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INTRODUCTION 
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This paper deals with the problem of recursively estimating a d-dimensional parameter that occurs in 
the intensity process of a counting process. Off-line estimation procedures, such as maximum likeli­
hood estimation, have been analyzed in a number of papers, for instance those written by LIN'KOV 
[8], KUTOYANTS [5], SAGALOVSKY [11), KONECNY [4] or OGATA [9]. They proved that under certain 
conditions that differ from paper to paper the maximum likelihood estimator has desirable properties, 
such as consistency, asymptotic normality and efficiency. For recursive estimators these properties 
remain to be investigated. We will establish these in a rather specific situation namely that where the 
intensity process A has the form A1 = (JT "'" where cJ> is some other observed process with values in Rd 
and fJERd the parameter. Two algorithms are presented that generate recursive estimates and their 
asymptotic behaviour is analyzed. Both the issues of almost sure convergence and the asymptotic dis­
trubution of the estimators are treated. The first one is attacked by means of a stochastic Lyapunov 
techinque while for the second one we use central limit theorems for martingales. Some examples 
illustrate the theory. 

1. NOTATION AND CONVENTIONS 
We assume that aii the stochastic processes that will appear in the sequel are defined on some fixed 
complete probability space (Il, <ff,P). We also assume that all these processes are adapted to a complete 
right continuous filtration {~ },.,.0 generated by the observations. With respect to this filtration a 
counting process n :Il X [O, oo )~No is a submartingale that enjoys the Doob-Meyer decomposition 

n =A+ m 

where A is a predictable increasing process and ma local martingale [l]. 
We assume that A is an absolutely continuous process of the form 

t 

(1.1) 

A, = j q,'{ (J ds (1.2) 
0 

where fJER~ and cp:IlX[O,oo)~R~ is some other observed process which is assumed to be predict­
able. The non random parameter (J is unknown and is to be estimated on the basis of the observa­
tions n1 and q,,. We will denote by 80 the "true" parameter value. We will often use instead of (1.1), 
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(1.2) the differential notation 

dn, = ct>T8dt + dm,, n0 = 0 (1.3) 

2. THE ALGORITHMS 

2.1 Least Squares Algorithm. A 

For this algorithm the estimators 8,,t~O of 8 are given by the following two equations. 

dO, = R,c/>, (dn,-ct>TO,dt), 00 (2.1) 

dR, = - R,c/>,c/>T R,dt, R 0 (2.2) 

Here R 0 is taken to be a symmetric positive definite matrix. Observe that (2.2) guarantees that R, 
stays symmetric and positive definite for all t. If we would take R01 =O (which is not positive), then 

t t 

O, = lfc/>scf>'!dsr 1 f cf>sdns (2.3) 
0 0 

A A 

satifies (2.1), (2.2) with 80 =O. It is easily seen that 8, given by (2.3) minimizes 
t t 

j(cf>'{8)2ds - 2 jct>'{8dn3 

0 0 

~s a function of 8, which accounts for the name of the algorithm [11]. In [13] it has been proved that 
8, as given above converges with probability one to 80 • We quote the precise result. 

A 

THEOREM 2.1: Let {8,} be given by (2.1), (2.2) and let 
t 

i/Jt = ct>Tc/>,, 'I',= fi/Jsds + tr(Ri) 1
) 

0 

Assume that the following three conditions are satisfied 
(i) as - fun v, = oo 

t->00 
00 

(ii) f v;-21/1,cp,dt < 00 a.s. 
0 

t 

(iii) as-fun '1'; 1 fc/>scf>'{ds= C>O 
t->00 0 

Then A 

i) as - fun 8, = 80 
t-+00 

The algorithm (2.1 ), (2.2) is invariant under non-singular ~ear transformations in the following sense. 
Let SEl!l®J be a non-singular matrix. Write 11=S8, ~,=S8,, ~,=S-rc/>, and T,=SR,sr. Then (2.1), 
(2.2) transform into 

d~, = T,~,(dn, - ~;~,dt), ~o 

dI'i = - T,~,~TT, dt, T0 

which is exactly the least siuares algorithm that corresponds to dn, = ~T 11dt + dm,, but this is noth­
ing else then (1.3) because ~' 11 = ct>T 8. 
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We apply theorem 2.1 to some examples. 

ExAMPLE 2.1: Let <f>:[O,oo)~R;_,</>1 = [l,l+sint]. Then '1'1 =; t-2cost - sin2t + tr(Ri)i). Clearly 

assumptions 2.1.i and 2.1.ii are satisfied and 

1 ; 1 [l 
lim qr-I f <P. </>T ds = lim - J 
1_,.00 

1 

0 
s s 1-+oo t 

0 
1 +sins 3 I ds 

l+sins ] 

2+2sin s - 2cos2s 

= :[~ ;] 

ExAMPLE 2.2: [see 13]: let 

</>[O,oo)XO~R;_,</>1 = [l,l+(-lt'-f,8=[81 82f 

Then '1'1 =(3+2X1)t, where 

I 

X1 = _!_ j (-lt'ds. 
t 0 . 

-82 
From [13] we know that lim X1 = 

8 
+

8 
a.s. Assumptions 2.1.i,ii are easily seen to be satisfied and 

1-+oo I 2 

. -I I T - 1 [81 +82 81 l 
lim '1'1 J </>s<f>s ds - 38 +8 8 28 >0, 
1-+00 O I 2 l l 

ExAMPLE 2.3: let X be a Markov process which takes its values in {O, I}. Assume that the holding 

times in 0 and 1 are exponentially distributed with means /lo and p.1 respectively. Assume that n1 has 

intensity 81X1_ +8o(l-Xi-) which is left continuous, thus predictable. So </>1 =[Xi- I -X1_f. Now 

'1'1 = t + tr(Ro 1 ). Again assumptions 2.1.,ii are easy to verify and 

lim- </> </>T ds = lim - ds = I 1 1 1 [Xs 0 l 1 [f.LI 0 l 
1-+00 i't I 8 8 

Hoo t I 0 1 - X"s p.1 +/lo 0 /lo 

2.2. Approximate Maximum likelihood Estimation 
Before stating the estimation algorithm, we prefer to formulate a preliminary version of it and provide 

a heuristic derivation. 

