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We address the question of convergence of fully discrete Runge-Kutta approximations. We prove, that 
under certain conditions, the order in time of the fully discrete scheme equals the conventional order 
of the Runge-Kutta formula being used. However, these conditions, which are necessary for the result 
to hold, are not natural. As a result, in many problems the order in time will be strictly smaller than 
the conventional one, a phenomenon called order reduction. This phenomenon is extensively dis­
cussed, both analytically and numerically. As distinct from earlier contributions we here treat explicit 
Runge-Kutta schemes. Although our results are valid for both parabolic and hyperbolic problems, 
the examples we present are therefore taken from the hyperbolic field, as it is in this area that explicit 
discretizations are most appealing. 
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1. INTRODUCTION 

In many cases of practical interest evolutionary problems in partial differential equations (PDEs) 
are solved numerically by schemes which can be derived and implemented along the ideas of the 
well-known method of lines (MOL) approach. In this technique the numerical treatment of the PDE 
problem is thought of as consisting of two parts, viz. the discretization in space and the integration in 
time. In the space discretization the PDE is converted into a time continuous system of ordinary 
differential equations (ODEs) by finite difference or finite element techniques. This ODE system is 
then integrated in time by one of the many available integration schemes, e.g., a Runge-Kutta (RK) 
or a linear multistep scheme. To mention an example, which we discuss later in this paper, the classi­
cal 4-th order, 4 stage, explicit RK formula is often used to integrate in time hyperbolic problems 
arising in fluid dynamics [8, 14]. 

In this paper we address the question of convergence of fully discrete RK approximations to the 
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PDE solution. We prove, that under certain conditions, the order in time of the fully discrete scheme 
equals the conventional order of the RK. formula being used. However, these conditions, which are 
necessary for the result to hold, are not natural. As a result, in many problems the order in time will 

be strictly smaller than the conventional one, a phenomenon called order reduction. 
In the MOL literature the phenomenon of order reduction has got very little attention. In fact, we 

are only aware of a few papers on this topic. The contributions [1] and [12] deal with implicit RK. 
schemes. When applied to stiff systems of ODEs, not necessarily semi-discrete PDEs, these schemes 
also suffer from reduction of the order. This is the central issue of the B-convergence theory 

developed in [5]. In fact, the MOL paper [12] heavily relies on results from the B-convergence theory, 
whereas [1] is completely independent of it and concentrates on discretizations of ODEs in Banach 

space. As distinct from these contributions we here treat explicit RK. schemes. Although our results 
are valid for both parabolic and hyperbolic problems~ the examples we present are therefore taken 
from the hyperbolic field, as it is in this area that explicit discretizations are most appealing. 

The contents of the paper is as follows. In Section 2 we collect preliminaries on the (linear) PDE 
problem, the space discretization, and the RK. method. In Section 3 we examine the full local error. 
Here we present a detailed discussion of the order reduction phenomenon and explain that it will be 

present unless certain boundary conditions are fulfi.lled. It is emphasized, however, that these condi­
tions are not natural to the problem but arise as constraints by the use of the Runge-Kutta method. 
Section 4 deals with the behaviour of the full global error. Following [l, 2, 12], we here discuss a spe­

cial technique for transferring estimates of the local errors to the global one. This technique shows 
that the decrease in global order, although present, is not as marked as the standard convergence 
analysis would predict. Section 5 is devoted to a numerical illustration which nicely supports the 
theory. Then, in Section 6, we present a simple means for avoiding the reduction by transforming the 
given problem. Section 7 contains some final remarks and concludes the paper. 

2. PRELIMINARIES 

2.1. Partial differential problem 
We consider linear problems of the form 

u, = Anu + fn(t), xEO, 0 -s;; t -s;; T < oo, 

A ru = fr(t), x Ef, 0 or;;;;_t -s;;T, 

(2.la) 

(2.lb) 

u(x,O) given, xEO, (2.lc) 

where 0 is a spatial domain in R, R2 or R3, with boundary f and An denotes a linear, q-th order 
differential operator in D which differentiates the (possibly vector valued) unknown function u with 
respect to the spatial variables. The linear differential operator Ar possesses order -s;;q -1, acts on 

the boundary r and serves to introduce the boundary conditions (2.lb). Note that the inhomogene­

ous terms Jn, fr and the coefficients of An, Ar may depend on x. This dependence is not however 
reflected in the notation. 

