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T. INTRODUCTION

Our paper aims at presenting a thorough study of the semantics of a
number of concepts in concurrency. We concentrate on shuffle and
synchronization merge, local and global nondeterminacy, and deadlocks.
Somewhat more specifically, we provide a systematic analysis of these
concepts by confronting, for three sample languages, semantic techniques
inspired by earlier work due to Hennessy and Plotkin [HP, P21, P22]
proposing an operational approach, De Bakker et al. [BBKM, BZ1, BZ2, BZ3]
for a denotational one, and the Oxford School [BHR, OH1, OH2, RB] serving -

for the purposes of our paper - an intermediate role.

Our operational semantics is based on transition systems [Ke] as

employed successfully in [HP, P21, P22]; applications in the analysis of proof
systems were developed by Apt [Ap1, Ap2]. Compared with previous instances,
our definitions exhibit various novel features: (i) the use of a model
involving languages with finite and infinite words (cf. Nivat [Ni]) or

sireams [Br]; (ii) the use of full recursion (based on the copy rule) rather
than just iteration; (ii1) an appealingly simple treatment of synchronization;
(iv) a careful distinction between local and global nondeterminacy; (v) the

restriction to wuniform concurrency.

Throughout the paper we only consider uniform statements: by this we
mean an approach at the sowesazi: level, leaving the elementary actions

uninterpreted and avoiding the introduction of notions such as assignments

or states. Many interesting issues arise at this level, and we feel that




it is advantageous to keep questions which arise after interpretation

for a treatment at a second level (not dealt with in our paper).
We shall study three Tanguages in increasing order of complexity:
£O: shuffle (arbitrary interleaving) + local nondeterminacy
i synchronization merge + local nondeterminacy
Lot synchronization merge + global nondeterminacy

For ii with typical elements s, we shall present transition system

T, and define an induced operational semantics @1Es], i=0,1,2. We
shall also define three denotational semantics @1151 based, for

i=0,1 on the "Tinear time" (LT) model which employs sets of sequences
and, for 1=2, on the "branching time" (BT) model employing prccesezs
(commutative trees, with sets rather than multisets of successors for any
node, and with certain closure properties) of [BBKM, BZ1, BZ2]. Throughout
our paper we provide 8, only for £ restricted to guarded recursion
(each recursive call has to be preceded by some elementary action); we

then have an attractive metric setting with unique fixed points for con-

tractive functions based on Banach's fixed point theorem. (Our 6; do

assign meaning to the unguarded case as well.)

Qur main question can now be posed: Do we have that

We shall show that (1.1) only holds for i=0. For the more sophisticated

languages £ , i=1,2, we cannot prove (1.1). In fact, we can even show




that there exists no denotational 8, satisfying (1.1), i=1,2. Rather

than trying to modify @1 (thus spoiling its intuitive operational

character) we propose to replace (1.1) by

G]ES] =a1(3§][51) (]-2)

where s s i=1,2, ,15 an abstractiorn operator which forgets some in-
formation present in Qils 1. The proof of (1.2) requires an interesting
technique of introducing a transition based intermediatz semantics @?Es 1.
For i=1 we shall show that G?Es 1= Siﬁs 1. Next, we introduce our
first abstraction operator o (turning each failing communication into

an indication of failure and deleting all subsequent actions) and prove

that @’1.‘{{5] = a](G?ES 1.

The case i=2 1is more involved, because 4 has Zoecal, and £2
global nondeterminacy. Consider a choice a or c, where a 1is some
autonomous action and ¢ needs a parallel ¢ to communicate. In the case
of local nondeterminacy (written as a U c) both actions may be chosen;
in the global nondeterminacy case (written as a+c "+" as in CCS [Mi])

c is chosen only when in some parallel compound ¢ is ready to execute.

Therefore, &1 and £2 exhibit different deadlock behaviours.

@2 is based on the transition system T2 which is a refinement of T1,
embodying a more subtle set of rules to deal with nondeterminacy. The
denotational semantics £, is as in [BBKM, BZ1, BZ2]. 1In order to relate

&2 and @2 we introduce the notion of readies and an associated inter-

mediate semantics @E , inspired by ideas described in [BHR, OH1, OH2, RB].




@2 involves an extension of the LT model with some branching information

(though less than the full BT model) which is amenable to a treatment

in terms of transitions. Besides the operational GE we also base an
intermediate denotational semantics &; on the domain of readies. To

prove the desired result (1.2) for £, , we shall show that @;Es 1= £§Es 1
and then relate G, with @5 R Sz with 85, and thus Gy with 8, by

a careful choice of suitable abstraction operators.

As main contributions of our paper we see:
1. The three transition systems Ti', in particular the refinement of

T] into T2.

2. The systematic treatment of the denotational semantics definitions
(for the guarded case) together with the settling of the relationship
G: = a, o O, . (ao identity).

3. Clarification of Tocal versus global nondeterminacy and associated
deadlock behaviour.

4. The technique of intermediate semantics @T and, in particular,

h_* K
62 and £2 .

The rest of our paper is organized into Sections 2 -4 dealing with
the Tanguages L9 %y - For each language £y the corresponding section
is divided into four subsections. The first three introduce the transition
system Ti’ the operational semantics @1 and the denotational semantics
£1 » respectively. Most demanding is the fourth one which settles the
relationship between ®i and &1 by establishing G; = aye £i' To avoid
repetitions, we elaborate on a different aspect for each ii . For iO we

concentrate on recursion, for £y on synchronization merge and for £, on

the intermediate ready semantics.

Finally, an appendix summarizes all results in a diagram.




SHUFFLE AND LOCAL NONDETERMINACY

2. THE LANGUAGE Ly
Let A be a finite set of uninterpreted, elementary acsions, with
achA. Let x,y be elements of the set stmv of s;xiement sariables

(used in fixed point constructs for recursion). The set SO of

(concurrent) ssatements, with s,t €iys is given by the following syntax:
e. o= ce | Te M o
it als],sz|s]LJ52:s1”52[ x |uxgs].

Thus every action a € A denotes a statement, the one which finishes
(successfully terminates) after performing a. 5135 denotes (sequerz:ial)
esmposition such that s, starts once s, has finished. $1US, denotes
nondeterministiz ckoice; also known as local nondeterminism [FHLR] . 51”52
denotes concurrent execution of 54 and Sy modelling shuf~le (arbitrary
interleaving) between the actions of Sy and Sy - ux[s] 1ds a recursive
statement. For example, with the definitions to be proposed presently, the
intended meaning of wx[(a;x)Ub] is the set a*-bu{a®}, where a* is

the infinite sequence of a's.

In general, we will restrict attention to syntactically zlosed statements
(i.e. those without free statement variables), since only such statements
have a meaning under the operational semantics to be defined below. (We

will not always state this explicitly.)

B

he TpansiTion System TO

3

A transition describes what a statement s can do as its next step.

This concept of a transition dates back to [Ke] and to automata theoretic




notions [RS]. Following Hennessy and Plotkin [HP, P21], a transition

system is a syntax-directed deductive system for proving transitions (see
also [Apl, Ap2, P22]). 1In this section we use this idea for g -
First we need some notation. Let .+ £ A. Then the set ASt of

Ast

words [Ni] or streams [Br], with u,v,w € , 1s defined as

ASY = At U AT U AT . (1) .

ASY includes the set A = A¥ U A of finite and irZinite words or

streams over A [Ni], and additionally the set A* . {1} of wninishes
words or streams. Let e denote the empty word and = the prefix relzzion

over words. We define 1w = 1 for all w .

A configuration is a pair <(s,w) or just a word w. A transiticw=
relation is a binary relation = over configurations [Ke]l. A transition
is a formula (s,w) = (s’ ,w') or <{s,w) - w’ denoting an element of a
transition relation. A transition system is a formal deductive system for
proving transitions, based on axioms and rules. Using a self-explanatory
notation, axioms have the format 1 - 2, rules have the format %—3—% .
For a transition system T, T |1 - 2 expresses that transition 1 - 2
is deducible in the system T. Then 1 =2 1is also called a T-zrausizion.

For a finite sequence 1 -2 = ... = n of T-transitions, we also write

TH1-"n.

We will present a particular transition system TO for £0. Before
doing so, we introduce a notation which permits a compact representation of

the transition rules.

FS




We follow Apt [Apl, Ap2] and explicitly allow the empty statement

E (not present in £O). We then assume identifications between expressions

generated by the following equalities:

(E, w2 =w,
s = s;3E = E;s = s||E = E|s.
Then in the notation
(s, w) = (s',w'y, (2.1)

the pair (s’, w’) on the r.h.s. has two possible interpretations:
(i) as shown, with s’ e L9, and also (i1) with s =FE and (s, w') =w .

Thus (2.1) represents either of the transitions
(i) (s, wy—=(s', w') (with ¢’ €Lyl
(ii) (s, w) = w .
We now present the system TO’ .
For weA” UA®-{i] and s €L, we put

(S,W) = w,

and for weA” we distinguish the following cases:

(elementary action)

(a,w) = w-a
{local nondeterminacy)

(s7Us,,w) = (s W)

. (S7US,,u) = (s5,W)




(recuraion)

CGux[s], w) = (s[ux[s1/x], w)
where, in general, s[t/x] denotes substitution of t
for x in s. Thus recursion is described here by

syntactic substitution or copying.

(2cmposition)

(s1ow) = (s’ ')
(513550 = (s"35,,W )

(sow) = (')
(s1lispwd = (s"{Is,,w")

(syow) = (s'.w')
sy = s[5 '

Note that our convention regarding the empty statement applies to the
composition and shuffle rules given above. Thus, for example, the first
shuffle rule has two interpretations: (i) as shown, with s’ eio , and
also (ii):
(sy,w) = w’
(silispowd = (syow' ) 7

At the beginning of this section we said that a transition describes

what a statement can do as its next step. For TO this is made precise

by the following Temma.




2.1.1 LEMMA (Initial Step). Ty L (s,w) = (s’ ,w') iff there exists some

beA U {e} withw =w+b and Tg F{s,e) = (s ,b).

PROOF., By structural induction on s. @

2.2 The Cverational Semantics (90

By an operational scmantics we mean here a semantics which is

defined with the help of a transition system. As a first example we

introduce now an operational semantics GO for SO. Formally, &g

is a mapping

GO: &0—’$

with $= P(ASt) denoting the set of infinitary languages, which may

contain both finite and infinite words over A.

(1)

We first give some definitions.
A transition sequence is a (finite or infinite) sequence of
To-transitions.

A path from s is a maximal transition sequence
m: (SpaWp) = (s9.Wq2 = (sz,wz) - ...

where Sg = S and Wy = €.
The word associated with a path w, word (m), is defined according

to the following three cases.

(a) w is finite, and of the form

(su,wo) - .= (sn,wn) - W.
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Then word (m) = w.

(b) m 1ds infinite:
(so,wo) - .- (sn,wn) - <Sn+1’wn+]> - ...

and the sequence (w_)

n'n is infinitely often increasing.

Then word (m) = sup, W, (sup w.r.t. the prefix ordering),

an infinite word.

(c) m is infinite as in (b), but the sequence (wn)n is

eventually constant, i.e. for some n Wosk = Yo for

all k=0.