The preliminary algorithm is 

" - Q1</>1 T" " 
d81 - -,..- (dn1 -<1>1 81dt), 80 

<Pf 8,_ 
(2.4) 

dQ - - Q1</>1</>tQ, d Q 
1 - T" t, O 

</>1 81 
(2.5) 

We will give three approaches that suggest, at least heuristically, the form of this preliminary algo­

rithm. The first one is based on a "implicit-function theorem" type argument (2.2.1 ). The second 

approach is based on an associated filtering problem (2.2.2) while the last one uses an asymptotic 

expression of the likelihood functional (2.2.3). Before presenting the three approaches we give the for­

mula of the likelihood functional which is the Radon-Nikodym derive dP1 / dQ" where P1 is the 
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measure on the trajectory space of counting processes defined on [O,t] that is induced by (2.3) and Q, 
the measure on the same space induced by a standard Poisson process. In order to express the depen­
dence of dP,!dQ, on D we write L,(O)=dP,ldQ,. Then the following expression holds [l,p.171] 

00 t 

L,(D) = exp[llogq,[Odns - l (q,'[O- I)d\-] (2.6) 
0 0 

A 

2.2.1 The maximum likelihood estimator O, by definition maximizes (2.6). 
A 

Equivalently, D, minimizes 
t t 

J,(O) = lq,'[OtM- - llogq,'[Ddns (2.7) 
0 0 

If differentation with respect to() under the integral sign is allowed we look for zero's of 

t t 'f>s 
1,(0) = \l fJ J,(O) = l 'f>sd\- - l--;;;-dns (2.8) 

0 O 'f>s () 

If J,(D) = J(t,O) h,ilppens to be a smooth function of both D and t, it follows from the implicit func­
tion theorem that D, satisfies the equation 

dA A - a A 

dt D, = - [\l (J 1,(0,)] I a;l,(D,) 

A similar expression in the present situation where l,(D) is not smooth, but has jumps, is 

do, = - ['V (J 1,('iJ,_ )r 1 a,1i<8,_) (2.9) 

where a, is the forward partial differential operator with respect to t. Since we have 

and 

A q,, 
d,l,(D,_) = 'f>,dt - -A-dn, 

q,TD,_ 

' 'i>s'i>I 
\l 8 l,(D) = l ---:r--

0 2 dns 
O ('f>s ) 

equation (2.9) becomes after writing Q,=(\18 l,(O,)r 1 

A Q,_q,, TA 
dD, = A (dn, -q,, D,dt) 

q,TD,_ 
(2.10) 

The next problem is to find an evolution equation for Q. Recall that one of the objectj_ves is that the 
algorithm gives us strongly consistent estimators. Therefore we should have for large t O,RjD0 • Hence 
for large t 

Q-1 ......, lt 'f>s'f>I d = lt 'f>s'f>I ,,_ + lt 'f>s'f>I d t ,...., T 2 ns T u.,- T 2 ms 
o ('f>s Oo) o 'i>s Oo o ('i>s Oo) 

(2.11) 

The last term of the right hand side of (2.11) is a zero mean martingale. We get a new approximation 
of Q;- 1 by deleting it: 

Q;-1 Rj J 'i>s:I £M-
o 'i>s Do 

A 

Finally we replace Do by Ds and we arrive at 
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dQ - - Q1c/>1cJ>T Q1 d 
I - A t 

c/>f 81 
(2.5) 

Observe from (2.5) that Q1 is continiuous. Consequently (2.10) is indeed (2.4). 
I 

2.2.2. Another way of arriving at (2.4), (2.5) is the following. Consider the following filtering prob­
lem. We have an observation equation 

dn1 = cJ>T Odt + dm1,no =O 

Here c/> is a ~-predictable random process where~ =o{n3 ,0.;;;;;s.;;;;;t} and 0 is an unobserved random 
parameter, that is o((J)</.~ for all t. It is !?J.own [1] that the optimal (in mean squared error sense) 

estimator of 0 given the observations ~ is 01 : = E[O I~], and that it satisfies the following equation 

A - P1-c/>1 TA A -

d01 - -A- (dn1 -cj>1 01dt), 00 -EO. 
cJ>f 81-

Here P1 is the conditional covariance matrix E[(0-01)(0-0,ll~] and satisfies 

- P1c/>1c/>T P1 A A T A T 
dP1- - A dt+[E[(0-81)(0-0,) (0-81) c/>11~1 

cJ>f 81 . 

P1c/>1c/>T P1 1 TA 
- A 11=1- -A-(dn1 -cj>1 O,dt) 

cJ>f 81 cJ>f 81-
I 

In this setting the innovations process n1 - J cJ>'IOsds is a martingale with zero mean. We can approxi­
o 

mate this equation by setting the martingale term zero. Denoting the approximation of P1 by Q1 we 
find as a truncated second order filter 

A Q1c/>1 TA 
d01 = A (dn1 -cj>1 01dt) 

cJ>f 81-
(2.12) 

dQ, = - QI c/>i;! Q,dt (2.13) 
c/>1 81 

It can be argued th~t the effect of the prior distribution of 0 decays with time. Hence we will even;u­

ally get estimators 01 of 0 that are hardly depending on the prior distribution. Consequently the (J/s 
for large t will not change much if we would take 0 as a deterministic parameter. This suggests the use 
of the same formulas (2.12), (2.13) for our original estimation problem. 

2.2.3. A third way to obtain the recursive scheme (2.4), (2.5) is to make use of an asymptotic expres­
sion of the logarithm of the likelihood functional. This expression expression, that reveals the so 
called local asymptotic normality property (LAN), is a key result in proving consistency and asymp­
totic normality of the (off-line) maximum likelihood estimator [5,6,8]. Of course the same properties 
are desired for our recursive estimator. We will exploit the LAN property for the case where c/> is a 
deterministic function. Similar considerations can be found in [2]. Denote by P 8 the probability 
measure on the space of counting process trajectories induced by a counting process with intensity 

c/>T 0. Define 

Q1 = d c/>s:I dsJ-1 
o c/>s Oo 

Let ue~d and denote by Z1(u) the restriction of dP80 +Q;u / dP0
0 

to the space of trajectories defined 

on [O,t]. Under certain conditions (the precise form of those are not important at this point) we have 
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the following result [5, 6] 

I t ,i.. 

