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In the last decade many models for parallel computation have been proposed and many parallel algorithms 
have been developed. However, few of these models have been realized and most of these algorithms are 
supposed to run on idealized, unrealistic parallel machines. 

The parallel machines constructed so far all use a simple model of parallel computation. Therefore, not 
every existing parallel machine is equally well suited for each type of algorithm. The adaptation of a certain 
algorithm to a specific parallel architecture may severely increase the complexity of the algorithm or 
severely obscure its essence. 

Little is known about the performance of some standard combinatorial algorithms on existing parallel 
machines. In this paper we present computational results concerning the solution of knapsack, shortest 
paths and change-making problems by branch and bound, dynamic programming, and divide and conquer 
algorithms on the ICL-DAP (an SIMD computer), the Manchester dataflow machine and the CDC-CYBER-
205 (a pipeline computer). 
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Key Words & Phrases-. parallel computer, SIMD, MIMD, pipelining, dataflow, branch and bound, dynamic 
programming, divide and conquer, knapsack, shortest paths, change-making. 
Note. This paper will be submitted for publication elsewhere. 

1. INTRODUCTION 

In the last decade computer scientists have proposed many parallel computers, based on various 
models of computation and architectures. However, so far only a few of these parallel computers have 
been built, due to today's technical limitations. All existing parallel computers use the easier models 
of computation and the easier architectures. Therefore these machines are less powerful than the 
theoretical models. 

In the mean time operations researchers have developed many parallel algorithms for combinatorial 
problems. Nearly all these algorithms are based on models of parallel computation which are too 
complicated to be used in today's parallel computers. As a result, few of these algorithms have actu­
ally been implemented today simply by lack of the parallel computers needed. 

It is possible to execute these algorithms on some of today's parallel machines either by emulating 
the desired model of computation on such a machine or by reformulating the algorithm. However, 
such an emulation or reformulation increases the overall complexity of the algorithm or obscures the 
essence of the algorithm. Sometimes this effect is so severe that a particular parallel computer appears 
to be completely unsuited for executing certain types of algorithms. 

Our purpose has been to gain insight in the behavior of some standard techniques for combina­
torial problems, such as branch and bound, dynamic programming and divide and conquer, on some 
existing parallel computers. We considered three well known types of combinatorial problems and 
three parallel computers. The problems were knapsack, shortest paths and change-making; the 
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machines were the ICL-DAP (an SIMD processor array), the Manchester data.flow machine (an experi­
mental MIMD dataflow computer) and the CDC-CYBER-205 (a pipeline machine that might be 
classified as an SIMD machine). 

It turns out that the SIMD machines are very efficient in executing synchronized algorithms that 
contain regular computations and regular data transfers. In these types of algorithms all the proces­
sors always execute the same instruction on data residing at the same place in their local memories 
and all the data travel the same way. As soon as the computations or the data transfers become irreg­
ular or asynchronous, the SIMD machines become much less efficient. So the SIMD machines are 
very good for dynamic programming, but bad for branch and bound or divide and conquer. 

The concept of dataflow appears to be very promising for executing parallel algorithms, especially 
algorithms with irregular computations and data transfers like branch and bound or divide and con­
quer. The performance of the Manchester dataflow machine is, however, limited by its experimental 
character. It has amongst others a small memory capacity and overall throughput. But we hope that 
this performance will be improved by ongoing research. 

2. RELEVANT ASPECTS OF TIIE PARALLEL COMPUTERS USED 
In this section we will give a brief overview of the basics of parallel computation, followed by a short 
description of the three parallel computers we used. We will emphasize those features that are relevant 
for the analysis of the performance of the combinatorial algorithms we studied. 

The main models of computation are control driven, data driven and demand driven [Treleaven, 
Brownbridge & Hopkins 1982]. In control driven computers the user has to specify the exact order in 
which the computations must be performed and also which operations can be performed in parallel. 
In the data driven model an operation can be performed as soon as all its operands are available and 
in the demand driven model an operation can be initiated as soon as its outcome is needed. All 
sequential computers use the control driven method. At present, most of the existing parallel comput­
ers also use this method. In recent years a few data driven computers, called dataflow machines, have 
been built [Watson 1984], but these machines are still in their infancy. Today, there are no working 
computers using the demand driven model of computation; yet several are being developed, for exam­
ple the ALICE machine at Imperial College, London [Darlington & Reeve 1981]. 

Within each of these models there are further differentiations, for example in the way the various 
processors (processing elements) communicate. Another is the independence of the processing ele­
ments [Flynn 1966]. In MIMD (multiple instruction stream, multiple data stream) computers the 
different processors are allowed to perform different types of instructions on possibly different data at 
the same time. In SIMD (single instruction stream, multiple data stream) computers all processors are 
restricted to perform the same type of operation at a time. 

There are two kinds of parallelism a computer can obtain while executing a program. The first one 
is a coarse grained one. This kind of parallelism occurs when a program contains certain statements 
that can be executed in parallel. For example the body of a for loop (which can be executed in paral­
lel for each value of the loop index as long as these iterations are independent of each other) or a 
sequential list of statements which are independent of each other (and therefore can be executed con­
currently). The second kind of parallelism is a fine grained one. This parallelism occurs if there is 
parallelism within a statement. For example the assignment of a new value to an element of a multi­
dimensional array (the indices of the array element can be computed in parallel) or the use of multi­
ple processors for a multiplication or division. 

2.1. The ICL-DAP 
The ICL Distributed Array Processor is a commercially available SIMD computer with 4096 proces­
sors. These processors are located at the nodes of a 64 by 64 mesh. Each processor is connected to its 
four neighbors, with wrap around connections at the boundaries, and has its own local memory; cf. 
Figure 1. Software makes it possible to look at the 4096 processing elements as if they were located in 
a one dimensional array, where each processor is connected to only two neighbors. The processors are 
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capable of simultaneously performing the same instruction on local data, with the restriction that the 
data have to reside at exactly the same place of the respective local memories. It is possible to mask a 
processor, which has the effect that the result of the instruction executed is not stored. Masking is 
effectuated by local data. It enables the use of conditional operations. 