Then word (m) = WL

It is easy to see that these are the only three possibilities for a path
in TO'
We now define for s 6£O:
GOES 1 = {word (w)|w is a path from s}.
EXAMPLES. @O[(a];az)“a3] = {ala2a3, 212485, a3a1a2},
Goﬁpz[a;x) Ubll=a*-bu {a”},

GOEp x[(x;a) Ubll =b-a*xu {u}.

We conclude with two simple facts about Gq -

2.2.1 LEMMA (Cefiineiness). (90 is well-defined, i.e. @OES] 7o

for every s exo.

Fs
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PROOF.  The claim follows from the fact that for each configuration

(s,w) at least one transition <{s,w) = {s’,w' ) exists in Tg- ©

2.2.2 LEMMA (frolongation). If T F(s,e) »* (s',w) and w’e;@OEs' 1,

then also w-w 6(90!5].

Prcof. By the definition of @O and Lemma 2.1.1. «
We remark that corresponding lemmas will also hold for the operational

semantics to be discussed subsequently.

2.3 The Denotati-nal Semar.tics SO

The operational semantics & for 4, 1is global in the following
sense: to determine GOES 1 we first have to explore the To-transition
sequences for all of s, and only then we can retrieve the result ®0Es 1.
Further, in TO » and thus in 6g » recursion is dealt with by syntactic
copying. We now look for a denorational semantics 8 for £ A
denotational semantics should be compositional or homomorpnic, i.e. for
every syntactic operator gp in SO there should be a corresponding

semantic operator op 0 satisfying

bY
85lsy op s,1 = £40s,1 op 0 8yls,1,

and it should tackle recursion semantically with help of Fixed points.

This of course requires a suitable structure of the underlying semantic

domain.
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For QO we shall use metric spaces (rather than the more customary
cpo's) as semantic domain. Our approach is based on [BBKM], [BZ2]; for

general topological notions such as closziness, limizs, conzinuity and

compicteness, see [Du].

Following [BZ2], @O will be defined only for guarded statements, a
notion which we define below. We must first define the notion of an
expcs=2 occurrence of a substatement in a given statement.

H

REMARK. By "(occurrence of) a substatement of a statement s", we
will always mean a statement not containing any free statement variables
which are bound in s . For example, aj;Xx 1is a substatement of

pylas;xsyl, but not of px[aj;xsy].)

We now define the notion: an occurrence of a substatement t of s
is exrosed in s . The definition is by induction on the structure of s:
(a) s is exposed in s. (More accurately, the unique occurrence

of s in s 1is exposed in s.)

(b) If an occurrence of t is exposed in Sy > then (and only then)
it is also exposed in sy3s,, sqlls,s syllsys 57 U sy, s, U sy
and p,x[S]] (and also 51t s, and So * S in the case

of the language £, of Section 4).
EXAMPLE. In the statement x;a U byx, the first occurrence of X
is exrosed, while the second is not.

A statement is now defined to be guarded (cf. [Mi] or [Ni]) if for

all its recursive substatements px[t], t contains no exposed occurrences

of x. «




=
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EXAMPLES. wx[a; (x||b)] is guarded, but wx{x], wyl[ylib]l and wx[py[x]1]

(as well as statements containing these) are not.

One advantage of the guardedness restriction is that we will be

able to invoke Banach's classical fixed point theorem when dealing with
recursion.

Let us now introduce the metric domain for &O' For u EASt let
u[n], n=0, be the prefix of u of length n 1if this exists; other-
wise u[n] =u. E.g., abc[2] = ab, abc[5] = abc. We define a natural

metric d on ASt by putting

d(u,v) = 2-max{n [ uln] = v[nl}

with the understanding that 27 = 0. For example, d(abc,abd) = 2-2,

d(an,a“) = 2" We have that (ASt,d) is a complete metric space.
For Xc ASY we put X[n] = {uln]lueX}. A distance d on subsets

X,Y of ASY s defined by

a(X,Y) - Z-max{nlx[n] = Y[n]}.

Let SC c3® denote the collection of all metrically closed subsets of

~

st .
A®* . It can be shown that CSC, d) s a complete metric space (see [Ha]).
A sequence <Xi>?=0 of elements of SC 1S @ Cauchy seguence whenever
Ve > 0 2N Yn,m = N[d(Xn,Xm) <e¢]. For <Xi>i a Cauchy sequence, we

write 1imi Xi for its limit (which belongs to $C by the completeness

property).
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A function &: (SC, &) - (SC, a) is called contracting whenever, for
all X,Y, a(¢(x),¢(Y)) < o for some real number o with
0=<a<1. Aclassical theorem due to Banach states that in any complete
metric space, a contracting function has a unique fixed point obtained
as 11‘mi ¢1(XO) for arbitrary starting point X
0
We now define the semantic operators ; -, U

0-
&

and | °

on SC .

(For ease of notation, we skip superscripts &0 if no confusion arises.)

a. X,YSA*UAT-{i}. For X;¥Y =4 X-Y (concatenation) and
X UY (set-theoretic union) we adopt the usual definitions
(including the clause 1-u for all u). For X|Y (shuffle or
merge) we introduce as auxiliary operator the so-called left-merge
L (from [BK]). It permits a particularly simple definition of

| by putting
XY = (XLY) U (YL X)

where IL s given recursively by XL Y =U{ullY|ueX} with
ellY =Y, (a-u)LY =a- ({u}]]Y) and +lLY = {i}.
b. X,Y GSC where X,Y do not consist of finite words only. Then

XopY = Hmi(X[i]'QEY[i]) ,

for ope{;, U, |[}. In [BZ2] we have shown that this definition

is well-formed and preserves closed sets, and the operators are

continuous (assuming finiteness of A, as in [BBKM]).




15

We now turn to the definition of 8 - We introduce the usual notion
of envirormenz which is used to store and retrieve meanings of stétement
variables. Let Iy = EEEX."SC be the set of environments, and let
YeI,. Wewrite y’==df y(X/x) for a variant of vy which is like

y but with v/ (x) = X . We define
84" guarded £y - (r
as follows:

1. sglal(y) - {a}
2. 8ylsy0ps,Xy) = syl 1(y) op 85ls,1(y)
3. 85IxI(y) = y(x)

4, solpx[s]](y) = 1imi X; » where X, = {1} and

Kie1 = SbXI(¥4X;/x0) .

By the guardedness requirement, each function ¢ = AX. SOU:S]](Y(X/X>)

is contracting, <Xi>i is a Cauchy sequence, and 1imixi equals the
unique fixed point of & [Ni, BBKM, BZ2]. For statements s without

free statement variables we write ﬁoﬁs] instead of ﬁoﬁs](y) . Since
SOES] ijs a set of (linear) streams, 8, is called a linear time semanzics
[BBKM]. (Such a semantics may constitute the basis for a linear time

temporal logic for £y - )

REMARK. An order-theoretic approach to the denotational model is also

possible ([Br, Me, BMO], see also our survey [BKMOZ]), but less convenient

for our special purposes. In fact, the order-theoretic approach does not
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provide a direct treatment for the unguarded case either, it seems to
require a contractivity argument for uniqueness of fixed points just
as well, and, last but not least, as far as we know, it cannot be used

as a basis for the branching time semantics used later in Section 4.3.

2.4 PRelaiionship letween GO and SO

In this section we will prove:

2.4.1 THEOREM. 6gls1 = 84ls] for all (syntactically closed) guarded

SESJO.

The proof of Theorem 2.4.1 is by induction on the structure of s.
For the induction argument we need two important facts about Gg which
we develop first. The first fact states that Sq behaves compositionally

over the operators ope{;, U, [[} of £, in the sense or Section 2.3:

8
- 0
@Olslogszl = @0151] oD solszl.
We shall not give a full proof here, but refer to Section 3 where this

result is established in the more general setting of language £ -

Instead we concentrate here on the second fact dealing with recursion
because its proof carries over to the languages £ and Lo virtually

without change. We wish to show that

solixlt()1 = Tin, 6oLt ()]
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where Q 1is a certain auxiiiary statement and t(n)(-) denotes n-fold
substitution (to be explained in the sequel). This proof is quite
involved; it requires a number of auxiliary results on the transition

system TO and the operational semantics @O.

In the following, we make the general assumption that all our statements
are (syntactically closed and) guarded (unless explicitly stated otherwise).

Guardedness comes into our work in two ways:

(1) in proving the technical results below on transition sequences,

notably the Basic Lemma (2.4.4), and

(2) wmore fundamentally: SOEs] is only defined for guarded s!
(On the other hand, GOES] is only defined for syntactically

closed s.)

Let us now turn to the first fact about @0.

Compositionality of &g -

We state (more generally):

2.4.2 THEOREM.

(a) eqlal = {a]
£

(b) @Ols] U 52] = @0E51! U eoﬁszl

(c) ephux[s11 = sglslex [s1/x]1
£

(d) Galsy3s,) = 6gls ] 5 © gl
Y

(e) @0E51u52] = 6gls;1 I

¥ 5yls,]
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PROOF. (a), (b) and (c) are clear, by considering transition sequences
from <a, €7, (s;Usy, €2 and  (uy [s], ), which must start with the
transition rules of elementary action, local nondeterminacy and recursion
respectively. Part (d) is proved like (e), but more simply, and the proof

of (e) is postponed to Section 3 (Lemma 3.4.6), in a more general context. o

We now develop a series of auxiliary results leading to the main

fact about recursion (Corollary 2.4.16) used in proving Theorem 2.4.1.

0
<
&
o
Ca
&y,
82
o
<t
Cry

s about TO- transiiions

NOTATION. To display all free occurrences of a variable X 1in a statement
s, we can write s = s(x). Then the result of substituting a statement
t for all free occurrences of x in s is denoted formally by

s[t/x] and informally by s(t).
We also speak of the context s{-) of the occurrence(s) of t
displayed in s(t).

Note that if t s a proper substatement of s = px [s](x)], then
(by the remark on substatements in Section 2.3) t is a substatement of

$y» not containing x, so we can write, informally, s =g x[s](t,x)].

We indicate a specific occurrence of a substatement t of s by

wederiining it: s(t).

We also speak of the conzext s(-) (or s(-)), meaning that part

of the expression s(t) (or s{t)) excluding the displayed occurrence(s)

of

ot
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TYPES OF TRANSITIONS. We must make a closer analysis of To—transitions.

Since every deduction rule in TO has only one premise, every To—transition

(s,w) = (s’ ,w') (2.2)

is deducible from a single axiom: elementary action, nondeterminacy Or

recursion, by a sequence of applications of the rules composition and

There may actually be more than one deduction of (2.2). For example,

the transition

Cox [xMeylylsw) = Cpx DxJijuylyl.w)

has two different deductions, one starting from px [x] and the other

from pyly]. Notice, however, that in this example the p-substatements

are unguarded. If (according to our general assumption) we restrict our
attention to guarded statements, it is not hard to see that every deducible
transition has a unique deduction (although our results do not really depend

on this fact).

According to which axiom was used in its deduction (elementary action,
nondeterminacy or recursion), (2.2) is called (respectively) an o-traneition,

J-trarcition Or p-transition.

SUBSTATEMENT INVOLVED IN A TRANSITION. Any transition

| (s,w) = (s’ W) | (2.3)
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involves some (unique) occurrence of a substatement of s. This notion

can be defined by induction on the length of the deduction of (2.3).