2.2. Space discretization 
The discretization in space of the problem (2.1 ), by means of finite-elements or finite-differences, 

results in a Cauchy problem omit 

(2.2) 

Here h is the parameter of a grid in 0 U f and Uh = Uh(t) is an m-dimensional real vector consisting 
of approximations to u at grid points. The time-independent matrix Ah originates from An, Ar and 
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the vector fi,(t) arises from the inhomogeneous terms of (2.1). 
In what follows, we are interested in the behaviour of (2.2) as h~o. A crucial consideration is that, 

as the grid is refined, both the dimension m of (2.2) and the size of the entries of Ah will grow (these 
entries contain negative powers of the grid-spacing). As a result the problem (2.2) becomes increas­
ingly stiffer for h~O. We assume that, for h~O, the entries of Ah grow like h-q, with q the order in 
space of (2.1 ). 

We denote by uh(t) the restriction of u(x,t) to the spatial grid (or other suitable representation of u 

in that grid [10]) and by ah(t) the space truncation error defined by 

ah(t) = Ahuh(t) + fi,(t) - uh(t) . (2.3) 

We assume that (2.2) is consistent with (2.1) in the sense that, as h~O, max II ah(t) 11~0. 
O,..t,..T 

Throughout this paper, IHI denotes a chosen norm form-dimensional vectors and the corresponding 
operator form Xm matrices. The space truncation error will enter the analysis in Section 3. 

2.3. The Runge-Kutta scheme 
In order to numerically advance in time the solution of (2.2), we employ an explicit Runge-Kutta 

method. For our purpose it is convenient to describe this ODE method as it applies to a linear sys­
tem of ODEs of the form 

w = Mw + g(t), (2.4) 

with M a constant matrix. If wn denotes the approximation to w(wr) generated by the method with 
stepsize 'T, the step wn ~wn + 1 is performed by first computing recursively intermediate approxima­

tions Y1, Y2, · · ·, Ys through 
i-1 

Y; = wn. + 'T ~ aij [Mlj + g(tn + Cj'T)] , 
j=I 

and then setting 
s 

wn +1 = wn + 'T ~ b; [MY; + g(tn + C;'T)] · 
i=1 

(2.5) 

(2.6) 

Here a;1, b;, c;, i = 1, · · · ,s , j = l, · · · ,i -1, are coefficients associated with the particular RK 
method being used and s is. the number of stages. We denote by p the (classical) order of the method 

s 1-1 

and assume that i~ 1b;=l, 1~ 1 aij=c1, j=I, · · · ,s. We also set a5 +1,1=b1J=I, ···,sand Cs+ 1 =l. 

The local accuracy of (2.5) - (2.6) will now be investigated in a manner related to that common in the 
B-convergence theory [5,4] and slightly different from that based on Butcher trees. 

. -n -n+1 
We first consider a perturbed step w ~w 

_ -n i-1 _ 

Y; = w + 'T ~ aij [MY1 + g(tn +c1T)] + r; , (2.7) 
j=1 

-n+1 -n s -
W = w + 'T ~ b;[MY; + g(tn + C1T)] + rs+I , (2.8) 

i=I 

where the residuals r;, i = 1, · · · ,s + 1, measure to what extent the perturbed values w n + 
1

, w n, Y; fail 

to satisfy the equations (2.5) - (2.6). If we now subtract (2.5)- !2.6) from (2.7) - (2.8), we obtain a set 

of relations satisfied by the differences wn -wn,wn +
1 

-:;wn +1, Y;-Y;, i= I, · · · ,s. A straightforward 

recursive elimination of the intermediate differences Y; - Y;, i = 1., · · · ,s, leads to an expression for 
w n + 

1 
-wn + 1 in terms of the residuals, i.e., 

+l n s+I 
wn -wn+I = P(TM)(w -wn) + ~ Q; (TM)r;' (2.9) 

i=I 
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where P, Q;, i = I, · · · s + I, are polynomials. The degree of P is :s;;;s and Q; has degree :s;;;s + I - i. 

The coefficients of P,Q; can readily be expressed as functions of the coefficients aij, b;, c; of the 
method, but those expressions play no role here. Note that P is the usual stability polynomial. 