FIGURE I. A 4X4 OAP. 

Programs are executed on the ICL-OAP through a host computer. The host translates the program 
into OAP machine code and stores the machine code program and its data in the OAP. After that, 
control is given to the OAP, which performs the program on the data. After the OAP has finished, 
control is returned to the host and the host extracts the results from the OAP [ICL 1981]. 

The ICL-OAP can be programmed in the high-level language OAP-FORTRAN [ICL 1979]. This is 
an extension of standard FORTRAN with vector and matrix instructions, which can be used to pro­
cess the elements of a vector or a matrix in parallel. The OAP or the FORTRAN compiler do not 
detect any parallelism in a program on their own accord. The programmer has to detect the parallel­
ism himself by analyzing the algorithm. By invoking the vector and matrix instructions of OAP­
FORTRAN he can state explicitly which operations must be performed in parallel. The parallelism 
thus obtained is a coarse grained one at the algorithmic level. 

The vector and matrix instructions perform their parallel operations on vectors of dimension 64 or 
4096 or on matrices of dimension 64 by 64 respectively. In performing operations on vectors of 
dimension 64, 64 processing elements cooperate in handling one vector element. If a particular prob­
lem is too big to fit in such a vector or matrix, the programmer has to divide the problem into sub­
problems fitting in these vectors or matrices and the solutions of these subproblems must be com­
bined sequentially. This corresponds to simulating a OAP of bigger dimensions on a OAP of dimen­
sion 64 by 64. So the OAP is best suited for problems of dimension at most 64 or 4096. 

Although the OAP is capable of executing programs written in standard FORTRAN, no instruc­
tions of these programs are executed in parallel. 

The performance of a program is measured by counting the number of instructions executed by the 
OAP. To get an estimation of the CPU time, the number of instructions is multiplied by the average 
time needed for an instruction. This way of timing neglects the differences between execution times of 
the various instructions. There is no way to measure exactly the CPU time used by the DAP (espe­
cially since the DAP can be used shared with another user). 
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2.2. The Manchester Dataflow Machine 
Dataflow is a technique for representing computations in terms of directed graphs. The nodes of the 
graph are instructions to be performed and the arcs are data routes. The data transmitted over the 
data routes are represented as tokens. A node accepts the tokens from its incoming arcs, performs an 
operation on them and sends the results away on its outgoing arcs. Whether or not two nodes can be 
executed concurrently depends on whether or not one of the two nodes needs the output of the other 
as input. Arcs not starting at a node receive the input data and arcs not ending at a node produce the 
output. 

A node is enabled (can start its execution) as soon as the required tokens have arrived on the 
incoming arcs. The execution of a node may not be immediate, but will happen eventually. Also the 
time needed to execute instructions or to transport tokens from one node to another may vary. It is 
assumed, however, that all these times are finite. The computation is completely asynchronous. There­
fore, it can happen that tokens have to wait for others on incident input arcs. A second consequence 
is that a dataflow graph in general allows for different execution sequences. 

Figure 2 shows a dataflow graph calculating x 2 
- xy using primitive boxes DUP (which duplicates 

its input), j2 (which produces the square of its incoming value), X (which multiplies its inputs with 
each other) and - (which subtracts the right input from the left input). 

x y 

FIGURE 2. A dataflow graph. 

A possible execution sequence is shown in Figure 3; stars(*) represent the generated tokens moving 
through the graph. 

x y x y x y 

FIGURE 3. An execution sequence. 
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To exploit the parallelism contained in the dataflow model of computation, an unconventional 
hardware organization is required. For building a general purpose dataflow machine a data structure 
of some sort is needed for representing the dataflow graph of a particular problem. On the Manches­
ter dataflow machine this data structure consists of labeled nodes containing the instruction to be per­
formed and the destination(s) of the result(s). 

The Manchester dataflow machine is an experimental computer, which consists of a ring of ele­
ments each performing a special task (see Figure 4). A token consists of a value and a destination 
node. The token queue buffers the incoming tokens and sends them, one at a time, to the matching 
unit. The matching unit is an associative memory, which groups tokens with the same destination node 
into packages and presents them to the node store. In the matching unit, tokens are stored until their 
partners have arrived. F<?r efficiency reasons the machine only allows packages of one or two tokens. 
The node store contains the dataflow graph to be executed. Each node consists of the instruction to be 
performed and the destination(s) of the result(s). The node store adds this information and sends the 
whole as an executable package to the processing unit. In the processing unit the package is sent via a 
distribution network to an idle processing element. After processing, the results arrive via a arbitra­
tion network at the switch. At the switch input (output) tokens are inserted into (removed from) the 
ring; non-output tokens are sent along to the token queue. 

output 

switch 

input 

token 
queue 

matching 
unit 

processing unit 

node 
store 

r--------------------------------, 
I 
I 
I 

I 

processing 
IE---1 element -..--1 

processing 
-..--1 element 

L--------------------------------
FIGURE 4. The Manchester dataflow machine. 

The processing unit makes use of fine grained MIMD-type parallelism (the processing elements pro­
cess different executable packages simultaneously). It is clear that the degree of parallelism depends 
on the number of processing elements. On a higher level, the units in the ring continuously perform 
operations on the flow of packages, which gives a parallelism as in an assembly line. 

The critical part of the system is the matching unit. All units can be tailored to meet its maximum 
throughput capacity easily, e.g., the speed of the processing unit can be adapted by adding (or remov­
ing) processing elements. A way to overcome this bottleneck is to construct several rings and connect 
them through the switch, which then becomes a full interconnection network. 

The Manchester dataflow machine can be programmed in the high-level language SISAL (Streams 
and Iteration in a Single Assignment Language) [McGraw et al. 1984]. SISAL has no concept of 
sequential execution and no direct control statements such as GOTO. To avoid the ambiguities that 
might arise from reassigning values to variables, the language allows each variable to be assigned only 
once in a program. In loops a construct is provided to reassign variables. Further, SISAL has strict 
type and scope rules and prohibits all forms of side effects (this because side effects introduce data 
dependencies which are very hard to catch). More about single assignment languages can be found in 
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[Ackerman 1982]. The nature of a single assignment language makes it, in comparison with FOR­
TRAN or PASCAL, easy to compile a program into a dataflow graph. 