(i) Basis. If (2.3) is an axiom, then it involves the occurrence

of s shown.

(i) Induction step. If the premise of an instance of one of the
rules in TO involves an occurrence of s, then the conclusion

involves the corresponding occurrerce of s .

For example, in the following form of the shuffle rule:

(s1(1)swy2 = (s,,w,)
(s7lis1(t)swyd = (sTis,(E)ow,)

if the premise involves the occurrence of t shown in Sq > then the

conclusion involves the corresponding occurrence of t shown in S'HS].

Note that we have not defined the notion of corresponding occurrer.ce

precisely, but it should be clear enough.

It is clear that the substatement involved in a transition is the

same as the statement on the 2.h.s. of the corresponding axiom.

EXAMPLES.
(1) (sqli(ass,) W) = (sqlis,,wa)

is an a-transition, involving the occurrence of a shown.
(2) (((s7 U splssgdilsgwd = K(s5355) 54w

is a U-transition, involving the occurrence of $q Us, shown.

&
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(3) (s yllex Tsp () 1owd = (sqiispex [sy(x)1) W)

js a p-transition, involving the occurrence of p x[sz(x)]

shown.

PASSIVE SUBSTATEMENTS. We say that a transition

(s(t),w) = (s’ W) (2.4)

affects the substatement occurrence t if it Znvolves some substatement
of t (perhaps t itself). Conversely, t is said to be passive in
(2.4) if it is not affected by (2.4). Denote the (unique) statement
occurrence involved in (2.4) by ty- Then it is easy to see that the
following three statementsare equivalent:

(1) t is passive in (2.4).

(i) ty is not contained in t.

(ii1) t is either disjoint from t,, or properly

contained in t,.
2.4.3 LEMMA (5ubstitution of Passive Substatements). Given a To-transition
{S],W]> - <525W2> ’ (2‘5)

if sy has the form sﬁ(ﬁ) , where t is passive in the transition,
then s, can be written in the form sé(t) (displaying 0, 1 or more

occurrences of t), such that for any statement t’ , there is corresronding

To-transition

S
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(st )W = (s5(t7) W)

PROOF. By induction on the length of a deduction of (2.5). Briefly, the
deduction of the new transition is formed simply by replacing certain
occurrences of t by t' in the deduction of (2.5). The details are

left to the reader. O

BASIC LEMMA ON TRANSITIONS. The following basic lemma shows the signi-
ficance of the guardedness assumption. It enters three times into our
working below! - (a) in the proof of Theorem 2.4.10 (via the Decreasing
Exposure Lemma 2.4.7 and the Finiteness Lemma 2.4.8), (b) in the proof of
Theorem 2.4.11, and (c) in the proof of Lemma 2.4.14 (via Corollary 2.4.13),

which in turn is used in Theorem 2.4.15.

2.4.4 (BASIC) LEMMA. 1In the transition
(S] 3W1> - <52’w2) N (2.6)

if a substatement occurrence t is not exposed in s;, then t s

passive (and so the lemma of the previous subsection applies).
PROOF. By induction on the length of a deduction of (2.6).

BASIS. Suppose (2.6) is an axiom. Then, since t 1is not exposed in
Sy it cannot be equal to Sy i.e. it is a proper substatement of Sy -

Hence t ds passive in (2.6) (since by definition only the full statement

51 is involved in an axiom (2.6).
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Induction Step. Consider first the composizior rule, and take the

case

(s75W72 = {55,W5)
(5155,W72 = s,535,W,y) °

By assumption, t 1is not exposed in 135 . Hence (by definition) t is
either in s or (not exposed) in $7 - If t is in s, then it is
certainly passive in the conclusion. Suppose t 1is (not exposed) in Sq -
By induction hypotﬁesis, t is passive in the premise (i.e. the substatement
of sy involved in the premise does not occur in t). Hence clearly, t

is also passive in the conclusion.

The shuffle rule is handled similarly. O

A useful version of this lemma is given by:

2.4.5 COROLLARY. If a transition (s],w]) - (52’w2> involves a sub-

statement occurrence t in s;, then t is exposed in s;.

PROOF. This 1is a trivial consequence of the Basic Lemma. (It could also
easily be proved directly, by induction on the length of a deduction of

the transition.) o

PASSIVE AND ACTIVE SUCCESSORS. Consider a transition (s, w) = (s’,w' ).

Let Mg = ux[to(x)] be a u-substatement of s, and consider a particular

occurrence of Mo in s. Then there may be one or more corz srondir’
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czeurrences of Mg in s’, stemming from this occurrence of Ho in

s . These are called the successor(z) of this occurrence of Mg in s.

We do not give a complete formal definition of the notion of successor;

consider, as an example, the following form of the rule of composition:

(sq.w) = (s',w)
Csp3splig)awd = €755y (wg)wd

The displayed occurrence of By On the r.h.s. i1s a successor of that on

the 2.h.s.

Most other cases are just as trivial - call these passive successors -
except for the case that the transition actually involves the occurrence

of B considered:
(s(ig)wd = {s(tg(ig) ) wd (2.7)
(where, as stated above, By = BX [to(x)]).

In this case, each occurrence of Hg shown inside the occurrence of to
on the r.h.s. of (2.7) 15 &n active successcr cf the occurrence of o

shown on the 2.h.s.

The transitive relation generated by the successor relation is

called descendant; the converse of that is called ancestor.

2.4.6 LEMMA (Transitivity of

exposurz). Given a statement S containing

a substatement occurrence s, , containing in turn a substatement occurrence

53¢
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(a) If S3 is exposed in So, and D) is exposed in 51> then S3
is exposed in Sy - However if either (b) S3 is not exposed in S, oo

(c) S, 1s not exposed in $1 > then S3 is not exposed in $1 -
PROOF. In all cases, by induction on the structure of s. O

DEGREE OF EXPOSURE OF A STATEMENT; DECREASING EXPOSURE LEMMA. The

degrez of exposure of s, de(s), is defined to be the number of

L2,
Oy
@

espog2d ocrurvences of u-statements of s. We have an important lemma,

XY

which uses the guardedness of statements.

2.4.7 LEMMA. (Decregaing Exvosure). If (s,w) = {s’,w’) s a p-transition,

then de(s’) < de(s).

PROOF. Suppose this transition involves an occurrence of By = BX [to(x)],

and put s = S(po) , displaying this occurrence. Then s' = s(to(po)).

By tne Basic Lemma, Jo is exposed in s. However, all its (active)
successors are not exposed in to(po) (since, by assumption, o is
é

guarded) and hence also not exposed in s’ (by the Lemma (2.4.6) on

Transitivity of Exposure).

Now consider all other occurrences of p-substatements 1in S(po).
Any occurrence which is contained in the context s(-:) (i.e. =ot in the
displayed occurrence of BQ ) has exactly one (passive) successor in

s(ty(eg)) »  which is clearly exposed if and only if the original is.

Finally, consider an occurrence of another p-substatement, say By o
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within pg, i.e. within tO(-). We write py = p)([to(gq,x)], and so

s = shxx[tO(g],x 1) . (2.8)

Now Jo has, in general, muny (passive) successors in s’ , which we

can write as

¢

s = S(to(}a'_-"‘ s}l-X[to(}:'-_‘ls X )])) . (2-9)

The first pg in (2.9) is exposed in (2.9) iff p; s exposed in (2.8),
that is (in both caées) iff gy is exposed in tQ(E]aX) (by the Lemma on
Transitivity of Exposure, since 2y is exposed in 5(30)). A1l the other
occurrences of 0y in (2.9) are, in any case, not exposed in s’, since they
are in ug = ux[to(gl, x)], which is not exposed in to(po) (again, by the

‘assumption that g, s guarded) .

Putting all this together yields the result. o

The above lemma is used in the Finiteness Lemma in the following

subsection.

NON-INCREASING TRANSITIONS AND TRANSITION SEQUENCES; FINITENESS LEMMA.

A transition (s, w) = {s’,w) 1is said to be non-increasing if w =w,
and incregsing otherwise (i.e. if w' = w-a for some a€A). Similarly,
a transition sequence {s,w) = ... = (s’ ,w' ) is said to be nev-incroasing

if W o=w.

Clearly, a transition is non-increasing iff it is a p- or U-transition

(cf. TYPES OF TRANSITIONS above), and increasing iff it is an a-transition.
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We now give an important lemma, which will be used in the proof

of Theorem 2.4.10 (via Corollary 2.4.9).

2.4.8 LEMMA (Finiteneszs). Any non-increasing transition sequence is
finite. In fact, for any s, there is a positive integer C, depending
only on the length of s (as a string of symbols), such that any non-

increasing transition sequence of the form

(saW) = (5w = o = (s W) = (sh W) (2.10)

(for any s‘, w) has length n at most C.

Proof. Let & be the length of s, and d = de(s). Now a non-increasing
transition sequence (2.10) can only contain U-transitions and gp-transitions.
This can include at most d p-transitions, by the Decreasing Exposure
Lemma (2.4.7). Also, each U-transition decreases the length of the

statement. Hence (by a crude estimate, since the length of a statement

2d

can be at most squared by a p-transition) (2.10) can include at most &
d
U-transitions. Hence the length of (2.10) is at most d + I , and so
d
(since, trivially, d =< %) we can take C = 2 + 2. o
COUNTEREXAMPLE for an unguarded statement. Let s = ux[x; aub] .

Starting with (s, ¢), we can perform a u-transition, followed by a

U-transition, k times (for any k), to get:

(S’e) = .. 7 (S;ak,€> 3

a non-increasing transition sequence of length k.
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2.4.9 COROLLARY. For a given s, there are only finitely many transition

sequences of the form

(SoW) = ... = (5" W) = (s¥,w-a) (2.11)

(for any w, s, s, a).

PROOF. By the Finiteness Lemma, there is a finite upper bound to the
Tength of (2.11). Also, at each step there are only finitely many
possibilities for the next transition (as is clear from an inspection of

N

the transition rules). ©

COUNTEREXAMPLE for an unguarded statement. Let (again) s = ux[x; aub].

For any k, we construct the sequence

(s,e) ol (s;ak,e) (as in counterexample after 2.4.8)
- ((S;ale);ak,e) (p-transition)
=~ (b3a%,e) (U-transition)
- (ak,b) .

Such sequences are distinct for different k.

Metric Closure

2.4.10 THEOREM. For any s, GOES 1 is closed (in the metric on St

given in Section 2.3).
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PROOF. Let (u],uz,...) be a CS (Cauchy sequence) of words in @OEs].

Let u = 2imu . We must show: u*i@OEs].

)

If u is finite, it is easy to see that (un 0

is eventually

constant, i.e. U, = u for n sufficiently large. Hence u EGOEs].

So suppose u s infinite. The idea of the proof is to find a
subsequence of (un)n such that not only do the words converge, but
al;o the patis producing them converge (in a suitable metric, to be
discussed in 2.4.13) to a path m of s such that ueword(m), from

which the result follows.

(As before, we use the notation u[n] for the initial segment of

a word u of length n.)
We proceed inductively.

Since (un)n is a CS, for n sufficiently large (say nz;N]) Un[T]
is constant, i.e. up begins with the same letter, say ay (which is

also the first letter of wu).
For all n, let us be a path from s producing up - Consider

the first part of = up to the first appearance of a; on the r.h.s.

n 3

of a configuration:
ui (S,67 = v ™ (s‘,a]) - ...