We next consider the particular case of (2. 7), (2.8) given by 
-n+l -n -
W =w(tn+1), W =w(tn), Y;=w(tn+C;T), i=l, · · · ,s, 

i.e., all the values are taken from the theoretical solution w(t). In this case, and assuming that w is 
smooth, we can write, for i =I, · · · ,s,s +I. 

i-1 

r; = w(tn +c;T) - w(tn)-T ~ a;j [Mw(tn +cjT) + g(tn +cjT)] 
j=l 
i-1 

= w(tn +c;T) - w(tn)-T ~ a;/v(tn +cjT) 
j=l 

(2.10) 

where again, dij are scalar functions of the coefficients of the method, whose expression is not needed 
here. Note that r 1 =O, since c1 =O. In (2.10) the remainder R; is 0(7"+1) and the constant in the 
0(7"+1) term depends only on the RK method and on w(p+l>. Substitution of (2.10) in (2.9) leads to 
the error relation, where we have taken into account that r 1 = 0, 

w(tn+1)-wn+l = P(TM)[w(tn)-wn] + (2.11) 

s+l ,f., s+l 
+ }:; Q;(TM) ,i; dij Ti w<i>(tn) + ~ Q; (TM) R; , 

i=2 j=2 i=2 

In the case where wn=w(tn) the difference w(tn+1)-wn+l is by definition the local error 1n+l. We 
have assumed the method to be of order p, so that 1n + 1 = 0( 7" + 1 ). Therefore in the right hand-side of 
(2.11) all terms involving power I', k ..;;;p, must cancel and this leaves us finally with an expression 

s+I 
1n+l = }:; P.ij ,,J+j M 1 w<i>(tn) + }:; Q;(TM)R;, (2.12) 

l,j i=2 

where, once more, P.ij are scalar functions of the coefficients of the RK method and the indices l,j 
satisfy J :s;;;/ :s;;;;s -1, 2..;;;j ..;;;p, p +I..;;;/+ j. 

EXAMPLE 2.1. We shall illustrate the foregoing derivation for the classical 4-stage, 4-th order scheme 
with the parameters 

0 0 
112 112 0 

112 0 
I 0 

112 0 
0 I 0 

116 1/3 113 116 

The stability polynomial P arising first in equation (2.9) is the ( 4,0) - Pade approximation to ez, 

(2.13) 

P(z) = I+z+l/2z2 +1/6z3+1/24z2 (2.14) 

and the polynomials Qi. · · · , Q 5 arising in (2.9) are given by 

_ ..!. ..!. 2 _I_ 3 _1_ 4 _ ..!. ..!. 2 _I_ 3 
Q 1(z) - 6 z+ 6 z + 

12
z + 

24
z, Q1(z)- 3 z+ 6 z + 

12
z , (2.15) 

Q3(z) = ~z+ !z2
, Q4(z)= !z, Qs(z)=l. 
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The expansions of the residuals r; introduced in (2.10) are 

r1 0 0 0 0 

r2 1 / 8 1 I 48 1 / 384 r~wOl(t.)] R2 

r3 - 1 / 8 - 2 / 48 - 3 / 384 .,-3w(3>(tn) + R3 (2.16) 

r4 0 2/ 48 8/384 'T4W(4)(tn) R4 

rs 0 0 0 Rs 

The local error in+ 1 given by (2.12) is found to be 

r1+1 = (-1-Mw(4) + -1 M2w(3) + _l_M3w<2>).,.S + 
576 288 96 

(2.17) 

-1 1 
( 1152 M2w(4) + 576 M3w(3))T6 + 

46~8 M3w(4) .,.1 + :± Q;(TM)R; ' 
i=2 

where all derivatives are evaluated at t=tn. The form of (2.17) will be used later in the paper. D 

3. BEHAVIOUR OF THE FULL LOCAL ERROR 

In this section we examine the behaviour of the full local error, i.e., the local error associated to the 
true PDE solution uh instead of the local error associated to the intermediate ODE solution Uh (cf. 
[13)). The subsequent analysis is carried out under the following hypotheses. 

(HI) The restriction uh(t) of the PDE solution possesses p + 1 derivatives u'1/>(t). Furthermore, 
llu~>(t)ll, j=O, 1.. .. ,p + 1, can be bounded uniformly in t and h. 