Due to the computation model used, the parallelism in a program is detected by the dataflow 
machine itself. The only thing a programmer can do is trying to specify his program in such a way 
that the dataflow graph constructed is as broad as possible. 

The Manchester dataflow machine is operated in the same way as the ICL-DAP. Program develop­
ment and compilation is done on a host computer. The host first stores the generated dataflow graph 
in the node store and then inserts the data via the switch in the ring. The data activate the dataflow 
machine. Output tokens leave the ring via the switch and are collected on the host. 

It is very difficult to measure the performance of a program on the Manchester dataflow machine. 
The only measurement_ that can be made is the execution time until the arrival of the first output 
token at the host. This measurement is not very informative because after this arrival the computa­
tions may continue. This drawback can be overcome by reorgan)zing a program in such a way that it 
produces a single output token at the end of its execution. 

A better insight into the performance of a program can be gained by emulating the dataflow 
machine on a sequential computer. Therefore the Manchester Dataflow Group developed an emulator. 
To keep this emulator manageable, some simplifying assumptions about the system architecture had 
to be made. The principal assumptions are the following: 

(i) The time needed to execute an instruction is equal for all instructions (execution therefore 
proceeds in discrete steps of equal time). 

(ii) An unlimited number of processing elements can be used during any one time step and the 
throughput capacity of the ring is infinite. 

(iii) Output from an instruction can be transmitted to a successor instruction within the execution 
time period. 
These assumptions are unrealistic. But they are helpful in making an approximate characterization of 
a program. 

The two fundamental time measurements are S 1, the total number of instructions executed (which 
would be the number of time steps if only one processing element was available) and S 00 , the number 
of time steps with an unlimited number of processing elements (which is the critical path length of the 
underlying dataflow graph). The ratio 'TT = S 1 IS 00 gives a measure of the average parallelism in a pro­
gram. A more detailed trace of the behavior of a program can be obtained if desired. 

A detailed description of the Manchester dataflow machine can be found in [Gurd, Kirkham & 
Watson 1985] 

2.3. The CDC-CYBER-205 
The CDC-'cYBER-205 is a commercially available computer able to perform the same operation on 
all elements of a vector of variable length in a pipelined way. In order to do this, the functional units 
are segmented. Each segment does a small part of the operation to be performed and sends the results 
to its neighboring segment. In this way a pipeline is created; cf. Figure 5. The segmentation makes it 
possible to deliver, after a certain start-up time which is independent of the size of the vector, a result 
of such a vector operation at each clock cycle. When executing vector instructions it is possible to 
specify whether or not a generated result must be stored. This enables the use of conditional opera­
tions. 

Due to its capability of performing vector operations the CYBER-205 is very similar to an SIMD 
computer, although strictly spoken the results are generated in a sequential way. 

The CYBER-205 can be programmed in the high-level language FORTRAN-200 [CDC 1983]. This 
extended standard FORTRAN contains vector instructions, which process vector elements in a pipe­
lined manner. The FORTRAN-200 compiler is able to detect some parallelism in the program by try­
ing to vectorize Do-loops, but far from every Do-loop can be vectorized in this way. By using the vec­
tor instructions the programmer can specify which operations must be pipelined. However, this means 
that he has to analyze his algorithm and detect the parallelism himself. The parallelism thus created is 
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memory 

a coarse grained one on the algorithmic level. 
The CYBER-205 is capable of executing a program written in standard FORTRAN, but unless the 

compiler is told to try to vectorize this program and manages to vectorize at least part of it, no part 
of the program is executed in a pipelined manner. 

The performance of a program on the CYBER-205 is measured by the CPU time needed' to execute 
the program. 

3. THE PERFORMANCE OF SOME CoMBINATORIAL ALGORITHMS 

3.1. Change-Making 
Change-making is the following combinatorial problem: given a coinage system, determine the 
number of different combinations of coins with which a certain amount can be paid for without 
change. 

Let n be the number of coins in the coinage system, let v; (i = l, ... ,n) be the value of coin i and let 
P(z,i) (z;;;;;;. 0, i = l, ... ,n) be the number of different combinations amount z can be paid for when only 
coins with value v I>···· v; may be used. 

Let Z denote the amount to be paid. We then have to determine P(Z,n). The following recursive 
equation holds: 

Lz!v,J 
P(z,i)= ~ P(z-kv;,i-1) (z;;;a.O,i=2, ... ,n). 

k=O 

The initial conditions are: 

{

l ifz=Omodvi. 
P(z, 1) = 0 otherwise. 

The change-making problem can also be seen as a network problem. Let G = (V,A) be a directed 
graph. The set of vertices V consists of nodes v(z,i) (z = O, ... ,Z, i = O, ... ,n). There is an arc from node 
v(zi.i) to v(z 2 ,i + 1) if and only if z2 = z 1 +kv;+ 1 for some nonnegative integer k (i = O, ... ,n-1). The 
change-making problem is equivalent to the problem of determining the number of different paths in 
G from v(O,O) to v(Z,n). A path a is different from a path fJ if a contains an arc not in fJ or fJ con­
tains an arc not in a. 

The change-making problem can be solved by divide and conquer and by dynamic programming. 
Both techniques use the above recursion, but they use them in reverse directions. 

Divide and conquer solves the problem by splitting it into easier problems, solving these easier 
problems and combining their solutions to the solution of the original problem. The easier problems 
are of the same form as the original one and are solved in the same way. 

Dynamic programming combines the solutions of smaller problems to the solution of a bigger prob­
lem. Starting with trivial problems, eventually the solution of the problem to be solved is constructed. 
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If the change-making problem is viewed as a graph problem, divide and conquer reduces to explicit 
enumeration of all paths in the graph whereas dynamic programming is a form of implicit enumera­
tion of all paths. 