By the Corollary (2.4.9) to the Finiteness Lemma, there are only finitely

many such transition sequences possible. Hence there is a subsequexnce




30

(u_ U s ...} of (un)n such that the corresponding all begin
2
with the same transition sequence (up to the first appearance of 2

Ny

on the r.h.s.).

Since (u_ ), is a CS, for k sufficiently large u_ [2] is
Ny k Ny
constant, i.e. u, begins with the same two letters, say a2, (which
k
are also the first two letters of u). Again, by the Corollary to the
Finiteness Lemma, we can get a subsequence of (un ) such that the
k
corresponding paths all begin in the same way, up to the first appearance

of a]a2 on the r.h.s.:
(S,e) = v.. — (s],a]> - .., - (sz,a]az) - ...

Continuing in this way, we get, for all k, successive subsequences of
(un)n such that the corresponding paths all begin in the same way, up

to the first appearance of k Tetters on the r.h.s., say CIEPIRER

which are also the first k Tletters of u. Finally we take the

"diagonal sequence", by piecirng together the initial segments of these

paths, to obtain the path
M (S,e) = ... = (s], a]) - ...
e = (32, a]a2> - ...

el o (sK, a8, ... ak) - ...

Clearly, wepath(s) and u = CILPNE word(m) . O
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~

DISCUSSION (metric on the set of paths). We can define a metric d on
the set path(s) as follows: Fm, o) = 2" if mw and w agree up

to the first appearance of a word of length n on each:
(S,e) = ... = (sn, ay ... an) - ...

(Note: this is not equivalent to agreeing up to the first n transitions!)

The proof of Theorem 2.4.10 produces a subsequence of (un)n such

that the corresponding se;uence of paths also converges (in the metric

E) to a limiting path m, with us& word(w).

COUNTEREXAMPLE to Theorem 2.4.10 for an unguarded statement. Again,
let s = ux[x;aub]. Then @OEs] = b.a”u {1} . This set is not

closed, since if we take u, = b.ane@ols] , then zimnun = b.aw;é@OEs] .

Note that the u, are produced by paths

T {(s,e) = ... = (a",b) (as in Counterexample after 2.4.9)

... =bja (by n a-transitions).

But the initial parts of these paths, up to the first appearance of b
on the r.h.s., are all di-Ferent, so there is no limiting path (in the

metric E)!

Linking operational and s.wtactic approximation.

ITERATED SUBSTITUTION; DEPTH OF A u-STATEMENT IN A PATH. From now on, we

will concentrate on a specific p-statement, g = px [t(x)] (which, by
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our general assumption, is syntactically closed and guarded).

We define the n-72id substitution in t(x) by a sequence of

statements T (x) (n = 0,1,2,...) where

ot
3
-+
—
—
x
~—
1}

TEx)) (=T(E(x)))

Since g is syntactically closed, t(x) contains at most x free.
However, there may be many occurrences of x in t (none of the exposed!).
If, for example t(x) = T(x,x,x) (3 occurrences of x ), then

T (x) = T(E(xx.x) s E(Xsx.%) s T(x,x,x)) .

We call a transition involving an occurrence of u a p-transition.

Now consider a path from some statement So containing p:
T (so,e) - (s],w]) - .= (sn,wn) - ...

We define the derz# of an occurrence of u in Sy (in w), by induction

on n.

N3]

asis (n=0). Every occurrence of p in Sg has depth 0.

Induction step (n = n+1). Given any occurrence of u in S of depth
d, any passive successor (cf. PASSIVE AND ACTIVE SUCCESSORS above) of

this occurrence also has depth d; all aciive successors have depth d+1.

In other words, the depth of an occurrence of g in m counts tne

number of p-transitions involving ancestors of that occurrence.
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SYNTACTIC BOTTOM‘SYMBOL; TRUNCATION OF A PATH. As a technical aid, we

adjoin the symbol "Q" to the syntax of .510 , and the transition rules

(actually axioms):

(Gy): (C5s, W) = K0, W)
(Glis, wy = (a, w)
(St W) = iy W)

:22): (G, W) = wW.i

to Ty. We also define SoL=T(y) = {1} . This symbol will not appear

in our final result (2.4.1).

We now define the n--mumecazion of a path m (w.r.t. p), trunc n(rr) .

This is the path w’ formed by "truncating = at a depth of n", by

[

(1) replacing all occurrences of g in m, of depth n, by & , and

(2) replacing the first transition involving an occurrence of g of
depth n:
mo.e = {s(p), Wy (s(ER)), W) - L
by transitions involving &
’ @ a,
o= (s(R), w2 G, W) o W,
thus terminating =’ . The transitions in the sequence (@ are deduced

from instances of axiom (:.l} bv successive applications of the

composition and shuffle rules, paralleling the deduction of @ from an

instance of the recursion rule.
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Note that step (1) in the construction of truncr1(n) above has the
effect of replacing p-transitions, involving occurrences of u of depth

i

n-1, by "non-standard u-transitions", in which the active successor of

g is not T(w) but T(2).
Next we give a notation for the word associated with the n-truncation

of 1

wordr](n) = word(truncrw(n))

and finally define the n-crproximzzior of the operational meaning of
Sp°
6" gD = {word | (m)[me path(sg)} -
The following theorem shows that for Gy » operational approximation
(via n-truncation) coincides with syntactic approximation (via n-fold

substitution). This result facilitates the subsequent considerations on

metric limits.
2.4.11 THEOREM. @é”)[[;]] = @Oﬁf(”)(n)ﬂ for n=0,1, 2, ...

PROOF. We will actually prove, more generally: for any statement so(x)

(with only x free, and not containing G),
G(n)[ s (—,)]] = +(n) ~
S 5o T = el s, ™ @1

(1) <: (This is relatively straightforward.) Let me Eath,](so(ﬁ)).
We must find Epath(so(f(n)(a))) such that word(xw’) = word(m) .

Note that each occurrence of & in m has depth

&
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< n (by definition of path ).
Form w from w 1in two steps:
(a) Replac: each occurrence of p of depth d(<n) by t

(b) Consider a p-transition in m:
o = (s(p), w) = (s(E(p)), W)~ .

Actually, s may contain a number (say m) of occurrences of W

s(p) = s{@ops---op) . Suppose w.l.0.g. that the first of these occurrences

shown is involved in the p-transition:

T2 eee = (S(othynenp)s W)
= (S(T(R) s poeresi)s WD

Suppose that the m occurrences of & shown on the 1.h.s. of this
transition have depths d1”"’dm(< n). Then all occurrences of p in

f(—g) have depth d] +1 (they are the active successors of the first

@ on the 1.h.s.), and the remaining w's on the r.h.s. (still) have

depths d2""’dm (they are the passive successors of the corresponding

g's on the 1.h.s.). Then from step (a), =’ is so far (putting e,=n- di):

e e e
a = (s(E )T @), E ™)), W)
_ _e]-l _& e
- (s(t(t (), () seennt (i), W

Now collaps2 the above "identity transition" into a single configuration




36

oo (s(aL), Wy - L

(2) o: (Trickier, here we use the Basic Lemma, and the assumption that g is
N, . —
guarded.) Let © &Eath(so(t (2))). We want to find a path mepath (So(p))

with the same associated word. Roughly, we replace occurrences of

{

t(a) 0<e=nj) in n by g (of depth n-e, as it turns out).

t%(a)
We will construct w step by step from w' . With each configuration

e
(s, w) in n’ will be associated a finite sequence (T ](Q),...,€'m(;))

(0 < e; < n) of occurrences of substatements of s. Then =u 1is extended

by adjoining a configuration (s’, w), where s’ is formed from s by

e.
replacing t ) oy p (of depth n- ei). In detail, the construction
of w from n' proceeds as follows. It starts in the obvious way

(displaying the different occurrences of T'(q) in sO):
' (s(TNQ),. .., Q)), @) - .
e <so(g,...;g), €) = ...

Now assume (inductively) that m has been constructed from w' wup

to a certain stage:

e e D
U Y ](Q),...,t M), wy = ...
™ e . ."’(S(E,-. ,—'_), W>
. =,
where (t (&),...,t () 1is the seguence associated with the configuration

e.
‘

in o , and (by assumption) each T '(Q) has been replaced in w by an
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occurrence of  of depth n- e, (1=ism). Now consider the next
transition (I, in =’ . There are two possibilities:

e.
(a) Transiticn 1 does not affect any of the t (@) (i =1,...,m). Then

the construction of w 1is extended another step in the obvious way.

e, - e.
(b) Transition (I} affects one of the t '(q), say (w.l.0.g.) t '(g).

There are two subcases:

(i) ey > 1. Now since p is guarded, the occurren%es,of X are
not exposed in- t(x), hence the occurrences of Eei— (c) are not
exposed in f(fe —](Q)) = fe](a) ; and hence (by the Lemma (2.4.6)
on ransitivity of «xposure) also not in s(f(fe]~](;)),...). Hence

by the Basic Lemma, they are passive in 1, , and so, by the Lemma (2.4.3)

by

on substitution of Passive Substatements, 1. has the form:

e e e
de = S(E ), T Q). T ™M@)), w)
87! &7 &n
= (s{t(t (Q)), T °(Q)s...ot (Q)), W)
D _ey-1 8 _en
- (st (T @), TUQ),.nt (), W

The sequence associated with this last configuration is the sequence
e, -1
T 1

of occurrences of () (shown in the context t'(")), followed

52 =m
by t “(&),....t (&) as before.
Now the construction of m proceeds with a p-transition, followed

by a transition worresponding to Qj) (as given by the Lemma on the

Substitution of Passive Substatements):
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e = (S, Boeeeop)s W)
= (S(E(R)s Boennst), W)

= (S ()s Boevnnpm)s W)

(i) ey = 1. Again, by the Basic Lemma, transition T has
the form:
‘ - _&2 —m
o= (s(EG), TRt (), W)
1 e e
s, E AR, E M), w

The sequence associated with this last configuration is now
(Eﬁiﬁgl,...,iffxggj » and the combination of m proceeds with
a non-standard p-transition (converting p to T(q): note
that this occurrence of u has depth n-1), followed, again,

by a transition corresponding to J) :
T oo = (S Poenesh), W)
= (S(E(G) s Boevnsp), W)
= ({7 (G) s poeensp)s W) o
To show that rreEathn(sO(E)): notice that Q 1is introduced into =

(only) from non-standard p-transitions, involving occurrences o p of

depth n . Now we can construct a path from w , such that = 1is its

n-truncation, by:
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(1) replacing all non-standard p-transitions by standard w-transitions,
(2) removing all 91-transitions,
(3) replacing the Qz-transition (assuming there is one!) by a w-transition,

and then continuing the path arbitrarily.

We leave the details to the reader. O

REMARKS. (1) We believe that the mappings between oathn(so(u)) and
Eath(so(fn(ﬂ))) given by the above proof are inverse bijections.

(2) Although guardédness was used in this proof (via the Basic Lemma),

we cannot find a counterexample to the theorem by dropping this assumption.