- T-2 J 'I's ..!_ T logZt(u) - u Qt -T -dms - 2 u u +Pt 
o <Ps Do 

(2.14) 

where p is a stochastic process that converges to zero in probability for t ~ oo and Q~ j ~s dms 
o <Ps Do 

converges in law to a gaussian (0,/) random variable. 
If we set Pt =O, then the value of u that maximizes (2.14) is 

A -+ t <Ps 
. Ut = Qt J -T-dms 

0 <Ps Do 

Hence an approximate maximum likelihood estimator of D0 is 

Or 

I 

(2.15) 

Observe that Q";2 (Ot-Do) converges in law to a gaussian (0,/) random variable. 
Of course Otis useless as an estimator of D0 , since it depends on D0 • We jus!._ use it~ an intermediate 
step in obtaining our algorithm (2.4), (2.5). A simple calculation shows that Dt and Qt satisfy 

- _ Qtcf>t T-
dDt - -T- (dnt-«Pt Dtdt) 

<Pt Do 
- T-

d -Q = - Q,c/>t<Pt Qt dt 
t cpfDo 

A -

(2.16) 

(2.17) 

~s before since one is)ooking for O/s that are c1£_Se to D0 (and thus close to Dt) we replace D0 and 
Dt in (2.16), (2.17) by Dt and write Qt instead of Qt, thus arriving again at (2.4), (2.5). 

Having finished the explanation of the form of the preliminary version of our algorithm, we will now 
present it in its final form. The change that has been made is just for technical convenience and 
makes the proof work. The reasons for the change will be apparent from the proof of tiieorem 3.2. 
We give a little discussion that tells us that this change is 11ot dramatic. Suppose that Dt given by 
(2.4), (2.5) converges almost surely to D0 • Then eventually D1 will be in any neighbourhood of D0 • 

Hence if E.E.!i~ is such that all its components are smaller than the corresponding components of D0 
we have cpfDt>c/>fE. eventually. This is exactly the property that we need in the analysis. However 
(2.4), (2.5) do not guarantee us, that this inequality holds. Obviously the modification (2.18)-(2.21) 
below has the desired property. Define the indicator process 11 as follows 

11 = I{.,,;x,><1>;•} (2.18) 

where E.EIR~ is such that O<E.i <Do;,i = 1, ... , d. We are now in the position to state our 



APPROXIMATE MAXIMUM LIKELIHOOD (AML) ALGORITHM 

Qt<f>t T 
dx1 = A (dn1 -q,, x1dt), x0 

<Pi 8,_ 

dQ, = - Q,q,,q,! Q, dt, Qo 
<Pi 8, 

A 

81 = x1I1 + €(1- I,) 
A 

Here x 0 is taken such that 80 =x0, and Q0 is a symmetric positive definite matrix 
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(2.19) 

(2.20) 

(2.21) 

fl.pparently on~ should be able to establish lower bounds for the components 80 in order to compute 

81 according to (2.18)-(2.21). In practical situations there are often physical considerations that enable 

us to do so. As for the least squares algorithm we can also prove invariance of (2.18) - (2.21) under 

non singular linear transformations. Contrary to (2.4), (2.5) we even have invariance of (2.18) - (2.21) 

under time transformations. Let T= f(t) be a (possibly random) time transformation with inverse 

t=g(T). Assume that g has a derivative g' almost everywhere and g';;;a.O. Write ji,=yg(T) for the time 

transformed process y. Then we have 

dn,. = ~; 80g'(T)d'1' + diiz,. (2.22) 

The algorithm corresponding to (2.22) is 

- Q,.</>,.- - -T-
<fic1 = - - (dn,.-q,,.x,. g'(T)dT) 

</>,.-8,._ 
(2.23) 

- - -r-

dQ- = - Q,.</>,.</>,. Q,. '( ) d 
,. -T- g T T 

</>,. 8,. 
(2.24) 

8,. = x,.i,. + €(1-i,.) (2.25) 

which is indeed the same as the time transformed version of (2.18) - (2.21) 

3. CONSISTENCY OF THE AML ALGORITHM A 

In the proof of theorem 3.2 below, where strong consistency of 81 coming from (2.18) - (2.21) is 

proved we use the following lemma, which is a simplified version of a more general result in [12]. 

LEMMA 3.1: Let x,a,b be nonnegative stochastic processes: a and b increasing with a0=0 and ma local 
martingale. Assume that the following relation holds for all t :x1 = a1 - b1 + m1• 

Assume 
i) 3cER+ :/::,.a1 ~c,'Vt;;;a.O. 
ii) as - lim a,<oo 

t-+00 

Then 
i) as - 1im x, exists and is finite 

1-+00 

ii) as - lim b1 <oo. 
1-->00 

The principal result of this section is 

I 

THEOREM 3.2: Let 80 ER ii and let £ER ii be such that 80 -£ER ii. Let <I>1 = J <Psds and assume 
0 

i) <I>i8o~oo a.s (t~oo) 

ii) liminf+ j <Psff' ds = C>O. 
t-+oo <I> 80 0 <Ps 80 
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Then A 

i) a.s. lim 01 = Oo 
1-+00 " 

t ("'T(O -(}, )2 
.. ) lim-1- J 'I's s 0 ds = 0 n a.s. T T 

t-">oo 00 «P1 0 <f>s Oo 

Before ;.roving the theorem we notice that conditions 3.2.i, 3.2ii are equivalent with (l=(l, ... , Il) 
i') «P, l~ooa.s. 

ii') liminf-1- J <f>s<f>f ds>O 
«Pit 0 <f>f l 

The equivalence of i) 8:!!d i') can easily be seen by noting that O«Pit~O[«P,~O«Pit, where 
~=min{Oo;, i = 1, ... ,d},O=max{Oo;, i= 1, ... ,d}. The equivalence of n) and ii') follows similary. 

PROOF OF THEOREM 3.2: i) Let i,=x,-Oo. Then 

- Q1<f>1 T-dic1 = A (dm, - <f>1 x,dt), 
<f>iO,_ 

T- -T 2 T 
-T _ 1 _ 2<f>, x,_ (x, <f>1) d + <f>1 Q,q,, d 

d(x1 Q1 x1)= TA dm1 TA t TA 
2 

n, 
q,, o,_ q,, o, (<f>, o,_) 

-T 2 T 
J (x, <f>1) d + <f>1 Q,q,, ,i,.Ta d 

=um11 A t A 'l'tuo t 
(<f>i0,)2 (<f>i0,)2 

where we have summarized the martingale term of (3.1) as dm 11 . Define 

-I 1' <f>f <f>s r1 =tr(Q0 )+ -T-ds, 
O <f>s t: 

Then 

Define 

then 

r,;;;. tr(Q0 1 ) + J <t>f !s ds = tr(Q; 1 ). 