3.1.1. Implementing Divide and Conquer 
Divide and conquer boils down to a direct evaluation of P(Z,n) through the recursion given above. 
For an SIMD machine it is necessary that all processors perform the same instructions. However, the 
number of subproblems in which a particular (sub )problem is split depends entirely on the data of 
that instance. But there exists an upper bound on this number and by adding dummy subproblems 
one can arrange that each subproblem is split in the same number as the others, i.e., a number equal 
to this upper bound. This makes that the processors always can execute the same instructions at a 
time. · 

On an SIMD machine, the obvious implementation is that each processor takes care of one sub­
problem. However, the number of subproblems created is exponential. This makes that only very 
small size problems can be solved in parallel. It is also possible to use different processors for solving 
the change-making problem for different amounts - where the coinage system remains the same - at 
the same time. Each processor then solves a problem sequentially and the time needed to do this 
equals the time needed to solve the biggest problem. In our investigations we only wanted to solve 
one instance of the change-making problem at the same time. For this case the SIMD machines are 
not so well suited and therefore, we implemented the divide and conquer approach only on the Man­
chester datafl.ow machine. 

Recursion is a natural technique for programming divide and conquer. This technique results in a 
straightforward and elegant implementation on the Manchester datafl.ow machine. Due to the fine 
grain parallelism of this machine, computations are performed asynchronously and in parallel wher­
ever possible. The computations however have to be synchronized for combining the solutions of the 
subproblems. The exact order in which the computations are performed is nondeterministic. The syn­
chronization before combining the solutions of the subproblems makes that this order is a feasible 
one. 

3.1.2. Implementing Dynamic Programming 
The dynamic programming algorithm can be stated as follows: 

for z~o to Z do P(z,I)~ if z = 0 mod v 1 then 1 else O; 
for i~2 ton do 

for z~o to Z do 
P(z,i)~O, 
for k~O to Lz!v;J do P(z,i)~P(z,i)+P(z-kvi>i-1). 

Note that if the change-making problem is solved for a certain amount Z, all problems for smaller 
amounts are solved as well. 

The above algorithm can be implemented in a direct way on the Manchester datafl.ow machine. The 
computations are performed in some asynchronous feasible order. The parallelism is bounded by the 
synchronizations due to the fact that in each iteration values of the previous iteration are needed. 

To be able to implement the dynamic programming algorithm on an SIMD machine, one has to 
analyze the parallelism in the program and state the detected parallelism explicitly using the tools the 
language provides. The parallelism in the dynamic programming algorithm resides in the for z loops. 
But to make this parallelism explicit, we must rewrite part of the algorithm. 

A problem is the last for z loop. Whereas one would like to compute P for all z in parallel, this is 
impossible on an SIMD machine because the work to be done differs with varying z (the number of 
iterations of the fork loop depends on the value of z). By adding dummy iterations one can achieve 
that each loop contains the same number of iterations, which is equal to the number of iterations 
needed for the maximal z. A dummy iteration could consist of adding 0. The addition is treated as a 



9 

sequential process and is not parallelized. Therefore the for k loop should be interchanged with the 

for z loop. The modified program looks like: 

for z ~ 0 to Z do P(z, 1) ~ if z = 0 mod v 1 then 1 else O; 
for i~2 ton do 

for z~o to Z do P(z,i)~O, 
for k~o to LZ!v;J do 

for z~o to Z do P(z,i)~P(z,i)+P(z-kv;,i-1). 

During execution it must be ensured that all references to P with negative first index are equal to 0. 

The rewritten algorithm can be implemented straightforwardly on the DAP. In doing this we have 

to view the DAP as a one-dimensional array of processors. Processor z computes the values P(z,i) 

(i = I, ... ,n). Each for z loop is- executed in parallel. To be able to compute the sum of the possible 

combinations, a processor needs the P value of the previous iterations of its kv;-th neighbors 

(k = 1, ... , LZ!v;J). This can be accomplished in parallel by using a DAP-FORTRAN shift routine. 

Such a routine has the nice property that is shifts in zeros for nonexisting values, making it very easy 

to add the dummy iterations. 
Due to the fact that the DAP has only 4096 processors, the amount Z to be paid is limited to 4095. 

For the CYBER-205 basically the same procedure can be applied, but instead of being processed in 

parallel, the for z loops are now processed in a pipelined (and strictly speaking sequential) manner. 

The big difference with the DAP is that on the CYBER the dummy iterations need not be added 

because it is possible to input only part of a vector into the pipeline. 

3.1.3. Improving Divide and Conquer and Dynamic Programming 

Divide and conquer as well as dynamic programming have their pros and cons for solving the 

change-making problem. Divide and conquer is very easy to program, but the subproblems generated 

are not mutually exclusive. So it may happen that solutions to certain subproblems are recomputed. 

The computation could be sped up if these recomputations could be prevented. Dynamic program­

ming solves all problems P(z,i) (z = O, .. ,Z,i = l, .. ,n) regardless whether or not the solution of a par­

ticular problem is needed to construct the solution of problem P(Z,n ). The computation could be 

sped up if there is a way to eliminate subproblems not needed in constructing the solution to P(Z,n). 

It is possible to combine the good sides of both methods. The idea is to use divide and conquer to 

construct the set of subproblems needed and thereafter dynamic programming to solve the problem 

using only this set of subproblems [Polya, Tarjan & Woods 1983]. This can be realized by adding a 

mechanism to the divide and conquer approach, which upon request for the solution of a particular 

subproblem takes the following steps: 
- If the subproblem has already been solved, it returns the solution of this subproblem, 

- If the subproblem is being solved at the moment, it queues the request for the solution of the sub-

problem and returns the solution as soon as it is available, 

- If the subproblem has not been considered before, it solves this subproblem and stores the solu­

tion. 
As in the case of the original divide and conquer algorithm we implemented the improved algo­

rithm only on the Manchester dataflow machine. The mechanism could not be written in SISAL due 

to the fact that its behavior is nonfunctional: given a certain input, the outcome is not completely 

determined by this input, but also by certain 'environmental' factors. The mechanism was therefore 

written in TASS, an assembler language. After that, the mechanism was linked to the SISAL program. 