(H2) The space and time grid refinements are carried out subject to a restriction 

(3.1) 

where A. is a fixed positive constant and q the order in space of (2.1 ). 
(H3) For grid refinements satisfying (3.1), the expression.,. llAhll can be bounded independently of.,. 

and h. (The bounds can nevertheless depend on A..) 

The local error (at tn +1) of the fully discrete solution as an approximation to the PDE solution is 
defined by 

/'/,+I = Uh(tn +I) - qjluh(tn) , (3.2) 

where %th(tn) represents the result of a RK step for the system (2.2) starting from uh(tn). Our task in 
this section is to derive bounds for 11/g + 1 11 of the form 

C(-1' + .,. max llah(t)ll) , (3.3) 
O.:;,r.:;,T 

where C denotes a constant independent of tn,T and hand k is a positive number. We will see that in 
order that the bound (3.3) be uniform in h, the exponent k must sometimes be taken smaller than 
p + l, the value one naively expects from the behaviour of the RK method as applied to ODEs. 

In order to derive an expression for lg + 1, we consider in (2. 7) - (2.8) the perturbed step 
-n+I -n - · Th · al ak h 
w = uh(tn+ 1), w =uh(tn), lj=uh(tn+cjT),j=I, · · · ,s. e res1du s r; now t e t e form 
( cf.(2.3), (2.10)) 

i-1 

r; = uh(tn +c;T) - uh(tn)-T ~ a;j[Ahuh(tn +cjT) + Jh(tn +cjT)] 
j=I 

(3.4) 
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i-1 

= uh(tn +c;T) - uh(tn)-T ~ aij[uh(tn +cjT) + cxh(tn +cjT)] 
j=I 

where dij are th~ coefficients found in (2.10) and R; contains not only the remainder in the Taylor 
expansion of uW>(tn +cjT), but also the term T'2.aijcxh(tn +cjT). From these considerations and the 
hypothesis (HI) it is clear that the norms llR;ll satisfy a bound of the form (3.3) with k=p+l. On 
proceeding now in a manner similar to that in the previous section, we find 

s+I 
+I 1+· I (i) l~ = ~ P.ij 'I . 1 Ah UJi (tn) + ~ Q;(TAh)R; , (3.5) 

0 i=2 

where the summation l,j extends to I..;;;l..;;;s-1, 2..;;;j..;;;p, p+I..;;;l+j. We now proceed to bound 
I}! +I. 

LEMMA 3.1. Under the hypotheses above the norms llQ;(TAh)ll, i = 1, · · · ,s + 1, can be bounded indepen­
dently of T, h. 

PROOF. This follows directly from (H3), since llTj A{ II ..;;;; llTAh IV. D 

After this lemma, it is clear that the second term in the right hand side of (3.5) can be bounded in 
the form (3.3) with k =p + 1. In estimating the first sum at least two different settings may be con­
sidered. 

(SI) If the further assumption is made that the norms llAh uW>(tn)ll are bounded uniformly in 
tn and h, then Ill~+ 1 11 is bounded by (3.3) with k = p + I. 

(S2) If no relation is assumed between the powers of Ah and the derivatives of uh(t), then to bound 
a term like .,J+jAh uW> uniformly in h, one must write 

11.,J+jAh uW>n = Tjll(TAh)1 uW>11..;;; TjllTAhll1 lluW>n 

and employ (HI) and (H3). The price to be paid is that now the order in T is j rather than p + l, and 
in general the local error (3.5) contains terms withj=2. (See in (2.17) the term (1196) i>A~u~> that 
one gets for the classical RK4 scheme). In this way only an O(~) bound is obtained, regardless of the 
value of the classical order p. Note that this order reduction is not induced by lack of smoothness in 
u(x,t), but rather by the presence of powers of Ah in the expression for the local error, as these 
powers will contain negative powers of h. 

In the above it was tacitly assumed that for the l and j considered the coefficient P.ij of -1 + j Ah uW> in 
(3.5) is not equal to zero. Trivially, if P.ij =O, this term does not cause reduction. In the standard 
schemes of order p with p stages (p = 2(1 )4) the coefficient Pp - i,2 associated with the term with highest 
order reduction carmot be zero. Schemes can be constructed with zero P.ij coefficients. However, only 
at the price of introducing additional stages for a given order p. 