0 <f>f Os 

.1. _ - I <f>T <f>t d - I - I <f>T Q1<f>1 Ta d uu1- -r1 -T-u1 t+r1 dm11+r1 A <[>1 110 t 
<f>t t: (<f>i0,)2 

(3.1) 

(3.2) 

(3.3) 

We are able to apply lemma 3.1 as soon as we have verified assumption ii) which leads us to the cal­
culation of 
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(j 00 (j 
=-tr J (-dQt)~-tr(Qo) < oo . 

.: 0 .: 

Having verified assumption 3.lii we conclude that as-fun ut exists and is finite a.s. We also get from 
the same lemma and eq (3.3) that 

J
oo - I cp'{' 4't 

a.s. fun rt -r-utdt < oo. 
t->OO 0 4't £ 

(3.4) 

Now 
t A..T A.. t 

rt;;;...!. J ¥-ds + tr(Qi) 1 
);;;.-

1-J cp'{tds + tr(Qi) 1 ). 

f o 4's 1 di O 

where we used in the last inequality that <Pi cp,;;;. ~ (cp'{'1)2. Hence from assumption 3.2i. rt~oo a.s. 

Suppose now that on a set 0 1 en of positive probability we have fun ut~8 for some 8>0. Then there 
is 'T such that t ;;;.'T implies u1 ;;;. i 8. But then 

oo q,T cp l oo 

J r;- 1+utdt;;;.28 J dlogrt = oo 
T 4't £ T 

which contradicts (3.4). Hence as-fun ut=O. Since u is the sum of two positive processes we have in 
t->OO 

particular 

Q-1 
. -T t -

as-fun xt --xt = 0. 
t->oo rt 

(3.5) 

- A 

Define now ll1 =sup{ll;8 ,sE[0,t], i=I, ... ,d} and write Amui(A)=min o(A) for the minimal eigen-
value of a matrix A. Then 

Q -1 - Q-1 = Jt <f>s<f>'f ds::::;. J_ Jt 4's<f>'f ds 
t 0 A .,,..._ T • 

0 cp'{ (JS (JI 0 4's 1 

Hence 

O:i;::: X1 Xt \ . 1 J 4's4's ds :i;::: -T- [ t T l 
""-''mill T I T""' 

()1 <I>t 1 + tr(Qi) ) 0 <f>s 1 

-T- A [ 1 [Q-1 Q-IJ] ~x, xt min <I>'{'t +tr(Qo 1) , - o 

1 -T -I -I - 1 -1-T( -I Q-1 -
~ T _ 1 Xt (Qt -Qo )x,~-rt x, Qt - o )x, 

<I>, 1 + tr(Q0 ) _: 

which tends to zero by (3.5). Consequently from assumption 3.2.ii 
-T-
X1 X1 
-_-~oa.s. 

()t 
- A 

(3.6) 

J:'low it is easy to prove that 01 is bounded. For suppose not, then there is ()it such that limsup 
(lit= oo:.. But then also limsup xit = oo and we get immediately from (3.6) that this cannot happen. 
Hence 01 ~K for some K>O. But then from 

-T-
-T- Xt Xt 
XtXt~K-=:-. o, 
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we see that x1""'0 and so eventually 

q,'{ x1 = q,'{.X, +q,'{ 00 >q,'{ £. 

Then 11 °"' 1 and consequently 

01 = (x1 + 00 )11 + £(1-11) ""' 00 

ii) o, = x,I, + (1-1,)(£-0o). Let T be such that t~T implies It= 1 then for t;;i.T o, = .X,. 
Hence 

From the fact that u1 °"' 0 we have 

1 (,,.r0 )2 
J_ J 't's : ds ""'O. 
r, ,,. q,'{Os 

A 

But then it is easy to deduce from the fact that 01 °"' 00 a.s. that we also have 

1 !' (q,'{osf ds . 0 - T ""' a.s. 
r, ,,. 'l>s Oo 

and 

1 1 (q,'{osf> 
-T- f T ds ""'0 a.s. Q.E.D. 
Oo W3 0 'l>s Oo 

Before giving a few examples to which this theorem can be applied let us remark that a necessary 
condition for assumption 3.2.ii' is 

t 

limirif+ J IJ>isds > 0. 
1-'>00 w 1 0 

Clearly this condition is not sufficient. q,1=1 is a counterexample. 

ExAMPLE 3.1. Let ip:[O,oo)°"'R;_,q,, = [1,1 +sintf. The following result will be used. For a>b~O. 
2w 

f 1 dx = 2'1T 

0 a+bsinx -.Ja2-b2 ' 

hence 

t 

lim.!.J 1 dx= 1 
Hoo t 0 a +bsinx -.J a2-b2 ' 

Then 

lim _I_ f 'l>s4>'1' ds = lim 1 
Hoo W'{l O q,'{1 Hoo 2/-COS/ + l 

1 
[ I 1 +sinx l dx 

[ 1 +sinx I +2sinx +sin2x 2+sinx 

[

..!..Vi l-..!..V3 
3 3 

= 2
1 

I _ r;; 1 _ r;; , which is positive definite. 
I--v3 -v3 3 3 



ExAMPLE3.2.Let</>:[O,oo)XO""'R~,<f>t = [l,l+(-1r-ir,o = [0102f 
Introduce 

Then 

1 
/ 

<f>s<f>f 1 
1 

[ 1 
<Pfl ! </>fl ds = t(2+Xi) ! l+(-lt' 

I 

3 t [2-(lt' l+(-lt' l 
t(2+X,) ! l+(-lt' 2+2(-lt' ds 

I 
3 [2-X, 

= 2+.Xi l+Xi 

After some calculations [13] we find that 

02 
01 +02. as-lim Xi = 

t-+OO 

So 

l+(-lt' l ds 

2+2(-lt' 2+(-lt' 

11 

ExAMPLE 3.3.: Let X be a Markov process that takes its values in {O, 1 }. Assume that the holding 
times in 0 and 1 are exponentially distributed with means P-0 and µ.1 respectively. Assume that n, has 

the intensity 01X,_ +00(1-Xi-), which corresponds to<[>, =[X,_, 1-Xt_]T and 0=(01 00f. Then 

0 l 1 [P.1 0] 
1 - Xs ds = P.1 + /J.o 0 P-0 • 

4. SOME CENTRAL LIMIT THEOREMS 
A 

This section provides the background for analyzing the asymptotic distribution of the 0/ s generated 

by the least squares or asymptotic maximum likelihood algorithm. That analysis will be carried out 

in section 5. The tools we will use in section 5 are certain central limit theorems for martingales. 