Taking Limits

. 2.4.12 LEMMA. Consider a path from p:

(Boe) = voe = sy = (W)= Lo
@
I LR ol S Rl R

where transition I) involves an occurrence of p of depth d and

3

transition 2. involves an occurrence of a descendent of w of depth

d+1 . Then w' 1is longer than w' .

PROOF. By the Basic Lemma, only expnsed occurrences of w can be involved
in a p-transition. Since p is guarded, no successor of this occurrence

of & in I is exposed, and, in fact, no descendant of this occurrence

of p is exposed, as long as there are only p- and U-transitions (the

proof of which is left to the reader).
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Hence, before transition /2y , there must be at least one a-transition,

which will lengthen the word. ©

Let us write |w| to denote the length of the word w.

2.4.13 COROLLARY. If, in a path from wu:

1=

(ere) = oo = (S,W) | R I

the transition j? involves an occurrence of p of depth d, then

lwl =d.

COUNTEREXAMPLE for an unguarded statement. Let s = px{x;auUb]. Taking
the sequence described in the counterexample following 2.4.8, with
transitions involving p-statements of arbitrary depth, we remain with

the empty word.

2.4.14 LEMMA. The sequence (@én)ﬁ wl )n is a Cauchy sequence in U§C, a)

(see Section 2.3).

PROOF. This follows from the fact that for all rrEQath(E) , wordn(n)—'word(n)

. . . . . t
as n = o, uniformly in n (i.e. independent of mw) in ASY . More

precisely, by Corollary 2.4.13, for all mepath(p), n,k:

d(wordn(n), wordn+k(n)) <2 ",

Hence for all n, k:

deiMrED . MR s 2 o

4]
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2.4.15 THEOREM. oylul = Hmn@é”)[[ﬂ].

PROOF. By Lemma 2.4.14, the limit on the r.h.s. exists. It is equal
to (see [Hal)
st

,d) and wn€®(n)ﬂ:E]]}.

{Hmnwn | (wn)n is a CS in (A 0

We will show that each side is a subset of the other.

(1) <: Clear, since for all mepath(u), word(m) = 11’mn(wordn(n)) .

(2) o: Let w = ]imnwn , where wnee(()n)ﬂ:E]] . For all n, there
exists vneso[[ﬂ]] which extends W and such that w = 11‘mnvn also.
(Take v, = word(w) for any m such that W, = wordn(n).) Then also

wo=limv . Since GOIIE]] is closed (by Theorem 2.4.10), WE(SO[[_}:E.

We can now state the main fact about recursion used in proving

Theorem 2.4.1.
2.4.16 COROLLARY. o,[ul = Hmn@o[[f"(m]].
PROOF. By Theorems 2.4.15 and 2.4.11. O

SIMPLE EXAMPLE. Let t(x) = a-xUb, p = px{t(x)]}. For all n,
GO[[fn(fz)]] = tsén)[[fz.]] = {a1b]051<n}uia";} . This is a CS of sets,
with 1imit a*bu{aw} , which is equal to @0[[;]] , as promised by

the Theorem.

&
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COUNTEREXAMPLE for an unguarded statement. Let T(x) = x-aUb, w=px[t(x)].
For all n, @O[[fn(s:-)]] = GOH)[[E]]= {ba'|0=i < nju{s}. This is again
a CS, with Timit ba"u {ba”, 1} . However this limit is not equal to
6L w 1 = ba*U {1} ,
which is not even a closed set!

P

roc” of Theorem 2.4.1

Finally, we are ready to prove that
(901]:5:[] = ASOE[S]].

Since we are assuming that s 1is syntactically closed, we do not display
the environment with ;SO{[ s JJ] above. However, in order to prove it, we
must prove a more general result, in which s is not necessarily syntactically

closed (but still guarded!), namely

6ols [t5/%;152, 0= 89Ls T (v¢x /x5 4) (2.12)

where (a) var(s) < {x1,...,xk} .
(b) ts is syntactically closed for i=1,...,k,
(c) @O[[t1]]=x]. for i=1,...,k.

The theorem is then (of course) a special case of (2.12) with k = 0.

The proof of (2.12) is by induction on the structure of s. Al

cases are straightforward (using Theorem 2.4.2) except for s=py[so]

(assuming w.2.0.9. ¥y # Xy5 ..t xk) . Now
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Go[[pf.y [So][t]/x.!]'::] 1

6qLuy Ls [t./x;1¢.;17 (assuming w.2.0.g. no
0 0"/ ™A= .
variable clashes)

= 1imn @OErnﬂ (by Corollary 2.4.16)

where
rg =0,
el ° so[ti/xill;:][\%n/y] .
and
sqLey [solT (v&Xy/xp)5oy) = Timp¥
where
Yo =145
Vooq = SpLsglvK/x g <Y /i) -

So it is sufficient to show

ool I = Y, (2.13)

for all n, by induction on n.

this is clear. Assume (2.13). We must show

For n=20,
GOErn+lﬂ = Yn+1’ i.e.
sqLsglt;/x; 150 /y10 = 8y Ls T v<K /x5 <Y /) -

But this follows by the main induction hypothesis on (2.12), with 50
replacing k, and using (2.13) to establish

replacing s and k+1
(k+1)-st part of condition (c). a

the




S
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3. THE LANGUAGE Ly SYNCHRONIZATION MERGE AND LOCAL NONDETERMINACY

For £1 we introduce some structure to the finite alphabet A.
Let C<S A be a subset of so-called commmications. From now on let
c range over C and a over A\C . Similarly to CCS [Mi] or CSP

[Ho] we stipulate a bijection—: C—=C with ¢

¢ which for every
ceC yields a matehing communrication ¢ . There is a special action

7€ A\C denoting the result of a synchronization of ¢ with ¢ [Mi].

As syntax for s€fy we give now:

Si:=ajcls;isy|squs,| slu$2[ x | ux[s].

Apart from a distinction between communications and ordinary elementary
actions, the syntax of £ agrees with that of SO‘ The difference between
£ and £, Tlies in a more sophisticated interpretation of s;jls, to be

presented in the next subsection.
3.1 The Transition System T

Let 6#£AU {1} be an element indicating failure, with § «w = & for all

w . The set of streams or words is extended to
aSts) = Aty a* . (o)
. . st,
with u,v,w now ranging over A”"(§).

The transition system T] consists of ali axioms and rules of TO

extended with !
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(s,w) = w tor weA® UA™-{6,1},
* .
and for weA with:

(2ommurication)
{C,W) = Wb

(an individual communication fails),
(symchronizatior)

{CiiC, W) = WeT
(synchronisatior in a context)

(s (isy, W) - (saﬂsé, WT)

((syss)lisys wy = ((s738)lish, wr

((s1lis)sps Wy = K(sqis)sys wrd
({slis sy, wy = <" fi(syls), wrd
(s ll(sps s)swd = (sfl{sh38), wr)
(syll(splis), wy = Ks* [ (splis), wr)
(sqil(slis,)s wd = (s li(silsh), wr)

where s& or s% or both may be E, and where the premise of the rule
is a synchronization-transition between S and So such that sa

stems from s; and sé stems from s, .

The last rule requires some explanation. First consider a transition

of the form

(sqlisgs wd = (sha vy
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An occurrance of a substatement s of sa is said to stem rom 51

(or 52) if whenever s; and s, were colored 'blue' and 'green'
respectively, s would be exclusively colored 'blue' (or ‘'green').
Note that the concept of coloring is just a convenient way of tracing
occurrences in configurations changed by transitions. For example, in

the transition
((esspdi(css), wp o - (5711555 W)

s; stems from c;s; and s, stems from CiS. . A transition of the

Z

form
(sqlls,s Wy = (s§, wr) (3.1)

is called a synchronization-transition between Sy and s, if a

deduction of (3.1) starts with a synchronization axiom
(cifc, W) = weT

such that Sy has the same color as ¢ and Sy has the same color

as C.

In contrast, a transition
(S]HSZ, Wy = (sﬁﬁs%, w ) (3.2)

is called a iocal transition if a deduction of (3.2) starts with an

axiom of the form {s,w) - w’ such that s 1is a substatement of either

5; or s, . (Note: the "[|" shown in (3.2) is introduced by the shuffle
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rule, notthe synchronization rule, and so s, = s% or sy = sa .)

EXAMPLES. 1) {(c;s&)ﬂ((cﬁ?);sé), w) - (saﬁ(c;sé), wr) is a
synchronization-transition between s; = c;sa and s, = (ciic)ssh .

2) ((c;s%)u((cﬁc);sé,), w) = ({c;s)lish, wr) is a local transition
involving only the second argument s, = (cﬂE);sé of the top-level ¥ ;"
operator.

Finally we remark that the Initial Step Lemma (2.1.1) originally
stated for TO holds also for T] .

3.2 The Crerational Semantics G,

Analogously to GO we base an operational semantics @] on T].
6, is a mapping ©q: £ - $(8) with $(8) = p(ASt(é)) , and @]([s]]

is defined exactly the same way as Goﬂs T in Section 2.2.

EXAMPLES. 6;Lc T = {8}, &lclcD = {s, 7}, & @L(asb)u (asc)] =
®1Ea;(bu c)l = {ab, as}.

Thus under 61 , communications ¢ always create failures - whether or
not they can synchronize with a matching communication ¢ . Also the two
statements (a;b)U (asc) and a;(buUc) obtain the same meaning under ©, .
This is characteristic of local nondeterminacy s]Us2 where the choice
of s; or s, is independent of the form of the other component S, or
S5 respectively. A more refined treatment will be provided in Section 4.
We remark that the Definedness Lemma (2.2.1) and the Prolongation Lemma (2.2.2)
of Section 2.2 hold also for @]. Note also that for C = ¢ the semantics

6 coincides with the previous 6q -

&
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REMARK 1. It is possible to do away with occurrences of & in sets
Glls'ﬂ in the case an alternative for the failure is avajlable. Technically,

this is achieved by imposing the axiom
ejux =X, X#9¢. (3.3)

In the above example applying the axfom would turn the sets {53,

{6,7} and fab, as} into {8}, {v} and {ab}, respectively. (For

the latter case we take {ab, a6} = a -({b}u £6}) = a - {b} = {ab}.) One
might argue that imposing (3.3) throughout would be more in agreement with
the intuitive understanding of communication. The reader is, of course,
free to do this throughout Section 3. Our reason for not doing this
is that our main result relating &4 and 84 does not depend on it. Ffor
both 6 and 85 (3.3) may or may not be imposed (simultaneously) with-

out affecting the result of Section 3.4.