3.1. 4. Computational Results 
The ordering of the coins has consequences for the number of operations to be performed by the 

divide and conquer algorithm. The divide and conquer approach is in essence a tree traversal, in 

which each leaf of the tree must be visited exactly once. So the work to be done is proportional to the 

number of edges in the tree. An optimal tree has as few edges as possible. For such a tree, no node 
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has more children than each of its children has. This is realized by splitting each subproblem using 
the remaining coin with the highest value. Therefore the coins should be ordered by increasing value. 

The ordering of the coins has no consequences for the dynamic programming algorithm as long as 
the coin with the smallest value is used for the initializations. The first coin can be dealt with in 0(1) 
time, whereas the others need O(Zlv;) iterations for the combination of previous results (i = 2, ... ,n). 

In all computational results shown, the ordering of the coins is optimal with respect to the method 
of solution used. The coinage system used is part of the Dutch system, made up of coins or bank 
notes of I, 5, 10, 25, 100, 250, 500 and 1000 cents. 

running time (seconds) 
1.0 • dynamic programming 

+ divide and conquer 
O.B 0 improved algorithm 

0.6 

0.4 

0.2 

0 

0 

0 

amount 

FIGURE 6. Execution times on the Manchester 
dataflow machine with 20 processors. 

Figure 6 shows some results of the dynamic programming, divide and conquer, and improved algo­
rithms run on the Manchester dataflow machine. Due to a limited memory capacity of the hardware, 
only small size problems could be solved. 

To gain more insight into the behavior of the programs on the Manchester dataflow machine we 
simulated them on a sequential computer. The results are shown in Figures 7, 8 and 9. Due to 
memory restrictions it was impossible to simulate bigger problems. 

total number of instructions 
600,000 • dynamic programming 

+ divide and conquer 
SOO,OOO 0 improved algorithm 

0 
+ 

0 * 
0 * 

400,000 

300,000 

200,000 0 * 
100,000 

0 

0 

amount 

FIGURE 7. Total number of instructions on the dataflow machine. 

Figure 7 shows S 1 (the total number of instructions executed) versus the amount to be paid for the 
various programs. As expected, for small problems the divide and conquer program executes less 
instructions than the other two programs. But this reverses when the problem size increases. By 
increasing problem size, the improved algorithm executes less steps than divide and conquer but more 
steps than dynamic programming. The first is easily explained by the elimination of duplications. The 
second can only be explained if determining the state of a subproblem is more expensive than com­
puting everything, needed or not. 

Figure 8 shows S 00 (the total number of time steps needed if there was an unlimited number of 
processing elements) versus the amount to be paid. The S 00 of divide and conquer and of dynamic 
programming behave in the same way and differ by a constant. Both programs compute the solution 
by combining the solutions of subproblems. Since both use the same recursive formula, their S 00 's 
have the same behavior. The difference is due to the work involved in the recursion. Because the 
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FIGURE 8. Critical path length on the dataflow machine. 
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recursion has always the same depth, the difference is a constant. The S 00 of the improved program is 

larger. Determining the state of a subproblem appears to be a time consuming affair. Besides that, 

requests for the same subproblem have to be handled sequentially. 

average parallelism 
1,200 • dynamic programming 

+ divide and conquer 
1,000 0 improved algorithm 

+ 800 

600 

400 
t • . 

• + 
0 0 

0 0 200 

0 0 
0 0 

amount 

FIGURE 9. Average parallelism on the datatlow machine. 

Figure 9 shows the average parallelism 'IT versus the amount to be paid. Divide and conquer shows 

an explosion in parallelism with increasing problem size. This is because the subproblems generated 

are not mutually exclusive. If problem size increases, computing power is lost in solving an ever­

increasing number of the same subproblems in parallel. As expected, the average parallelism of the 

improved program is less than the average parallelism of dynamic programming. This is due to the 

sequential part of the mechanism which determines the state of a subproblem and to the fact that the 

solution of a problem must temporary halt if one of its subproblems is being solved at the moment. 

We conclude that, in the test environment under consideration, it is not worthwhile to be clever. It 

is much cheaper to compute everything. 

runing time (seconds) 
0.30 • OAP 

+ CYBER-205 
0.25 

+ 
0.20 

+ 
0.15 

+ 
0.10 + 

0.05 + 

amount 

FIGURE 10. Dynamic programming on the DAP and CYBER-205. 

Figure 10 shows our results on the execution of dynamic programming on the DAP and CYBER-

205. For the size of problems we considered, the execution time on the DAP is linear. This execution 

time depends only on the number of subproblems to be combined. Taking the combinations can be 
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performed in parallel and thus in constant time. The execution time on the DAP behaves in the same 
way as the critical path length of dynamic programming on the dataflow machine (Figure 8), because 
in the dataflow simulator we assume an unlimited number of processing elements for taking the com­
binations. As can be seen, the execution time on the CYBER-205 increases more than linear. This 
curve corresponds to the total number of instructions performed by the dataflow implementation (Fig­
ure 7). 

3.2. Shortest Paths 
Given a complete directed graph with vertex set { l, ... ,n } and a length cij for each arc (i,j), one wishes 
to find the shortest path lengths for all pairs of vertices. We solved this problem using the algorithms 
from [Dijkstra 1959] and. [Floyd 1962; Warshall 1962]. 

3.2.1. Dijkstra 
Dijkstra's algorithm solves the one-to-all shortest paths problem in the case of nonnegative arc 
lengths. The nonnegativity of the lengths ensures that the total length of a path, when it is extended, 
cannot decrease. Therefore, it is possible to determine in the Ith iteration of the algorithm the vertex 
Ith closest to the origin. Denoting the origin by i*, we have the algorithm: 

N ~ { l, ... ,n} \ { i*}; 
for all.JEN do dj~C;•j; d;.~0; 
for 1~2 ton do 

J*~EU j(dj = min{dj !JEN})/\ (jEN)}, 
N~N\U*}, 
for aD.j EN do dj~min{dj,dJ* +cj*j }. 