Two types of results are available in this direction. On the one hand we have central limit theorems 

for sequences of martingales or stochastic integrals that are obtained for instance by REBOLLEDO [10]. 

On the other hand there are results for the asymptotic distribution of a stochastic integral with respect 

to a local martingale measure as t goes to infinity that can be found in e.g. LIN'KOV [7]. It will be 
shown in the sequel that the latter type is contained in the first. 

4.1. We start by presenting Rebolledo's results and follow his notation here in. Since we are only 
interested in martingales associated with point processes, we do not quote his results in full generality 

but only for quasi left continuous locally square integrable martingales. 

Suf.fose we have on (O,~P) a sequence of right continuous complete filtrations P={~}. Let 
~ · oc(P) be the set of locally square integrable P-adafted martingales starting in zero. We will 
consider sequences {Mn} where for each n Mn E~2• oc (P) and is assumed to be quasi left 
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continuous. Define ef[Mn]:nx[O,oo)~R by 

a'[MnJ, = ~IAAf;l21{1AM:I>£}· 
so;;t 

Denote by a([Mn] its dual predictable projection. 
We say that {Mn} satisfies the strong asymptotic rarefaction of jumps property of the second kind 
(SARJ2) if 

-£ p 
o [MnJ,~O, as n~oo,'Vt~O 

The sequence {Mn} is said to satisfy the Lindeberg condition if 

Ea([Mn],~o, as n~oo,'Vt~O 

(4.1) 

(4.2) 

In connection with sections 4.2, 4.3 we introduce the following definition. We say that the sequence 
{Mn} satisfies the Lyapunov condition if there exists a 8>0 such that for all n Mne~2+B,loc(P) and 
if 

(4.3) 

In [10] it has been shown that the Lindeberg condition implies SARJ 2. Also the following implica­
tion holds 

PROPOSITION 4.1: If the sequence {Mn} satifies Lyapunov's condition then it also satisfies Lindeberg's 
condition. 

PROOF: A corresponding result is known in Central limit theory for sequences of random variables. 
The proof that we will give is similar to the proof in the random variables case. 
Let us introduce the jump times Tk defined by 

T(l = 0,TZ = inj{t>TZ-1 :AM,=/:= 0}. 

Then 
00 

E~ IAM;l2 I {IW;I>£} = E ~!AM~; 12 I {l.:U1".,l>£}n{.-;o;;1} 
s<t k=l 

which is by application of Holder's inequality (p = 1 + ~ ,q = 1 + ~) less than 

00 _2_ _8_ 

~[El~: 12+8 I {.-:<1}12+8 [EJ{laM",,1>£}/ {.-;<1}l 2+8 
k=l 

which is by application of Chebychev's inequality (see below) less than 
00 _2_ _8_ 

~ [EIAM.-:12+8 I {.-;o;;1}l 2+8[EIAM~:12+8 I {.-:.;;1}l 2+8 
£-

8 

k=l 

00 

= £-8 ~El~:l2+a1{.-:<1}=£-8E~IAM;j2+8~0 D 
k=l s<t 

In the proof we used the following form of Chebychev's inequality. 

Elxr1A 
Elnxl>£}nA.,;;; e' ,'VAe'ff,'Vp. 

Notice that an even stronger conclition than Lyapunov's is 



sup{laMJl:t;;;;i:O}:s;;;cn 

where CnER and CnJ..O. 
Now we formulate Rebolledo's main result. 
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THEOREM 4.2: Let M be a continuous martingale and assume that A = <M> is a determinstic function. 
Let Mn E~2•1oc(P), Vn such that 
i) {Mn} satisfies SARJ 2 

p 

ii) [Mn], _,.A, as n_,.oo,Vt;;;;i.O. 
e 

Then Mn weakly converges to M. Notation Mn_,.M. 

4.2. In this section we summarize LIN'Kov's result [7]. As usual we have a complete right continuous 
filtration {~} on (0,~P) Let µ. be a local martingale measure on [O,oo)XZ, where (Z,~ is a 
Blackwell space. 2: is a o-algebra on Z. Assume that µ. is such that µ.( { t}, E) E { 0, 1} for all E E 2: and 
suppose that the characteristic <µ.> =P ofµ. is continuous. Notice that µ+P is on an integer valued 
random measure. Denote by LHO,T] the set of ~ adapted proceses /= f(w,t,x) which are measure­
able as a function of (w,t,x) such that there exists a sequence of simple functions {fn} such that. 

T 

P- lim j flf(t,~)-f,,(t,x)l 2 P(dt,dx) = 0. 
n->OO 0 Z 

For such f the following stochastic integral is well-defined: 

t 

t, = J jJ(s,x)µ(ds,dx), tE[O,T] 
0 z 

In [7] one can find the following 

PROPOSITION 4.3.: Assume that f ELHO, T], VT;;;;i:O and 3 function g:[O, oo )_,.[o, oo) such that g(t)_,.oo, 
as t _,. oo with 

T 

i) P- limg(T)- 2 j f f 2(t,x) P (dt,dx)= I 
T->oo Of. 

ii) limg(T)-(2+B) E J flf(t,x)l 2+8 P(dt,dx) for some 8>0. 
T->oo. 0 z 

Then tr is asymptotically normal with parameters (O,g(T)2) for T _,.oo, 

4.3. In this section we will show how Lin'kov's result can be deduced from Rebolledo's (theorem 4.2.) 
which provides thus an alternative proof for the one that can be found in [7]. 

PROOF OF PROPOSITION 4.3. 
We have to show that for all sequences bn with bn_,.ootb, has a distribution which is asymptotically 

normal with parameter (O,g(bn)2). Define an= g(bn)2. Without loss of generality we can assume that 
g is strictly increasing. Hence its inverse his well defined. Let tE[O, 1] and define 

1 M'l = -­y;;; 
h(ya;;) 

J jJ(s,x)µ(ds,dx). 
0 z 

(4.4) 

Let 6.f/ = <%c yo;;), then Mn is P-adapted. We will now show that Mn as defined in ( 4.4) satisfies the 

Lyapunov condition (4.3). 