REMARK 2. Clearly, by taking C = ¢ the semantics @1 coincides with

the previous GO'

3.3 The Denotational Semantics 391

This is as in Section 2.3, but extended/modified as shown below:

Firstly, we refine the definition of |: SC(S) X Sc (8) = Sc(a) as

follows

1. For X,¥ < A" U A" (1,8} we define

XY = (XLy)u (yLx)u (xjy),
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where
(i) XLY=uUfullY: ueX}, e LY= {1}, s LY={8}, eLY=1Y,

(a-w)LY=a-({w}]Y), and similarly with ¢ vreplacing a,

(ii) X|]Y = Utu|v: ueX, veY}, where (c,u])](E}v])='r({u]}H{v]})

and ui

i

v = ¢ for u,v not of such a form.
2. For X or Y with infinite words we define
XY = limn(X(n)ﬁY(n))

where X(n), Y(n) are, as before, the sets of all n-prefixes of

elements in X and Y. (This definition of X|Y 1is from [BK].)
il

The definition of @1 is now as follows: Let F] = stmv - $C(5)

and let yef] . We define
§;: guarded £, - (I& - SC(G))

by the clauses

s, Lal (y) = {a} for aeA\C,
$;0cD (v) = {c} for cecC,
5
810sq0p soT(y) = 0s;I(y) oo " 8yLs, Dy) for
5 5 s
opeft, Uik s L =-, U =U =

8;0x (v) = v(x) »

S]E;Lk[s]] (y) = Vimg X., where X, = {1} and

‘ Xipg = 8¢0s T (v<Xy/m)
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Thus, apart from the clause for ¢, 8 is as ‘@O but for the

5 5y
refinement of | with respect to ; ~ .

8.4 Relationship between G] ans 5,

Here we do not simply have that

w
.
I

N

@]ﬂ:s]] =£‘]1IS]] (

holds for all guarded statements s €dy . As a counterexample take
s = ¢c. Then GﬂIc]] = {6} but ;S][[s]] = {c} . Even worse, we can

state:

3.4.1 THEOREM. There does not exist any denotational (implying compositional)

semantics & satisfying (3.4).
The proof 1is based on:

3.4.2 LEMMA. 6 does not behave compositionally over I, i.e. there

exists no “"semantic" operator
5. .
17: S(8) x$(5) =~ S$(s)
such that
o i — TPV
610sqhspl = 6 sy Ti™ &5, T

holds for all (guarded) sy, s, 6,311).

PROOF. Consider 57 = ¢ and 52=E in & . Then (9][[51]]=®][5711={6}.

Suppose now that H‘@ exists. Then {6} =(9][[s]lls]]]=®]l]:sl]]ﬂs 6;Ls, 1

G]ﬂ:s]]] 1]*9(9][[32]] = @][[s] ‘iisz]] = {6, 7} . Contradiction. O
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We remedy this not by redefining T] (which adequately captures
the operational intuition for £]) , but rather by introducing an

abszractior. operator aql $(s)~ $(8) such that

65T = oq(8qTsT) (3.5)

holds for guarded s €L, . We take d1 = restrS which for We $(8)

is defined by
restr o (W) = { w we€W does not contain any ceC
Uiw+s | dc’ eC, w EASt(é): wec! ow! el

and w does not contain any ceC} .

Informally, restr‘S replaces all unsuccessful synchronizations by deadlock.

It thus resembles the restriction operator -\C in CCS [Mi].

But how to prove (3.5)? Note that we cannot prove it directly
by structural induction on s, because ay = ms does not behave
compositionally (over ||) due to Lemma 3.4.2. Our solution to this problem
is to introduce a new intermediate operational semantics @? such that

we can show on the one hand

6;0s T = restr « (@1‘[[5]] )

by purely operational, i.e. transition based arguments, and on the other

hand
LsT = 5[sT

for guarded s, analogously to (90|Is]] = ASO[[S]] in Section 2.4. Combining

&
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these two results we will obtain the desired relationship (3.5).

For (’9’]‘ we modify the transition system T1 into a system T?
which is the same as T] except for the communication axiom which now

takes the form:
sorrunieation™)
(Cy W) = w=-cC.
We base ©F on Tf just as we based G]’ on Ty.

EXAMPLES.  67[c T = {c}, &jlc jicD = {cc, cc, 7}, 6[{asb)u(as;c)] =
G’i‘[[a; (buc)l = {ab, ac}.

We first turn to:

3.4.3 THEOREM. (9][[511 = restr (@?[[s]] ) for every se€gy .
S

The proof uses the following lemma which establishes the link between
the underlying transition systems T, and T?'l‘ .
3.4.4 LEMMA. For all seg,, s’ eg U{E} and w.w' € (A\C)™:
(1) Ty F<sswy = (s, W)

iff
T:}{ I" (S, W> - (s’a WI)

(1) Ty F s, wd = (s, ws)
iff

GceC: T F<s, w) ~ (s’ wed
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PROOF. Recall that 6f#A and that T, and TT differ only in their

vt

communication axioms:

(Cy W) = Wed (3.8)
in T] , and

(c, wy = w-c (3.6%)
in T? . Therefore every transition in T] which is not a comrunication-
transition, is also a transition in T? , ~and vice versa. This implies (i).
On the other hand, every communication-transition in T] corresponds to
(another) communication-transition in T? which is obtained by replacing
axiom (3.6) by (3.6*) at the root of the proof tree, and otherwise applying
exactly the same rules in T? as in T]. This argument also holds vice-

versa, thus proving (ii). G

With Lemma 3.4.4 we are prepared for the
PROOF OF THEOREM 3.4.3. Observe that both

6705 T, restr ¢ (6]Ls T) < (A\CI U (A\C)" U (A\C)™ - £2, 8} .
Therefore we consider the following cases.

Case 1: we (A\C)*U (A\C)” U (A\C)* » {1} .

Then as an immediate consequence of Lemma 3.4.4 (i) we have
WE@]ESD iff WEGTES].

wo e (A\C)* - {8} .

3
o)

®

o

wééelﬁsﬂ
iff Tk (s, e =" we
iff dc’ eC, s egU{E}: ] F(sy e = (s, we! )

£
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(by Lemma 3.4.4 (ii). Note that the second alternative can arise.)
iff (3c! «¢C: T? F (s, € =% weh)
v (ac! EC,S'ES],W'GA*UAWUA*-{lk
T?f F (s, ) =" (s, we) Aw e@’{[[s’ 1)
(by the Definednesé Lemma 2.2.1 which also holds for @T)
iff dc’ eC, w e A"UAUA" - [u}: wc'w eGiTs T
(by the Prolongation Lemma 2.2.2 which also holds for 6? )

Combining Cases 1 and 2 we find

(91[[5]] = restrs(@;’l‘[[s]] ),

by the definition of restr‘S . This proves the theorem. O

Next we discuss:

3.4.5 THEOREM. 7[s 1= 8;[sT for all (syntactically closed) guarded
Seéil.

Its proof has the same structure as that of "@OES 1= so[s JI
(Theorem 2.4.1). In fact, Theorems 2.4.10, 2.4.11 and 2.4.15 also hold
for ©F, ﬁl and £ instead of @0, So and L9 with identical proofs.
We therefore concentrate here only on the proof that @I behaves compo-
sitionally over || (thereby completing the proof of Theorem 2.4.2). More

precisely, we show:
0
ok i = X il .

As an auxiliary tool we need a result recalling Apt's "merging lTemma"

in [Ap2].

&
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o . . e 2 - *,
3.4.7 LEMMA (Synchronization). Vsl > Sg E.Sl Vsl, S; €44 U {E}vw, Wi, Wy € A"

* i s
T = (sll}sz, w) = (si[;s% s WT)
where the considered transition is a syn-
chronization-transition between Sy and So
such that si stems from s; and s% stems
from S
iff
aceC:
* r
T - (sy» Wpd (s7» wic) and

T; F sy, wo) - (sé, WoC)

PROOF. By the Initial Step Lemma it suffices to prove the present lemma
for w = Wy =Wy = ¢ only.

=": Suppose TI F<sylisys ed - (si\;sé, T) as above. By the assumptions
about this transition, its proof in TI starts with a synchronization-axiom

of the form
(cllc, ey = 7

where ¢ occurs in $1 and ¢ in Sy - By the definition of TT >S4

and sa (respectively S5 and sé) are obtained from ¢ and E (¢ and

E) by successive embeddings in contexts of the form

3 »+|ls and s|- (3.7)
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for arbitrary statements se(ﬁl (by the rule “éynchronization in a

*
context" of T1 ).

To construct a proof of <51’ €) = (sa, c) in TI , we start with

the axiom
(c,e)=c¢C

in TI and then 1ift this transition to

(sy5 €)= (sa, c)
by successive applications of the rules of sequential composition and
shuffle corresponding to the successive context embedding of ¢ described
in (3.7). This proves T; - (sl, €)= (sa, c? . Analogously we prove
T F<sps €) = (55, ©) .
M=":  Suppose TI F (sl, €) = (sa, c). Let us analyze the structure of

$q by investigating the possible proofs in TI leading to a transition

[P §

which produces "c". Clearly such a proof must start with the communication*-

axiom
(Cs €>"’C,

and it can proceed only applying the rules of sequential composition and

shuffle. Thus $q has the following BNF-syntax:
spit = clsyis| silis i sils; (3.8)

where s is an arbitrary statement in £ - An analogous analysis holds

for s, in T; F(sp, €2 = Ksp, €) .
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To show TY }-(slusz, €) = (siﬁs%, 1), we start the proof with

the synchronization axiom
0
(CHC’ €> = T,

and complete it by successive applications of the rule for synchronization
in a context according to the structure of $q and S, as determined

in (3.8). Note that we may arbitrarily "interleave" the applications
concerning S1 with those concerning S5 - This finally yields the

proof of
w4
(slisps €2 = (sflisy ™
n TI . Now by its construction this transition is a synchronization

transition between $q and So such that sa stems from $q and sé

stems from PR This finishes the proof of the lemma. O
We now turn to the proof of the announced lemma.

8
. 1
3.4.6 LEMMA. @’1‘[[5111s2]]=@’1‘n:s1]]u-- (9'{[[52]] for all s;, 5,¢€8; .

PROOF. "c": Let weo]Ls; | s,0 , with we A UAYUAYUAY - {1} . (Note
that &'s are not present in @i.) Then there exists a finite or infinite

transition sequence

T’{ }-<Slli52’ €> = <S,0“36’ WO> - .. ™ (stnns:], wn> - ..

. & “ é &
such that Sn’ Sh may be E, Sy stems from s1 and Sh from Sy

and the following holds:
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(i) if weA* then In = 0: s'n=s‘r']=E/\w=w
(ii) if weA” then W= sup W,

PN . *
(<3 ° H . = =
(ii1) if weA {1} then anOVmZ NiwWo SW AWSWoL

We have to find words uee?ﬂ:sl]] and v 6(9’{[[52 I with w€{u}ii£ fv}.
1

To this end, we first establish the following claim.
Claim. There exist finite or infinite transition sequences

1 = U - -t 4 -t
i (Sla €> (to, uo) oo (ta uk> e g

T; E' (57’ €>

A “
(E0s Vg = e = (2, V) =

such that there are sequences

0= kO =k, =k

1 25...,

with

sf = tL and s; = t; ,
n n

E{u 3“& tV } Y
n

+ ?
n<k, t2, max{kn,zn} <n

for all n=0.

Proof of tie Claim. By induction on n=0.
asis. n = 0. Clear: choose kO = 20 = Q.

:

Hypothesis. Assume the claim holds for n = 0, i.e. there are transition

sequences
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TR ed ==kt s )

T] RS, ed = o =Kt v, )

2 )
n n

with s’ =t s = t* w_efu 3 ”ﬁl{v }, and nsk_+ 2

n k * °n g * "n g sl 77 n n -
n n n n
Step n - n+ 1: Let us analyze the final transition producing Wt in
(3.9):
L ey 4 - ¢ |l
[4 é II #
Note that S+ stems from Sh and S+l from Sp

Cace 1: This is a local transition.
Then, say, the first component is affected, i.e.