Between the extreme settings (SI) - (S2) one can conceive situations (S3) where one knows that 
llAhuW>ll · h1 = 0(1) for a certain y<ql. Then (H2) shows that 11-!+jAhuW>ll behaves like 
O(Tj+t-yfq), which is a more favourable estimate than the O(Tj) stemming from (S2). 

The following example should be helpful in illustrating the relevance of distinguishing the three 
situations (SI) - (S3). 

ExAMPLE 3.1. We consider the simple model hyperbolic problem 

u, = -ux + fn(x,t), o..;;;x..;;;1, o..;;;1..;;;1' 

u(O,t) = fr(t), O..;;;t..;;;l, 

(3.6a) 

(3.6b) 
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, u(x, 0) = u0(x ), O~x ~ 1 , (3.6c) 

which is assumed to possess a smooth solution. (This requirement implies not only that 

u0 , h. and fr are smooth, but also that they satisfy certain compatibility conditions whose expres­
sions are of no consequence here.) If m is a positive integer, a uniform grid xj = j / m(O~ ~m) is 
introduced in [O, 1 ], and (3.6) is discretized in space as follows (h = m - l) 

U1 -1/h u, fn(x1>t)+h- 1fr(t) 

l/h -1/h fn(x2,t) 

l/h -1/h + fn(x3,t) (3.7) 

Um 1/h -1/h Um fn(l,t) 

We work with the usual L 2-norm. When the matrix Ah acts on a vector vh obtained by restricting to 
the grid a smooth function v(x),O~x~l, the 2nd 3rd, ... , m'h entries in Ahvh approximate values of Vx 

and therefore can be bounded independently of h. However the first entry in Ah vh will behave like 
h - I leading to a h - I I 2 behaviour of llAh vh II, unless v satisfies the homogeneous boundary condition 

v(O)=O. It follows that the term 1"+ 1AhuW> is 0(1"+ 1), uniformly in h, if uW> is 0 at the boundary, a 

condition which is of course satisfied if the boundary term fr(t) is identically zero, but not in general. 
To sum up, iffr=O then the term -il'+IAhuW> that features in (3.5) if s;;a.2, behaves like 0(1"+ 1) uni­
formly in h, but in other case it may behave only like 0(1"+ 112) (use the arguments in situation (S3) 

above, with q = 1 and y = 1 / 2). 
In a similar vein A~vh is bounded if v(O)=O and vx(O)=O. If in (3.6) fr-o and fn(O,t)=O, then 

both u and Ux will be zero at the boundary and as a consequence the same will be true for all their 
derivatives with respect tot. In this case the terms Tj+l A~ uW>, j=p-1, p, which feature in (3.5) if 
s;;a.2 are O(rj+2) uniformly in hand consequently 0(1" +1). 

However, in general, llA~vhll behaves like h-312 and this results in a reduction to 0(1"- 112) in the 

term 1"+ 1A~uw- 1>, and a reduction to O(-i/'+ 112 ) in 1"+2A~uw>. The general trend should now be 

clear: for a method with s stages the optimal exponent k = p + 1 in (3.3) cannot be obtained unless the 

theoretical solution u(x,t) satisfies s -1 boundary requirements 

u(O,t)=O, ux(O,t)=O, ...• w- 2 I axs - 2)u(O,t)=O 

that render it possible for AhuW>(I~l~s-1, 2~j~, p+l~l+j) to remain bounded uniformly in 

h. These s-1 boundary requirements for u will be satisfied if and only if Jn, fr do not violate a set 
of s-1 constraints fr O,fn(O,t)=O, ···,(as-31axs-3f 0 (0,t)=O. We emphasize that such con­

straints are induced by the numerical method and are not related to the compatability conditions that 

fr,f0 ,u0 must satisfy in order that u be smooth. Perhaps it is useful to point out that for homogene­
ous problems (homogeneous boundary conditions and no forcing term), the above constraints are 

trivially satisfied and no order reduction occurs. 