In order to find all shortest paths, all vertices have to be considered as origin in turn. This can obvi­
ously be done in parallel. 

On the DAP this algorithm is implemented using vector instructions, where 64 processors take care 
of one vertex. If each processor would do the the computations for one vertex, it would be possible to 
solve problems of size up to 4096. The memory capacity of a single processor is, however, limited to a 
few hundred numbers. Therefore, only relatively small size problems fit into the DAP and a great part 
of the processors would be idle. Vector instructions then give a far better performance. As a conse­
quence, we considered problems of size up to 64 only. The for /loops are treated sequentially and 
within a step the operations are performed in parallel. OAP-FORTRAN provides an (assembler) 
function which can compute the minimum of a vector using parallelism. The processors have to com­
municate with each other for finding the vertex with the next shortest distance from the origin. The 
number of this vertex and its corresponding distance have to be broadcasted to all other processors. 
The 'fo:r all. j EN' instructions are executed for all j E { l, ... ,n} in parallel; the use of a mask, which 
keeps track of the set N, achieves that only the relevant updates are performed. Since the computa­
tions are done in parallel and idle processors cannot do any useful work meanwhile, this is not a 
waste of computing power. 

The CYBER-205 implementation is straightforward. The initialization and the instructions within 
the iterative loop can be pipelined. The language provides an (assembler) routine able to compute the 
minimum of a vector using the pipeline and the conditional instructions are performed using masks. 

We implemented Dijkstra's algorithm in two different ways on the Manchester dataflow machine. 
The first implementation closely resembles the SIMD implementation: a mask indicates the vertices to 
which the shortest distance still has to be computed. Depending on the value of the mask, the results 
obtained are stored. In the second implementation a list of active vertices is maintained. Here, only 
values that are needed are computed. The first way is very easy to implement but has the disadvan­
tage that computing power is wasted on vertices to which the shortest path is already known; the 
second way is harder to implement but does not waste computing power. Since the Manchester 
dataflow machine is an MIMD computer, processors that do unnecessary work could perform other 
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available tasks, thus achieving a better overall performance. This is in contrast to an SIMD machine, 

where the overall performance is not influenced if some of the processors are silenced by a mask. 

Computations are performed asynchronously and in parallel wherever possible. In each iteration, 

however, the computations are synchronized on the point where the minimum value has to be com­

puted. Updating the distances cannot be started unless the next shortest distance is known. 

Both DAP and CYBER-205 FORTRAN provide an instruction for finding the index of an array 

element with minimum value. The SISAL language has a serious drawback in this respect: first the 

minimum value must be obtained and then the corresponding index can be found. 

3.2.2. Floyd-Warshall 
The algorithm due to Floyd and W arshall computes the shortest path lengths for all pairs of vertices 

simultaneously. The arc lengths do not have to be nonnegative and the occurrence of negative length 

cycles is detected. At the Ith iteration, the shortest paths for all pairs of vertices are computed with 

intermediate vertices from the set {l, ... ,l}. The algorithm is as follows: 

for j":--1 ton do for i":--1 ton do dij":--C;j; 
for /":-- 1 to n do 

for j":-- 1 ton do for i":-- 1 ton do dij":--min{ dij,dil +dlj }. 

On the DAP processor (i,j) computes the length of a shortest path from vertex i to vertex j. At the 

Ith iteration, processor (i,j) needs the current shortest distances computed by processor (i,l) and pro­

cessor (l,j). This is achieved by broadcasting the Ith column of the distance matrix rowwise and the 

Ith row columnwise. This implementation restricts the problem size to 64. Bigger problems can be 

solved in this way by assigning more pairs of vertices to one processor. 

On the CYBER-205, the initializing loops and the last for i loop of the algorithm are pipelined. 

The Manchester dataflow machine will perform the algorithm in some arbitrary feasible order. 

Therefore, it might happen that values of different iterations are computed at the same time. 

3.2.3. Computational Results 
On all machines we solved problems of size n up to 60, with distances drawn uniformly from [l, 1000]. 

Dijkstra's algorithm is applied with all vertices as origin to make the results comparable to those of 

the Floyd-Warshall algorithm. On the DAP and CYBER-205 this has to be done sequentially, but on 

the Manchester dataflow machine simultaneous computation is possible. 

Floyd-Warshall Dijkstra 

number 
DAP 

CYBER CYBER 
DAP 

CYBER CYBER 

vertices 205 170-175 205 170-750 

10 0.0025 0.001 0.002 0.021 0.001 0.002 

20 0.0049 0.003 0.018 0.059 0.004 0.019 

30 0.0073 0.007 0.057 0.124 0.010 0.058 

40 0.0097 0.013 0.114 0.201 0.020 0.147 

50 0.0121 0.022 0.215 0.311 0.034 0.271 

60 0.0145 0.035 0.363 0.444 0.052 0.478 

FIGURE 11. Running times (in seconds) on the DAP, CYBER-205 and CYBER-170-750. 

On the DAP, Floyd-Warshall shows a linear behavior and Dijkstra a quadratic one due to the fact 

that the basic routine has to be applied n times in sequence. At problem sizes which are a multiple of 

64, a jump in the computing times will occur, after which the linear and quadratic behavior will con­

tinue. At those discontinuities, vectors and matrices outgrow their maximum size 64 and have to be 

split at the expense of longer computing times. On the CYBER-205, both algorithms have a cubic 

behavior, as on any sequential computer, but the solution times for these small problems are about 10 
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times shorter than on a CYBER-170-750. Dijkstra's algorithm has a worse performance than Floyd­
Warshall's. See Figure 11. 
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FIGURE 12. Performance on the dataflow machine. 