Mf7 = _ ~ jJ(h(y;;:i),x)µ({h(v;;;:t)},dx) 
van z 
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Because µ({h(W)}) is in fact a clirac measure for each w on Z, concentrated on some point 
z =z(ant,w) [3], we have 

laM712+8 = a;;I-8/2 f lf(h(W),x)l2+8µ({h(W)},dx) 
z 

Hence 

h(y;;;) 

~li'.W;l2+8 = a;;I-812 J flf(s,x)l2+8(µ+v)(ds,dx) 
s<,t 0 Z 

Since µ is a local martingale measure 

h(y;;;) 

E~li'.W;l2+8 =a;; 1 -812E J flf(s,x)l2+8-v(ds,dx) = 
set o z 

h<Va:> 
~a;; 1 -812 E J flf(s,x)l2+ 8P(ds,dx) = 

0 z 
h<Va:> 

=(g(h(y;;;)))-<2H> E J flf(s,x)l2+ 8P(ds,dx) ~o 
0 z 

by assumption 4.3.ii. So a forteriori the sequence {Mn} satisfies the SARJ 2 condition by proposition 
4.1 and the remark preceeding it. 
We proceed to investigate the process <Mn >. A simple calculation gives 

h(y;;;) 

<Mn>, = _I J J lf(s,x)l2P(ds,d.x) = 
an o z 

I =t-----
(g(h(W)))2 

h(y;;;) 

J J lf(s,x)l2P(ds,dx)~t 
0 z 

in probability by assumption 4.3.i. 
e 

We are now in the position to apply theorem 4.2 and we conclude that <Mn>~W, wh~re W is a 
standard brownian motion. In particular 

or 

I 

y;;; 

h<Va:> e 
f f f(s,x)µ(ds,dx)~N(O, I) 
0 z 

which gives us the desired result by definition of an. 

Along the same lines as the proof of proposition 4.3 we can show a stronger result which is formu­
lated in the same way as theorem 4.2. 

PROPOSITION 4.4: Let µ and f as in section 4.2. Assume that there exists a .function g :[O, oo )~[O, oo) 
with g(t)~oo as t~oo such that 

T 

i) P- limg(IT2 f flfs,xl 2 P(ds,dx)=1 
T->oo Or2 

ii) P- limg(T)-2 J /lf(s,x)l211{[.ft.s,x)µ(_{s},tb:)J>tg(T)}P(ds,dx)=O'v't:>O. 
T->oo 0 z 



Then 

1 T e - J J f(s,x)µ.(ds,dx)~N(O, 1) as T ~oo. 
g(T) 0 z 
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A special case occurs when the measure µ. is the difference of a counting process n and its absolutely 
0 

continuous compensator J'A.3 ds. Then we can take Z = { 1} and proposition 4.4 reads 
0 

PROPOSITION 4.5: If there exists a fanction g:[O, oo )oo[O, oo) with g(t)~oo as t~oo such that 

T 

i) P- limg(T)-2 f fs>..sds = 1 
T--.oo O 

Then 

1 T e 
g(T) f Js(dns -'J...3ds)~N(O, 1). 

REMARK: Assumption 4.5.ii is certainly satisfied if g(t)- 1sup{lfsl:se[O,t]}:s;;;c(t), where c(t).J,O for 
t~oo. 

5. ASYMPTOTIC DISTRIBUTIONS OF RECURSIVE EsTIMATORS 

5.1. Least squares algorithm A 

In this section we will show that the algorithm (2.1 ), (2.2) provides us with estimators 8, that are 

asymptotically normally distributed if we impose some additional requirements on the process q,. It 
immediately follows from (2.1 ), (2.2) that 

and 

t 

O, = 0,-80 = R,[R0 1(0o-8o) + f 4>sdms] 
0 

Introduce the vector valued martingale 

then 

t 

<M>, = f <Ps'i>I4>I8ods 
0 

A -

(5.1) 

(5.2) 

(5.3) 

Clearly the distributions of 81 and 8, are governed by the one of M,. For the latter we have the fol-

lowing result 

THEOREM 5.1: Let M be as defined in (5.3). Assume that there exists a fanction µ: [O,oo)~[O,oo) with 
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µ( t )-H>O as t-HXJ such that 
i) P- lim µ(t)- 1 <M>1 = D, where DeRdxd isa positive non random matrix 

1-+00 
I 

ii) P - lim µ(t)- 1 J <t>f <f>sl {</>; .p,>f//o(.t)} </>f Oods = 0, '1'£>0. 
1-+00 0 

Then 
e 

<M> ; 12 M1~N(O,l). 

t 

PRooF: i) Let AERd and define M~=ATD-12M1 = f>..TD- 12 <f>8 dm8 • Then 
0 

Hence 

(>._TAµ.(_t))- 1<M'A>1 = (ATA)-IATD- 12µ(t)- 1 <M>1D- 12 l\.~l 

in probability. Hence condition i in proposition 4.5 is satisfied with g(t)2 = >.TAµ(t). 
In order to establish SARJ 2 (condition 4.5.ii) we compute 

t 

(ATAµ(t))- 1 jAT D- 12</>sc/Jf D-12Al {l'ATD-"<1>,l><(AT">.p{t))"}<f>f Oods = 
0 

I 

(ATAµ(t))- 1 AT D- 12 J </>s<f>f l {'ATD-".p.p;D-"'A>l'AT">.p{t)}<l>f 8odsD- 12 A..; 
0 

t 

(ATAµ(t))- 1 AT D- 1 A J <t>f <f>sl {'ATD-1'>...p;.p,>bT">.p{t)}<f>f Oods 
0 

which tends to zero in probability according to assumption ii since we can replace E by 
;.ATA(ATD- 1A)- 1• Now we have proved 

e 
(AT"Aµ(t))- 12 M~~N(O, I) 

ii) According to the Cramer-World device 
e 

'1'AE!Rd:(AT"Aµ(t))- 12 M~~N(O, I) 

if and only if 

Since 

and 

e 
µ(t)D- 12M,~N(O,1). 

D- 12µ(t)- 12 <M>~~I 

in probability, we have finished the proof. 

REMARK : Stronger conditions than 5.1.ii) are the corresponding Lindeberg or Lyapunov conditions 
I 

'1'E>0:µ(t)- 1 E J <t>f <f>sl {</>;</>,>f//o(.t)} <t>f Oods~o 
0 



t 

38>0:µ(t)_ 1_ 812E fllcJ>sll 3+ads~O, 
0 

where IHI denotes the (Euclidean) norm on Old. 

COROLLARY 5.2: Under the conditions of theorem 5.1 we have 
A e 

<M> ;-'h R;- 1 (81 -80)~N(O,I) 
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PRooF : <M>;-'hR;-1(0,-80) = <M>;-'h[R0 1(00-80) + M,]. The fact that 
<M>;-'h R0 1 (00 -80)~0 in propability (this follows from 5.1.i) gives us the desired result 

REMARK:A <M>, depends on the unknown parameter 80. As usual we can estimate <M>, by sub­
stituting 81, which is strongly consistent, for 80• 

The examples given below are continuations of examples 2.1-2.3. 

