying this 
property. Let En : = 1,n < 0. We prescribe for n ;;;;;.. 0 a g-function 

(4.6) 

where i -k ~ j -k for all k. Let m and m ;;;., 0 be the smallest integers for which im - I = 1 and 
j-m-1 = 1. Clearly m ~ m. For io = jo = 0 let (4.6) be pm and for io = O,jo = I 

P(£n=01£n-l =i-1,fn-2 =L2, ... )-Pm· 

This is nonnegative because of (4.5) and Pm ;;;;;.. Pm· Thus £n has the right conditional marginal distri­
bution. Because we want £n ~ En the remaining mass has to be assigned to {io = j 0 = I} to make 
( 4.6) a probability. So En is a renewal process, satisfying for n ;;;;;.. 0 

P((n=OIEn-i.En-2, ... ) =Pm on{En-1 = ... =En-m=O,En-m-1 =I} 

if we let (£n.En) develop according to the g-function (4.6). Because { £n =I} C {En= I} it is sufficient to 
prove 

P(En =Cl)~P<£n = 1) ~ 0 as n ~ oo. (4.7) 

The renewal process E has the following property. Observe that for any n ;;;;;.. -1 on the set {En= l} 
the distance T/ : = inf { k ;;;o.O:En +k =I} to the next renewal has a conditional distribution F, given by 

P(T/>m lfmfn-1'···) = PoPl·····Pm 

F determines the distribution of E. Its mean is µ: = ~ p 0 , ••• •Pm· F may be defective so 
m~O 

lim Po•····Pm > 0. Thenµ= oo and #{n;;;o.0:£n=l} is finite a.s. implying (4.7). Otherwise by the 
m->OO 

renewal theorem 

lim P<£n =I) = .l. 
n->OO µ 

So in either caseµ = oo implies (4.7). Because (1.2) impliesµ = oo by the definition of Pm this com­
pletes the proof. D 
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