* ¢ - (<t v o_ 4
Ty FCsps wd = Csp s W g2 and sp = s

(Note that we may have Wy = Wi ) By the Initial Step Lemma, also

* Y -l u ® -
T1 - (Sn’ ukn> <Sn+1’ ukn (wn+1 wn)> ’
Combining this transition with the hypothesis yields:

* - - ¢ - ¢ . -
T = (sys €)= ... (tkn, ukn) <Sn+1’ ukn (wn+] wn)}

(where, if w' s a word extending w, say w = wu, we define

W - w tobe u).

Now we define:

= ’ — [
tk =3 s Uy Uy (w

i

~
>
+
o
-

=

1

)
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8
By the definition of | *,

Wne1™ Yy '(Wn+]"wn)
&

Y
) {ukn -(wn+]-wn)}ﬁ livﬂ‘n} ) iuknﬂ}il 1{v2n+]}

and of course n+1 < kn+ + 2 This proves the claim for n + 1

1 n+l °

in Case 1.
Czee 2: (3.10) is a synchronization-transition between 5 and Sy -

Then Woel = WoT and, by the Synchronization Lemma, there exists some

T* '-(S'na uk )" (sln"_la uk 'C> s

1 n n
Ti - (s;, vkn> - (s;+], vkn eC) .

Combining these transitions with the hypothesis yields:

LR P G- AT (th s U +c)

n n
R I I S VI B G SR ) S
1 2 IR n+1 2,

Obviously, we define

kn+1 - kn 1, ln+1 = 4 1,

t' = Sl . t” SI/ ,

N+l n+1 zn+1 n+1
Uy Ut C, vy =V, -cC.
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5
By the definition of | ~ ,

= TE’U . cli
Wt T VT S Y T el

and of course n+ 1 = kn+1 SRS This proves the claim for n + 1
also in Case 2.

Hence the claim holds in general.

Using the claim, it is easy to find appropriate words u, v. The
construction corresponds to the case analysis (i) - (iii) of w above.

For example, we define u as follows:
- if dk=0: SL =E, then u=u €A,

- if vk=z 0 3K>k: wk<wK’ then u = supkuke AT,

- if @k=0 VKzk: w =w,, then u re A . {1} .

Uy
Analogously we proceed for v. Clearly

uEGTEslﬂ and vesqﬂszﬂ.
To verify
$
we fulyf “{v] (3.11)

we examine the cases (i)~ (iii) of w .

In case (i) we have a finite path

Tf = (slusz, €)= ... = (S;Hs;, wn) = (EE, w) = w .

By the claim and the definition of wu,v
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TV Fqsqp €)= vee =t ,u, ) =<(E, u, ) =u,
1 1 kn kn kn

TT - (Sp, €0 = oou = (4

L Yy ? = (E, v, .

n n n

]
<

and thus (3.11) as required.

In case (ii) we have an infinite path (3.9) producing infinitely often
increasing words W By the claim at least one of the paths of 51

and So» Say that of S1» must also be infinite, producing infinitely often
increasing words Uy > yielding an fnfinite U= sup up . Now by

definition
! : 1
full “fv} = Vim (Lulnl}] “{v[n1}) .

Consider now the approximation W of w. By the claim,
{ }Wﬁl }
w_efu, }| “fv .
n kn 2,

Since max{kn, zn} < n, we have

< uln] d < v[n].
ukn uln] an Vﬁn vin]
o ! .
Thus dwe fuln]}|| “{vin]} with
d(w,_,W) < 2-Iw”I

This shows

5
We 1imn({UEn]}U {vinll)

and thus proves (3.11).
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In case (iii) we have an infinite path

T’; I-(sli\sz, e) = ... = (s?

[HE
nilSp e wn) i I wn+1> - ...

with w, = Woel = e and thus w = WL By the claim

T’l‘ l—(sl,e)ﬂ...-(t’k 2 Uy 7 s

n n
TT F<syse) = e = (Y v, ),
1 2 N
491 '
with w e {u H “{v, } . Moreover, due to the condition "nsk +o
n n

for all n" in the claim, at least one of the transition sequences of

Sy (or 52) can be extended to an infinite one without expanding Uy

n
(or v, ) . So u= up (or v =v ). If the other path of s,
n n n
(or sl) is finite, we may assume w.2.0.g. that t‘; =E (or t’k =E) .
. n n
So then we have v = Ve (or u-= U ) . Combining these facts establishes
n n
(3.11)

8
NS Let we @’{[[51 iR 1(9’1‘[[52 I . Then there exist words

ue®’1‘[[sl]] , ven‘s’l‘[[sz]] with
51
we {ulj] “{v} .
We have to prove
ok
weeiDs, Is,I -

By definition of (9"1‘ there are corresponding finite or infinite transition

. *
sequences in T1 for u and v:
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T F sy €2 = Kt ugd = e = Kt ud - Ll (3.12)
] RCs s e = Xtg vgd = o =, v ) - (3.13)

where (in case of finite sequences) tL and tz may be E. Recall
that u and v are obtained from (3.12) and (3.13) just as described
for w by the cases (i) - (ii) in part "<" . We now construct a finite

or infinite path

* o ' ‘ ) o
Ty F<squsys ) = (splisp» Wgd = el = (shﬁs;, W)= (3.14)

which is maximal w.r.t.

and which moreover satisfies the following properties: there are sequences
0= k0 < k] < ... and 0 = 29 S 21 S ...

such that for each n=2 0

{ }”@1{ }

W _€iu ii v ’

n kn Rn

max{kn,ln} sn, n< kn+-2n .

The construction of (3.14) proceeds by induction on n= 0 .

Basia: n = 0. Choose kO = 20 = 0.
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Hypothesis: MAssume the construction works already up to n=z=0 . If

the configurations

v “
(tk > Uy ) and (t2 >V, ) (3.15)

n n n n

in (3.12) and (3.13) are both final ones, i.e. with tL = t; = E, the
n n

constructed path (3.14) 1is already maximal because also
s;ﬂs; =
holds. 1In all other cases (3.14) has to be extended.
Step n-—n+1: We analyze the configurations (3.15).
no Toe e : - {7’
Case l1a: Path (3.12) hasa transition (tk s Uy )} (tkn+], ukn+])

n n
with u  =u +1. Then we put

n Kn
Yoe1 T W
—_ — 2 = F I 4 - 4
transition
|t - J &
(splisps Wy? (Spallsners Wer?

to (3.14).

Cuse 1b: Symmetric to Case la, but with regards to path (3.13).
Case

o, . .y 2 - (1 .
2a: Path (3.12) has a transition (tkn, ukn) (tKn+], ukn+]) with

u =y
kn+1 kn-b‘where beA and wn-bsw.
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(Note: b can be an elementary action a, a communication ¢ or +.

W b <w 1is always true for b=a or b=1.) Now we put

wn+] = wn b
= . - / = J “ - "
and kn+? kn*-1, 2n+1 %y 0 S A tkn+] s Spe Sy and add the
transition
d " — Z M
(Shilsps W) = Csppqiisy s Wogy?
to (3.14).

Case 2r: Symmetric to Case 2a, but with regards to path (3.13).

ao 3- i J - (H ;
Case 3: Path (3.12) has a transition (tkn, ukn) (tkn+], ukn+1> with

=u -c where ceC, but wn-c;tw.

u
k17 Yk

Since weiu}lhg fv}, we conclude that wo+Tsw and that path (3.13) has
1

a transition

(ty v, 2= K80 s v, )
zn % 2n+1 %0 1
with
v =y .C .
+

% 1 .
Then we put

W =W T

n+1 n
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and

= - J = ) L4 -
k kn+-1, 2 £n+ 1, s t S t

'
n+1 n+1 n+1 kn+1 n+l 2n+1’

and add the transition
P AN —- J .
(splisps Wod = <sppqlispogs Winep)

to (3.14). This finishes the construction of path (3.14). We now claix
‘that (3.14) yields w according to the definition of Gfﬂslﬁszﬂ . This
is clearly true for weA*UA“ due to the maximality of (3.14) and the
conditions "wne {uk ﬁﬁl{vl } for n=z= 0" which 1ink up with

;“;1 n n
we fu}, “{v} analogously to part "c".

If weA*-{1}, then at least one of u or v, say u, is in
A* « {1} as well. Then path (3.12) is infinite. By the conditions
"max{kn,zn} sn for n=z0",also the constructed path (3.14) is infinite.

Thus (3.14) yields indeed w in 6][s;|s,]. ©

This also finishes our argument for Theorem 3.4.5. By combining

Theorems 3.4.4 and 3.4.5 we finally obtain our desired result:

3.4.8 THEOREM. ©;[sT = restre (;&l[[s]]) for every guarded seg; .
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4. THE LANGUAGE Lyt SYNCHRONIZATION MERGE AND GLOBAL NONDETERMINACY

We assume the same structure of the alphabet A as for il .
But the syntax for s €L is now given by:

s::=ajlc] 51;521 S;+S, | slﬁszf x| ux[s] .

The symbol "+ " denoting global nondeterminacy is taken from CCS [Mi].

=.1 The Transition System Ty

T2 is like T1 but without the axioms for local nondeterminacy
and for communication ({c, w) = wé). Instead we have new rules for
global nondeterminczyt:

(p-unfolding)
(sy5 W) = (7, w)

(s *55, W) = (s” 45,5, W)

(spt57, W) = (s, +s", w)

Here the word on the r.h.s. of the premise is equal to the word on the

t.h.s. (=w). This implies that the premise (and hence the conclusion)

is a recursion transition.

<513 W> - (S)s W)>

(s *55, W) = (s?, W)
(s, 45, Wy = (s?, W)
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Here w’ = wa (and hence the premise is an elementary action transition)

or w =wr (and hence the premise is a synchronization transition). Also

s’ may be E.

(selection by synchronization)

(sqllsgs Wi = (s, wr)

((sy+s)isy, W) = (7, wr)
((s+s))llsy, Wy = (', wr)
(Slu(52+ 5)9 W> - <SJ H WT)

(s li(s+sy), Wy = (7, wr)

where s’ may be E, and the premise of the rule is a synchronization

transition between s; and s, . (Note that the”; " and "||"~ context rules

for || remain valid.)

REMARKS. To explain the difference between "U" and "+": note first that

for sl,szexlné‘:z

T2 |-<51+523 W) - (SJ, Wj)
implies

T F (s;Usy, w) = {s?, w)

but not vice versa. The essential difference between these two operators

(and hence between T] and TZ) is how communication is treated in the
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presence of nondeterminacy. For example, the £i-statement

aUc

involving Tocal nondeterminacy may choose "on its own" between a and c,

i.e. in terms of T]-transitions we have

{avuc, w) - (a, W)

(auc, w) = {c, w) .

The first alternative yields

(a’ W) - W-a

whereas a communication can always deadlock in T, :

1¢

(C: W) = C<§

tontrast this behavior with that of the £2—statement

involving global nondeterminacy.

atc

The only transition possible is

{at+tc) — w-a

(we say the first alternative of a+c 1is selected by the action a).

In particular, a communication

C

in isolation does not produce anything

in T2 . But in cooperation with a matching communication ¢ 1in another

parallel component, ¢ may produce a synchronization transition:

((atc)c) = wer
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(we say the second alternative of a+c is selected by the synchronization

of ¢ with ¢).