4. BEHAVIOUR OF THE FULL GLOBAL ERROR 

We now turn to the full global error defined by 

eZ = uh(tn)7Un (4.1) 

where un denotes the fully discrete solution at time tn. Our aim is to derive bounds of the form 

lleZ + 1 11 ~ C( .,k + max llah(t)ll) , ( 4.2) 
Q.;;;1.;;;T 

with Ca constant independent of tn, T, h, and k a positive number that we would like to be pin view 

of the order of the RK method when applied to an ODE. Our first result is 
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THEOREM 4.1. Assume that (HJ) - (H3) hold, that llAiu}l\tn)ll can be bounded uniformly in h and 

tn, for 2~j~. l=p +I -j, and that for each h and 'T, llP(TAh)ll ~ 1. Then the convergence estimate 

(4.2) holds with an optimal value k=p. 

PROOF. For I ~l~s-1, 2~j~, p +I ~l + j we can write 

11-i.l+j Aiu}!> II~# +I ll'TAhll1+j-p-I llA~ +I-ju}/> II =0(# +I), 

so that the local error in (3.5) possesses a bound (3.3) with k=p+l. This bound and the stability 

assumption llP('TAh)ll~l lead, in the standard way, to (4.2) with k=p. D 
Some remarks are in order: First, we have required assumptions on llAiu}/>11. We saw in, the previ­

ous section that these requirements are not naturally fulfilled in the applications, except if the PDE 

problem is homogeneous. Secondly, the stability condition llP(TAh)ll~l is satisfied if the norm under 
consideration derives from an inner product, the matrices Ah are normal and A in (3.1) has been 

chosen so that the eigenvalues of 'TAh lie in the stability region S of the RK method 

S = { z : jP(z )j ~ 1 }[9]. For nonnormal matrices this condition on the eigenvalues is necessary but not 

sufficient. An interesting sufficient condition involving the stability region S has been given by 

Spijker, [11], Th. 6.1. 
In the general case where llAiu}/>11 are not bounded the analysis in the previous section only 

guarantees a -r2-bound for the local error, leading via stability to an exponent k = 1 in ( 4.2). A finer 

study of the local error, along the lines of what we called (S3) may result in ,Jc+1-bounds for the 

local error, with 2<k + 1<p+1 and lead to 7"-estimates of the global error. 
An important point we want to make now is that the standard approach of transferring the local 

errors to the global error via stability (first bounding and then adding) can be unduly pessimistic [12]. 

An alternative t~hni~ue, essentially used in [1], [2], [12] will now be presented. We consider one of 

the terms JL1j-r1+1Aiu}I» l~l~s-1, 2~j~, p+ l~l+ j, that may suffer from reduction. This term 

contributes to the global error ei by an amount 
n 

ai = JLlj -r1+j ~ P('TAh)n-i Ai u}/>(t;-1). 
i=l 

Assume that the matrix (I -P('TAh))- 1-rAh can be defined and satisfies a bound 

ll(J-P(TAh))- 1TAhll ~%, 

(4.3) 

(4.4) 

with% independent of T,h. (The feasibility of this condition is discussed later). Then in (4.3) we can 

write 

n 
. ~ P ('TAh)n-iAi-lu}/>(t;-1) 
i=l 

= JL1j-r1+j- 1[(1-P(TAh))- 1TAh] · [Ai- 1u}f>(tn-d - P(TAhfAi- 1u}f>(to) + 
n-1 
~ P(TAhf-;Ai- 1(u}/>(t;-1) - uW>(t;))]. 
i=I 

The following result now follows easily: 

THEOREM 4.2. Assume that (HJ) - (H3) and (4.4) hold and that as h,'T vary llP(TAh)ll~l. Then the con­

tribution to the global error of a term JLljAiuY>, l ~l~s -1, 2~j~, p + 1 ~l + j, possesses a bound of 

the form 

(4.5) 
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PROOF. It is enough to write 

The advantage of the new approach is that we have got rid of one power of Ah, i.e., w,e are now 

dealing with A~-l instead of the A~ we started with. In the worst case, where j=2 and no: relation is 

assumed between A~-l and the derivatives of uh, the bound (4.5) is O(-r2), as shown by (H3). Recall 

that in the standard approach we only proved an O(T) bound for the global error in the worst setting 

(S2) (cf. Th.4.1). 
Before we close this section the feasibility of ( 4.4) should be discussed. The rational function 

qi(z)=(l-P(z))- 1z is finite if P(z)*l. Now, by consistency, P(z)=l+z+O(z2), so that for 

z=O,P(z)=l. But nevertheless qi(O) is finite. Therefore, (I-P(TAh))- 1TAh exists if TAh has no 

nonzero eigenvalue on the boundary of the stability region, a requirement only marginally more 

demanding than the spectral necessary stability condition mentioned above. Furthermore, slight 

modifications of sufficient stability conditions guarantee the existence of a uniform bound ( 4.4). Two 

instances are given in the next proposition. 