The simulator of the Manchester dataflow machine gives a linear behavior of S 00 for the Floyd­
Warshall algorithm. Due to the limited capacity of the matching store, the biggest problem we could 
handle was of size 20. Both versions of Dijkstra's algorithm have a nonlinear critical path length. This 
is because at each iteration a minimum has to be computed which takes O(log n) time in parallel. S 00 

is larger for the version using masks than for the one doing no useless work. For the total number of 
instructions performed and the overall parallelism it is the other way around. On a machine with a 
limited number of processors the former version will perform better, and on a powerful machine (or 
the simulator) the latter is to be preferred. Cf. Figure 12. 
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3.3. The Knapsack Problem 
Given n items, each with a profit c1 and a nonnegative weight a1 (j = l, ... ,n ), and given a knapsack 

with capacity b, one wishes to find a subset of the items of maximum total profit and of total weight 

no more than b. This can be formulated as an integer linear programming model of the following 

form: 
n 

maximize ~ CjXj 
j=l 

subject to 
n 
~a1x1 ~b, 
j=l 

Xj E {0, 1} (j = l, ... ,n ). 

The problem is ~<!J>-hard [Garey & Johnson 1979]. We consider two types of implicit enumeration: 

dynamic programming and branch and bound. 

3.3.1. Dynamic Programming 
We introduce the notation C(j,z) = maxsi;;{t, ... ,j} {~kESck I ~kESak~z}. Using the optimality principle 

of dynamic programming, one attains the maximum profit C(j,z) either by excluding item j and tak­

ing the profit C(j-1,z) or by including itemj and adding c1 to the profit C(j-I,z-a1). By recur­

sively applying this idea, we get the following algorithm [Bellman 1957]: 

for z+-0 to b do C(O,z)+-0; 
for j+-1 ton do 

for z+-0 to a1-l do C(j,z)+-C(j-1,z), 
for z+-a1 to b do C(j,z)+-max{C(j- l,z),C(j- l,z-a1)+c1 }. 

On the DAP, the obvious implementation is to compute the values C(j,z) for z = O, .. ,b in parallel 

and for j = l, ... ,n in sequence, where processor z computes the values C(l,z), C(2,z), ... ,C(n,z). Here, 

the DAP is considered as an one-dimensional array of processors. In iteration j, a processor needs its 

own C-value, that of its a1th neighbor, and c1. Using a DAP-FORTRAN shift routine, this is accom­

plished for all processors in parallel. Because the shift routines fill in zeros for non-existing values, all 

states z can be dealt with in the same way. In this way, we get an O(n) algorithm and a speedup of 

O(b), provided bis no greater than 4095. 
For the CYBER-205 basically the same procedure can be applied, although the parallel instructions 

are performed sequentially and a data shift is unnecessary. In the jth iteration, not all values C(j,z) 

have to be evaluated explicitly. For all z with ~kE{t, .. .,j}ak~z~b, all considered items fit together in 

the knapsack and hence C(j,z) = ~kE{l, ... ,J}ck. In terms of the algorithm: in each iteration it is 

sufficient to compute the C-values up to the sum of the weights of the items considered. On a truly 

parallel computer (with enough processors), this observation would make no difference, but depending 

on the problem at hand it can lead to substantial savings on the sequential CYBER-205. 

A SISAL version of Bellman's algorithm has been run on the Manchester datafl.ow machine. Since 

the computation is completely asynchronous, it might be possible that values of different iterations are 

evaluated at the same time, but a speedup of O(b) remains best achievable. 

3. 3. 2. Branch and Bound 
Branch and bound methods generate search trees in which each node has to deal with a subset of the 

feasible solution set. In the case that the objective function has to be maximized, at each node an 

upper bound on the optimal value of that node is computed. If at a node the upper bound is no 

greater than the best overall solution found so far, this node cannot produce a better solution and can 

therefore be discarded from further examination. Otherwise, a node is split in such a way that smaller 

subsets of feasible solutions can be considered separately while no feasible solutions are eliminated. 
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For the rest of this section we assume that the items have been ordered according to nonincreasing 
cla. 

For the ·knapsack problem we can derive an upper bound by relaxing the integrality constraints 
Xj E {O, 1} to O...;;xj,,..;; 1 (j = I, ... ,n ). This linear-programming-relaxation can be solved efficiently by a 
greedy algorithm and in the solution at most one variable will be fractional. Setting this variable to 
zero provides a feasible {O, 1 }-solution, which can be used for bounding the search tree. A node will 
be split by fixing variables to 0 or 1. Suppose, a node has the first k variables fixed (denoted by 
X1>···,xk), then we generate the subproblems {xJ> ... ,xk> l,free, ... ,free }, {x 1, ••• ,xk>O, l,free, ... ,free }, 
{x1>····.Xk>o,o, l,free, ... ,free} , ... , {x 1, ••• ,.Xk>o,o,o,o, ... ,o}. 

Since the evaluation of a node is hardly parallelizable and the DAP is an SIMD-type computer, the 
parallelism has to be exploited at the level of parallel evaluation of various nodes. By assigning each 
node to a different processor, at most 4096 nodes can be handled at the same time. In cases of branch 
and bound where the work to be done within a node very much depends on that node, the SIMD­
restriction of the DAP becomes a severe problem. Since the LP-relaxation of the knapsack problem 
can be solved in a regular way by a greedy algorithm, all nodes can be dealt with concurrently. How­
ever, all Pfocessors have to perform the same operation on data residing in the same place of their 
local memories. Therefore, specific information on a particular node cannot be taken into account 
satisfactorily. For example, fixed variables at one node may be free variables at another and the only 
way an SIMD machine can take care of this is by letting all processors look at all variables. Each 
time the nodes are split, the work has to be redistributed over the processors. If at any time more 
than 4096 nodes exist, a priority queue is needed and each time the 4096 'best' nodes are evaluated. 
In our situation, we chose for a lexicographical enumeration scheme, i.e., a parallel depth first process. 
The priority queue is maintained by all processors concurrently, but involves a lot of work. 

On the CYBER-205, the same implementation will work. Here, the newly generated nodes have to 
be composed to a vector in order to use the pipeline and a priority queue is necessary if the vector 
length exceeds 65535. 