ExAMPLE 5.1: cp(t)=[l, 1 +sint]T,80 =(81>82). Take µ(t)=t. Then we can calculate 

limµ(t)- 1 <M>, = 
f-+00 

3 
81 +182 

3 5 
281 +182 

which is a positive definite matrix. So assumption 5.1.i is satisfied. To establish that assumption 5.1.ii 

holds it is sufficient to remark thast cp'{ c/>s~5, Hence fort>~ we have 
£ 

I {<1>~<1>,>•t} = 0. 

Another calculation shows that we have asymptotically 

A 1 [ 381 +82 -281 -82] 
(O,-Oo) ~ N(O,t (-281-82 281 +282 ) 

ExAMPLE 5.2 : cp, =[I, 1 +(- It'-J,80 =(81>82). Take µ(t)=t. Then a simple calculation yields: 

. _1 _ Or +28182 [l ll 
as-,~ µ(t) <M>, - 81 +82 1 2 

which is positive definite. As in example 5.1 cp'{ c/>s is bounded, so again assumption 5.1.ii trivially 
holds. Combined with an expression for R, we can calculate that 

.. 1 01 +02 [28r -or ] 
co,-Oo) ~N(o,I or+28

1
0

2 
-or (81 +oi)2+o~ ) 

EXAMPLE 5.3: cp, =[X1 _ 1-X1-]. Again take µ(t)=t. Then 

as-lim µ(t)- 1<M>1 = ---l [81P.1 0 l 
t-+oo P.t + P-0 0 8011-0 
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Since cf>T q,, = 1, again assumption 5. I .ii is trivially satisfied. Asymptotically we have 

5.2. ASYMPTOTIC NORMALITY OF THE AML ALGq_RITHM 

The purpose of this section is to show that the 8/s generated by (2.18) - (2.21) have a limiting distri­
bution which is approximately normal. After some definitions we state a useful lemma. 
Define the following matrix valued stochastic processes 

Q--1 = Q-• + l' c/>sc!>I ds 
t 0 ,1,.Tf}, 

O 'I's 0 
(5.4) 

v. = 1
1 

c/>sc/>I ,,,.T8 ds 
t TA 2 'I'S 0 

0 (c/>s 8s) 
(5.5) 

A • 

LEMMA 5.3: Let 8,,Q, as defined by (2.18) - (2.21)) and let the assumptions of theorem 3.2 be in force. 
Then 

i) as - lim Q~ QI 1 Q~ = I 
t-+OO 

ii) 
. -in -in 

as - lim Q, V,Q, = I. 
t-+00 

~m: A 

(5.6) 

(5.7) 

i) Let 6>0 and fix w, taken fromAthe set with probability one where 8,(w)~80 • Then there is 
T=T(w) such that Vt;;..T w~ have lfJit-8o;j~6 for all components i. 

Consequently (l-6)cf>f80 ~q,f 8,~(1 +6)c/>f80 for t;;..T. In the ordering of positive matrices we then 
have 

or 

1 --I --I -I -I 1 --I --I 
I +6 (Q, -Q.,. )~Q, -Q.,. ~ 1-6 (Q, -Q.,. ) 

which yields 

I -in--1 in in -I --1 in 1 -in--1-in 1 +6 (I-Q, Q.,. Q, )~Q, (Q, -Q.,. )Q, ~ 1-6 (I-Q, Q.,. Q,) 

Now take limits for t~oo and use that Q,~o to get 

1 I liminf" Q-in Q _ 1 -Qin lim -Qin Q _ 1 -Qin 1 I 
1 + ~ ~ , , , ~ sup , , t ~ -

1 
~ 

V t-+OO t-+OO -v 

Since (5.8) holds for all 6>0 the proof of (5.6) is complete. 
ii) The proof of (5.7) is analogous. 

The following vector valued martingale is important. Define 

t c/>s M,=1 A dms 
0 q,J8s-

(5.8) 

(5.9) 



Notice that we have <M>, = Vi. 

THEOREM 5.4: Assume that there exists a function µ.:[O, oo )~[O, oo) such that 

P- fun µ.(t)- 1D6'f>, = 1 

Then 

-'h e 
Q, M,~N(O,I). 

PRooF: Let C be as in assumption 3.2.ii, 
' t T 

C = as-fun-1- J <f>s<f>s ds =as- litn-1-Q-l 
Hoo 86 '1>, 0 <f>'f D0 Hoo D6 '1>, ' 

Then we also have 

P-litn-1- j<t>s;'f ds =C. 
Hoo µ.(t) 0 <f>s Do 

Define 

then 

by ( 5.10), (5.11). Hence assumption 4.5.i is satisfied. 
As in the proof of lemma 5.3, let T(w) be such that r;;;;.T(w) implies 

l<t>TO, -<t>T Do I ~<PT Do6. 

Consider 

t (ATC-'h."- )2 
('\T'\µ.(t))-1 J r· '1':2s J{c-•<1> T(J ds 
I\ I\ ~ I {l~l;;:.8(>.rAµ(t))-"}<f>s 0 

0 (<f>s D8 ) </>,8, 
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(5.10) 

(5.11) 

(5.12) 

Let us split the integral in two pieces, one with integration bounds 0 and t /\'r and the second with 
bounds t /\T and t. Then clearly (ATAµ.(t))- 1 times the former integral tends to zero almost surely. 
Hence we continue our investigation of the second integral which is after multiplication with 
(ATAµ.(t))- 1 less than 

(5.13) 

Now let t be such that 

ATC- 1A 
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Then 

>..Tc-IMT,i. >..Tc-l>.r-T..1. 
IJ2'J>..T'Aµ(t)';?!: "t's "t's ';?!: "t's "t's 

lP(l -IJ)2(q,'[1)2 (l -IJ)2(q,'{Oo)2 

Consequently for large t the indicator appearing in the integral in (5.13) will be zero. As a result 
(5.12) converges to zero a1most surely and a forteriori in probability, which gives us assumption 4.5.ii. 
Conclusion 

e 
('AT'Aµ(t))-'h M}~N(O,I). 

As in the proof of theorem 5.1 the Cramer - Wold device gives us 
e 

(µ(t)C)-'h M,~N(O,I) 

if and only if 
e 

('AT'Aµ(t))-'h M}~N(O,I), 

which has just been proved. 