PROPOSITION 4.1. Each of the following two conditions is sufficient for (4.4) to hold: 

(i) The norm IHI is an inner product norm, the matrices Ah are normal and as T,h vary the eigen­

values of TAh remain in a closed set F contained in {O}U(S-aS), where as is the boundary of 

s. 
(ii) The norm 11·11 is an inner product norm and a positive number p exists such that the disk 

{z: lz+pl :o;;;;p} is contained in {O}U(S-aS) and, as T,h vary, llTAh+plll :o;;;;p. 

PROOF. (i) The rational function qi(z) =(1-P(z ))- 1 z is bounded in F. If l«z )I :o;;;;:J( in F, then 

ll(I - P(TAh))- 1TAhll = max{ 4>(µ.):µ.eSpec (TAh)} :o;;;;:J(, 

where we have used the spectral theorem and the fact that qi(TAh) is normal. 
(ii) This follows from a theorem due to von Neumann [7] (cf. [2]. [6], [11]). D 

5. NUMERICAL ILLUSTRATION 

ExAMPLE 5.1. A simple experiment will be presented first which clearly shows the order reduction 

phenomenon. We consider the simple semidiscretization of Example 3.1 together with the classical 

fourth order RK.-scheme (2.13). The mesh-ratio parameter "A is taken to be 1, a choice that guarantees 

that llP(TAh)ll .;;;1 and that (4.4) holds. (Use Th. 6.1 in [11] and Proposition 4.1, (ii)). Furthermore, 

we take u0(x) = 1 + x, fr(t) = 1/(1 + t), fn(t)=(t-x)/(1 + t)2 so as to have the simple solution 

u=(l+x)l(l+t). Since this is linear in space, ah=O, i.e., there is no error introduced by the space 

discretization. 
The time derivatives of u are not zero at the boundary; and then the analysis in Example 3.1 shows 

that the term r'(1196)A~u~2> behaves only like ,.i.s uniformly in h, leading to a decrease in local order 

of 2.5 units. The other terms of the local error involve higher powers of T or lower powers of Ah and 

therefore suffer from reductions which harm less than that of the .r5 A~u~> term. The conventional 

bound for the global error would show a O(Tl.5) behaviour of the global error, uniformly in h. How­

ever, the use of Theorem 4.2, reveals that the global error possesses a better, O(-r25 ), bound. Moreover 

the exponent 2.5 cannot be increased because at t 1 the local and global errors coincide and we know 

that the local is not better than O(-r2.s). Table 5.1 shows the L2-errors at t= 1. 
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Table 5.1. 

h-1 
T-1 10 20 40 80 

10 .3110-4 
20 .1210-5 .4910-5 
40 .6210-7 .2010-6 .8310-6 
80 .3510-8 .1010-7 .3410-7 .1410-6 

From the table we computed the observed order of convergence obtained. The notation 
(1 / 10, l / 10)2.66(1 / 20, l / 20) denotes that an order of 2.66 was observed when refining the grid 
from T= 1/10,h = 1/10 to T= 1/20,h = 1/20, i.e. 2.66= log10~/ log102, where ~ denotes the ratio 
of the error at ( 1 / 10.1 / 10) to the error at ( 1 / 20, 1 / 20). The rows of Table 5.2 display the 
observed order in the simultaneous refinement of T and h, where the effect of the reduction is clearly 
seen. 

(1110, 1110) 2.66 
(1120, 1110) 2.58 
(1140, 1110) 2.63 

(l/20, 1120) 
(1140, 1120) 
(l/80, 1120) 

Table 5.2 

2.56 
2.55 

(1140, 1140) 
(1180, 1140) 

2.56 (1180, 1180) 

The rows of Table 5.3 provide the order observed when in Table 5.1, the attention is focused in 
successively halving T with h fixed along the row. 