On the Manchester datafiow machine, we would like to have a completely asynchronous implemen­
tation of the algorithm. The MIMD-type parallelism allows for efficient implementation of the compu­
tation of upper and lower bounds. To kill subproblems that cannot yield the optimal solution, at each 
time the best feasible solution found so far has to be known by all subproblems under consideration. 
Since in SISAL, because of the single assignment rule, no global updatable variables exist, the only 
way to accomplish this within the language is by synchronizing the subproblem examinations after the 
computation of the lower bounds. But, synchronization means waste of computing power as processes 
have to wait for each other. Therefore we used the same assembler routine as in the improved divide 
and conquer algorithm for simulating a global memory that contains the best overall feasible solution. 

3.3.3. Computational Results 
For the DAP and CYBER-205, we generated three types of problems. In type 1 the profits and 
weights are drawn uniformly from [1,64]. To get types 2 and 3, we added 512 and 1024 to both the 
profits and the weights. For all three types we considered instances with n = 100, 200 and 300; for 
dynamic programming b equals 4095, which is the largest problem size we can solve on the DAP 
without partitioning the program, and for branch and bound b equals 4200. From type 1 to 3 the 
knapsack problems are harder to solve by means of branch and bound methods. This comes from the 
empirical fact that, in general, they are more difficult if the number of items that fit into the knapsack 
is smaller and the profit/weight-values are varying less. 

Dynamic programming gives more or less expected results on the DAP. The estimated CPU time 
grows linear with n, but there is no distinction for the different types. Since the distance which data 
have to travel increases with increasing type numbers, one expects an increasing computing time. The 
only information which can be retrieved from the DAP, however, is the number of instructions per­
formed and that number is the same for all types of problems. The CYBER-205 computing times 
display the sequential nature of this machine. The running times are 20 times better than on the 



n type DAP CYBER-205 CYBER-170-750 

100 1 0.019 0.011 0.257 

100 2 0.019 0.022 0.420 

100 3 0.019 0.019 0.359 

200 1 0.038 0.036 0.832 

200 2 0.038 0.045 0.828 

200 3 0.038 0.039 0.704 

300 1 0.058 0.062 1.373 

300 2 0.058 0.067 1.238 

300 3 0.058 0.059 1.047 

FIGURE 13. Running times (in seconds) of dynamic programming 
on the DAP, CYBER-205 and CYBER-170-750 (b = 4095). 

CYBER-170-750. Cf. Figure 13. 
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Branch and bound turns out to be inefficient on both the DAP and CYBER-205 (see Figure 14). 

The search trees for the type 1 problems are narrow. This implies for the DAP that only a small part 

of the processors is doing useful work and for the CYBER-205 that the vector lengths are small. For 

the type 2 and 3 problems, the search trees are very broad. This ensures an economic use of the DAP 

processors and the CYBER-205 pipeline. But here the amount of work to redistribute the subprob­

lems over the processors on the DAP and to rearrange the subproblems into a vector on the 

CYBER-205 is enormous. This part of the program completely dominates the computation of lower 

and upper bounds. For these reasons the traditional CYBER-170-750 performs better than the DAP 

and CYBER-205. 

n 

100 
100 
100 
200 
200 
200 
300 
300 
300 

type DAP CYBER-205 CYBER-170-750 

1 0.2 0.01 0.01 

2 3.0 0.07 0.01 

3 5.0 1.78 0.25 

1 5.0 0.12 0.03 
2 18.0 3.51 0.10 

3 38.0 35.54 2.16 

1 11.0 0.36 0.06 
2 - - -
3 - - -

FIGURE 14. Running times (in seconds) of branch and bound 

on the DAP, CYBER-205 and CYBER-170-750 (b = 4200). 

On the Manchester dataflow machine, we only could run some very small problem instances. The 

profits and weights are drawn from [1, 100]. We generated problems with n = 10, 20, 30 and 40 and 

b = 100, 200 and 300. 

n b = 100 b =200 b = 300 n b = 100 b =200 b = 300 

10 418 431 437 10 30 70 106 

20 756 765 784 20 37 85 128 

30 1091 1109 1122 30 39 89 135 

40 1443 1466 1479 40 41 89 133 

(a) Critical path length. (b) Average parallelism. 

FIGURE 15. Dynamic programming on the dataflow machine. 
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FIGURE 16. Typical speedup curve for dynamic programming 
on the dataflow machine; n = 40 and b = 300. 

Dynamic programming shows an S 00 linear in the problem size n and a parallelism growing with b. 
With growing b more elements fit into the knapsack. This explains an increasing S 00 for constant n. 
Cf. Figure 15. For the problem instances considered, the hardware results are comparable: for less 
than 10 processors the speedup (the running time of the algorithm using one processor divided by the 
running time of the algorithm usingp processors) increases almost linear, after that hardly any gain is 
made (Figure 16). 

n b = 100 b =200 b =300 n b = 100 b =200 b =300 
10 892 1226 750 10 9 8 9 
20 1219 2300 1394 20 14 21 12 
30 1287 2735 1767 30 19 21 15 
40 4518 3407 5468 40 48 24 77 

(a) Critical path length. (b) Average parallelism. 

FIGURE 17. Branch and bound on the dataflow machine. 

Branch and bound results look promising. The S 00 and w correspond to the depth and the width of 
the search tree; see Figure 17. Because communication is cheap and the parallelism is fine grained, no 
time is lost in the assignment of tasks to processors. Therefore, it can be expected that problem 
instances for which broad search trees are needed can be solved efficiently on this sort of machines. 

4. CoNCLUSIONS 
The ICL-DAP and CDC-CYBER-205 are very well suited for performing regular and relatively sim­
ple computations in a fast way, due to their SIMD-type parallelism. They turn out to be inefficient if 
the behavior of the algorithm is irregular or cannot be predicted in advance. The problems solvable 
on the Manchester dataflow machine are still very small. However, the computational results give a 
strong indication that this machine seems to capture all sorts of parallelism. In Manchester, research 
is going on and one of the aims is an improvement of the matching store which is the bottleneck in 
the present configuration. Only after that, it will be clear how a dataflow computer will behave on 
more realistic problems. 
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