Finally 

Q~ M, = µ(t).,,,C.,,,µ(t)-'hc-'h M,. 

We know from (5.11) that µ(t)y,Q'h c'h~J in probability, which completes the proof. 

CoROLLARY 5.5: Under the assumptions of theorem 5.4 
- e 

i) Q;.,,,o,~N(O,I) 
--'h- e 

ii) Q, o,~N(O,I) 

PROOF: i) By writing out the stochastic differential equation for Qi"" 1 i, one can show that the follow­
ing relation holds 

x,=Q1[j cl>; dms+Qo 1 (xo-Oo)J 
o q,'{Os-

And consequently 

Q,-'ho, = I,Q;'h M, + I,Q;'hQo(xo-Oo) + Q;.,,,(1- I,)(E-Oo) 

(5.14) 

(5.15) 

Since_J,~1 a.s. and Q~~o a.s. as t~oo we see from (5.15) that the asymptotic distribu!!_on of 
Q;.,,,01 will be same as that of Q~ M,. From lemma 5.3 we know that we can replace Q, by Q1 and 
the conclusion follows from theorem 5.4. 
ii) This is an immediate consequence of i) 

The examples below are examples 3.1 - 3.3 continued. 

ExAMPLE 5.4: 4's(t)=[l, 1 +sintf Take µ(t)=t. Then one finally gets after some tedious calculations: 
Aproximately 

with 



V= 

- ;2 (yfJi+281fJ2 -01) 

I 

We see that in this case the asymptotic variance of fJ1 is the same as in example 5.3. 

6. SOME REMARKS 

6.1. Other possible limit Distributions A _ 
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The basic assumption in getting a limiting distribution for 01 or 01 which is gaussian is 5.1.i or (5.10) 
depending on the algorithm. This assumption more or less tells us that the covaration process of the 
martingale M becomes deterministic as ~ grows. If this assumption is dropped one can still derive 
results for the asymptotic distribution of 01• The idea then is to performe some random time transfor­
mation -r= f(t) after which the transformed version of <M> becomes deterministic. For the 
transformed asgorithm (which looks the same in the AML case (2.22), (2.23)) we can then infer 
asymptotic normality as T tends to infinity. In the AML case a useful transformation is -r='PffJ0 • 

This idea has also been carried out in [11] for the off-line maximum likelihood estimation problem. 

6. 2. Asymptotic Efficiency _ 

From the examples 5.1 - 5.6 it becomes clear that the asymptotic distributions of 01, generated by 
(2.1), (2.2) or (2.18)-(2.21) will differ in general. Thus they cannot both give us efficient estimators. 
In general we have the following Cramer-Rao inequality. An unbaised estimator of fJ baked on the 
observations in [O,t] has a covariance matrix which is at least 

C1(fJ) = {Eo[ :o logL,(fJ)][ :o logL,(fJ)f}- 1 (6.1) 

where the likelihood ratio L,(fJ) is as in (2.6). Calculation of (6.1) gives us 

C,(O) = [E1 i ~;; d.r (6.2) 



22 

A 

This means that 81 is an asymptotically efficient estimator if we have 
A e 

C1(8o)'h.(81 -Oo)~N(O,I) (6.3) 

Clearly by comparing corollary 5.2 and (6.3) we see that the LS estimator of() will not be asymptoti­
cally efficient in general except for some specific choices of <f> (see examples 5.3, 5.6) On the other 
hand the AML estimator given by (2.18) -(2.21) is a good candidate for being an asJ1!!etotically 
efficient estimator by corollary 5.5.ii. We will indeed have this property as soon as C1(80)Q;

1 ~1 in 
probability. However assumption (5.10) in theorem 5.4 does not seem to be sufficient for guarantee­
ing this. But if we impose as an additional requirement that µ.(_t)- 1 C1(80)- 1 ~c then indeed from 
(5.11) 

--1 1--1 p 
C1(8o)Q1 = C1(80)µ.(_t)µ.(_t)- Q1 ~c-

1 c = I. 
In fact under the assumption (~!_0/ requiring µ.(_t)- 1C1(80) to converge to C is nothing else than 
demanding the collection { C1(80 )Q1 }t;;.0 to be uniformly integrable. 
Let us summarize the discussion of the preceeding paragraph in 

PROPOSITION 6.1: Assume that there exists a function µ:[O, oo )~[O, oo) such that 

P- lim µ.(_t)- 14'[80 = 1 
l-+00 

lim µ.(_t)- 1C1(8o)- 1 = C 
l-+00 

A 

where C is as in assumption 3.2.ii. Then the AML estimator 81 generated by (2.18) - (2.21) is asymptoti-
cally efficient. 

One easily checks that one can take in the preceeding examples µ.(_t)=t. 

6.3. Relation with Hellinger process 
The Hellinger process is a convenient tool to describe the relation between two probability measures 
on the whole trajectory space of a certain stochastic process. In the counting process case there is an 
explicit expression available in terms of the compensator of the counting process. For the model (1.3) 
the Hellinger process of order 1h is 

t t [ h(0,80)1 = fn/ifi-ViJi;fds = f<t>!'Oo 
0 0 

The following theorem can be found in [3, p.253] and tells us whether or not we can distinguish 
between 0 and 00 • 

THEOREM 6.2: Let P 0 ,P 00 be two measures on the whole counting process trajectory space such that 
under Po (Po.) n1 admits the intensity process <t>TO (<t>f00). Then Po and Po. are mutually singular if 
and only if lim h(0,00)1 = oo with probability one. 

t-+00 

<f>TO 
Since --#'-- is a bounded function of s e[O, oo) if all components of 00 are positive the statement 

<f>s Oo 
limh(0,00)1 = oo is equivalent with 
l-+00 

lim (6.5) 



by 

(Vx -1)2 o;;;;(x- I)2o;;;;c(Vx -1)2 for xo;;;;(Vc-1)2,c;;;;ai: 1. 

which says that 

liminf j cps;; ds = 00. 

o cf>s Oo 
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This is clearly implied by our indentifiability condition in theorem 3.2. One might hope that the con­
verse would also be true. This is not the case, despite the specific form (1.3) of the intensity process. 
In a more general situation this has already noticed in [11]. There the notion of 00-distinctness has 
been introduced which appears to contain the identifiability criterion of theorem 3.2. At this point it 
is not clear whether we can relax our indentifiability condition to (6.5) or that it is the price we have 

to pay to get recursive estimators. 
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