(1110, 1/10) 
(1120, 1120) 
(l/40, 1140) 

4.69 (1/20, 1/ 10) 
4.61 (1/40, 1/20) 
4.60 (1/80, 1/40) 

Table 5.3 

4.27 
4.32 

(1/40, 1/10) 
(1/80, 1120) 

4.14 (1180, 1110) 

Thus, on a fixed spatial grid there is no order reduction visible. Of course, this is the behaviour one 
should expect as one is now solving a fixed system of ODEs. With our fourth order method, the 
order asymptotically behaves like C-r4 on each fixed grid. The issue at hand is that C depends on the 
choice of mesh and increases with decreasing h. This is very clearly borne out in the last row of 
Table 5.1. 

6. AVOIDING ORDER REDUCTION 

In this section we suggest a simple means for avoiding the order reduction. Although the principle 
is quite general, we prefer to describe it in the context of a concrete situation. We consider again the 
model problem (3.6) and the classical RK method, but now the simple discretization (3.7) is replaced 
by the 4-th order scheme 

. . . 
(1 /6)[Cf;-1 +4U;+ Uj+d = (1 /(2h))[U;-1 - Uj+d + (6.1) 

(1/6)[fn(xj-I>t)+4fg(xj,t)+ fn(xj+i.t)], j= l(l)m-1 , 

with 
. . 

(1/6)[Um-1 +2Um] = (1 / (2h))[Um-1 - Um]+(l / 6)[fo(Xm-I>t)+2Jn(xm,t)] (6.2) 



11 

near the boundary x = 1. Note that (6.1) - (6.2) is the result of the Product Approximation Galerkin 
technique based on piecewise linear test functions [3]. 

From an analysis similar to that presented before an order reduction is to be feared, unless /rJ,,f r 
satisfy the two constraints /r-o, fn(O,t)=O necessary for Ah,A~ to act boundedly on the time deriva­
tives of uh. Now if w(x,t) is a known function, then v =u +w satisfies the transformed problem 

where 

v1 = -vx +g0 (x,t), 

v(O,t) = gr(t) , 

go =fo+w,+wx 

gr = /r+w(O,·) 

(6.3) 

(6.4) 

are known functions. The idea is to choose w such the application of the numerical method to the 
problem (6.3) does not cause reduction (i.e., gr=O,g0 (0,t)==<>), and then solve numerically for v and 
retrieve u from u=v-w. The finding of w is not difficult here. One may for instance choose w(x,t) 
to be of the form w(x,t)=a(t)+x/3(t) and then the conditions on g0 ,gr readily determine a(t) and 
/3(t). 

The left half of Table 6.1 gives the L 2-errors for u when the integration is performed on (3.6) with 
fo.fr,uo chosen so that the solution is u(x,t)=cos(lOt)exp(- lOx). The right half of the table 
corresponds to errors in u when the numerical integration is performed on the transformed problem 
(6.3). The results are in complete agreement with the theory. 

Table 6.1 

T=h error order error order 

I I 10 .4610-2 .490-2 

1 /20 .5210-3 3.14 .2110-4 3.88 

1 /40 .7610-4 2.77 .2110-4 3.88 

1/80 .1310-4 2.54 .1410-5 3.91 

7. CONCLUDING REMARKS 

The attention here has been restricted to linear problems. Order reduction also takes place for non­
linear problems and the mechanism involved there is essentially the one we have discussed. The 
extensions of the analysis to the nonlinear case is possible but becomes rather technical and offers no 
new insight. 

For implicit RK. schemes the main ideas of our analysis are still valid. However, the interest there is 
in situations where T and hare not related and therefore our hypothesis (H2) and (H3) should be for­
saken. The details of the analysis become then quite different [1, 12]. The technique for avoiding the 
order reduction outlined in Section 6, can also be used with implicit schemes. In fact we have 
employed it with success to retrieve the 3rd and 4th order of convergence of the diagonally implicit 
RK. schemes discussed in [12]. 

It is fair to say that in practical problems the negative effects caused by order reduction are likely 
to be less important than those stamming from other sources, such as errors in space, instabilities at 
boundaries, curved boundaries, etc. However, the understanding of this phenomenon is essential in 
situations where one is interested in higher order methods. 
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