This form of global noneterminacy is typical for languages like
CSP [Ho], Ada [Ad] and Occam [In]. There the elementary action a corresponds
to passing a true Boolean guard and the synchronization of ¢ with c
corresponds to matching communication guards in two parallel components. In
the abstract setting of uniform concurrency global nondeterminacy was first
discussed by Milner [Mi]. However, Milner takes from the very beginning

a communication axiom corresponding (in our setting) to

(Ca W> - W°C (4.])

This enables him to state very simple transition rules for global non-
determinacy. We prefer not to adopt Milner's approach for T2 because(4.1)
does not correspond to the operational idea of CSP, Ada or Occam where a

communication c¢ proceeds only if a matching communication ¢ 1is available.

Finally, note that in case of a u-term, global nondeterminacy "+" allows

us to unfold the recursion before selecting any alternative. For example,

(ux[a]l+c, w) = {a+c, w) = w-a

holds in T2.

4.2 Tre Operatioral Semantics G

o

6, 1is a mapping G,: £ = $(8) with $(s) = p(aSt(s)7 as for

£ . The definition of GZES:H is as for 65 and 6, j.e.
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®2Es I = {word(w) | m is a path from s}.
However there is now an additional fourth clause in the definition of

word(m) , namely:

ooy ar ol

(d) if m 1is finite, and of the form
(s, €2 = (s, Wgd = ... = (55 W)

where no further transition (s, wn)—'(s’,w’) is deducible in
T2, then word(m) = W
The pair (sn, wn) in (d) 1is called a deadlocking configuration.
(Such configurations did not exist under TO or Tl.) Note that by (d)
the Definedness Lemma 2.2.1 remains valid for 6,: GZEsjﬂgé o for all seg,.

The following examples mark the differences from 6 -

EXAMPLES. GZEc:ﬂ = {68}, Gzﬁc:HE'ﬂ = {7}, Gzﬂ(a;b)-+ (a3c)] = {ab, as} ,
o,a;(b+c)T = fab} .  (Remember, o;[as;(buc)] = o,[(asb)u (asc)T ={ab, as}.)

Because it is important to see the difference between the last two

examples, we shall show how they are derived:
(1) 6,[[(a;b) + (a;c)T = {ab, as}.
PROOF. Note that

(a;b, ¢) » (b, a) —» ab
and

(asc, e} = (c,a)

are deducible. So by selection by elementary action we obtain also
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{(a3b) + (a3c), ¢y = ab
and

{(a;b) + (asc), e) = (c, Ay .
So, since no futher deductions can be made from {c, a) , we get by
the definition of Gé: o, (asb) + (asc)T = {ab, as} .

(i) ®2Ea;(b-+ c)] = {ab}.

PROOF. First note that
(aj(b+c), ey = (b+c, ay.

Since we have that

(b, a) = ab,
we also have

(b+c, ay = ab,
and therefore

(aj(b+c), €) = ab.

Since we cannot deduce anything from {c, a), ab s all we can deduce

from {a;(b+c), €. Consequently, ®2Ea;(b-+ c)] = {fab}.

Thus with global nondeterminacy "+", the statements s, = (a;b) + (a;c)
and 52==a;(b+ c) get different meanings under 6, . This difference can
be understood as follows: If Sy performs the elementary action a ,
the remaining statement is either the elementary action b or the
communication ¢ . In case of ¢ , a deadlock occurs since no matching

communication is available. However, if Sy performs a , the remaining

statement is b+c which cannot deadlock because the action b is
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always possible. Thus communications ¢ create deadlocks only if

neither a matching communication ¢ nor an alternative elementary

action b is available.

4.3 The Denotational Semantics 392

We follow [BZ1, BZ2, BBKM] in introducing a tranching cim

&

semantics for i Let, as usual, 1+ ¢ A and let A; be short for
AU {1}. Again, we assume a special element 1 in A. Let the metric

spaces (Pn, dn), n=0, be defined by

PO= P(A.L)’ P +] = P(AJ_U (A X]Pn))

n

where p(-) denotes all subsets of (), and the metrics dn will be
defined in a moment. Let P =UP . Elements of P _ are called (finite)
processes and typical elements are denoted by p,g,... . Processes p

in IPn are often denoted by Ppolps -o- - For pe Pw we call the Teast

n such that pe Pn its degree . Note that each process is a set; hence,
a process has elements for which we use X,y, ... (not to be confused with

X,y € Stmv). For each p(e Pw) we define its n-th projection p(n) as

follows:
p(n) = {x(n)| xepl, n=20,1,...
x(n) = x if xe AL, n=20,1,...
(a, n=290
fa,pl(n) =
[a, p(n-1)], n=1,2,...
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We can now define dn by

0 if p6 = Pg
']

g“] if PE) 7 po

-sup{k | pf (k) = pf (k)2

: ’ “ _
dn+1(pn+1’ pn+]) =2
with 277 = 0 as before.

On P we define the metric d by putting d(p,q)=dn(p,q) where
n = max(degree(p), degree{q)) . We now define the set P of finite and
infinite processes as the completion of Eid with respect to d. A
fundamental result of [BZZ] 1is that we have the equality (more precisely,

the disometry)

P=p (ALU(ALXP)).

closed

Examples of finite elements of P are {[a,{b1}], [a,{bz}] and
{[a,{bl,bz}]}. The following trees represent these:

/N2
||

b b

|a
1 2 b1 //\\ b2
Thus, the branching structure is preserved. An example of an infinite element of
IP is the process p which satisfies the equation p = {a,p], [b,p]} .

Processes are like commutative trees which have in addition sets rather than

multisets for successors of nodes and which satisfy a closedness property.




76

An example of a set which is not a process is {a,[a,{a}],[a,{[a,{a}]}]...},

where this set does not include the infinite branch of a's.

REMARK. We observe that the collection of all finite and infinite trees
over A_L (where 1 occurs only at the leaves), modulo Park's equivalence

relation of bisimulation [Pa], is isomorphic to P.

The empty set <z a process and takes the role of & . wnote that
in the previous linear time (LT) framework ¢ cannot replace & since
by the definition of concatenation (for LT) we have a-+¢=¢ which is
undesirable for an element modelling failure. (An action which fails
should not cancel all previous actions!) 1In the present branching time
framework, {[a,¢]} is a process which is indeed different from (and

irreducible to) ¢ .

The following operations on processes are defined. We first take the
case that both processes are finite, and use induction on the

degree(s) of the processes concerned:

U{xoq]| xep}, where 10q =1,

concatenation o: Poq

[a,p’ cq] and similar clauses with ¢ replacing a.

aoq=[a,q], [a,p’]oq

union U: puUq 1is the set-theoretic union of p and d.

merge |1 pia=(plq)ulql pu(p/a), wherepi q=ufxllalxep},

1 q=1, aliq = [a,q], [a,p’]j a = [a,p’[ja] and similar clauses with c

replacing a. Moreover, p|g =U{x|y: xep, yeq}l, where
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[c, pP’1{[C. '] = {[v, P’ i’ 13
[c, p’1{d" = {[v, p'1}
c|[C.d'] ={[+, ']}

c ={n

clc

LI}

and x|y = ¢ for x,y not of one of the above four forms.

For p or q infinite we have (since P is defined by completion
of ]Pw) that p = Tim p, q = 1im q , p,  and q, finite, n=0s1,...,
; = 13 i €e{",U,ll}. It is now
and we define p op g ]1mn(pn gp,qn) , where ope€t 3
straightforward to define 8yt guarded Lo = (i’2 - IP), where = tmy, - P,

by following the clauses in the definition of 898 - Thus, we put

S,Lall(y) = {a}
Sl (y) = {c}
5
8,51 00 5,1 (v) = 8,5, T (v) gp 5,5, T (v)
| 8, 8, 8,
for opef;,+, [}, where 5 “=0,+ “=u, || “=|
S0 xTi (v) = v(x)

aszl]:nx[s]]] (y) = lim, p; , where p0={1} and

p-“.] =492[[5]] (Y(pi/x>) .

Mutatis wutandis, the contractivity results for 85> 8, hold again.
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4.4 Relationship between 6, and s,

For a suitahle abstraction operator @, we shall show that
Gols T = (8,05 1) (4.2)
holds for all guarded s e£2 . We define @yt P~ $(6) in two steps:

1. First we define a restriction mapping restr‘]P: P-1P . For ps= IPw

we put inductively:

restrP(p) = {a| aep and afC}

U{[a,restrn,(q)]|[a,q]€p and a#cC}

For pe P\ Pw we have p = lim p ., with p €P , and we put
restrp (p) = 11‘mn(\r‘estr]P (pn)) .

EXAMPLE. Let p = 8, (a+c)(b+c)D = s,[(as(b+ c))+(c;(b+<c)) +
(b;(a+c)) + (cs5(a+c)) + 7. Then restry (p)={[a,tb}],[b,{a}],v} =
8,[(asb) + (bsa) + 7] .

2. Then we define a mapping streams: P- $C (6). For pe Pw we

put inductively:

' {afaepiu
streams(p) = {U{a - streams(q) | [a,qlep} if p7 o
‘L {63 1f p#Foe
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Note that a - streams{q) ditself is a set of streams. For pE ]P\Puj

we have p = 1imnpn, with Py € Pn,.and we put
streams(p) = limn (streams(pn)).

Note that "Tlim " above is taken with respect to the metric on SC(G)

[see Section 2.3].

EXAMPLE. With p as above we have streams(p) = {ab, ac, cb, cc, ba, bc, ca, cc, 7}

and streams(restr lP(p)) = {ab, ba, 7} .

REMARK ON NOTATION. Above, and at some other places in this subsection,
we are using the metavariables "a", "b" to range over all of A (instead
of A\C, according to our convention). We trust that this abuse of

notation will be clear from the context and not cause confusion.
Finally we put
oy = streams o restr P

in (4.2). Similarly to @) , we cannot prove (4.2) directly by structural
induction on s because % does not behave compositionally. Thus again
the question arises how to prove (4.2). Note that here things are rather
more difficult than with @lls I = al(ﬂlﬁs T ) because the semantic
domains of &4 and 5, are quite different: linear streams vs. branching

processes.

Qur solution to this problem is to introduce
- a new intermediate semantic domain R,

. . . . *
- a new intermediate operational semantics 6, on R,

&

- a new intermediate denotational semantics 32 on IR,
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and then prove the following diagram:

restr R ' readies

streams o restr P

= restr R® readies

wnere rest:r]R and readies are two further abstraction operators.

The Intermediate Sermantic Domain R

We start with the intermediate semantic domain. To motivate its
construction, let us first demonstrate that a simple stream-1ike variant
of 6, is not appropriate as intermediate operational semantics (93
here. Indeed, if we base @; - similarly to (9’; - on a transition system

obtained by just adding the axiom
{C, W) »w-c

to T2 , we cannot retrieve Gy from @’2‘ . As a counterexample consider
the programs Sy = (a;c]) + (a;c2), 52=a;(c]+c2) and s=€1 . Then
0pLs; s 1= {ar, a8} # {ar} = 6,Ls,llsT, but 63, |sT= 63, [IsT -
Thus whatever operator o« we apply to @3[[-]] , the results for sl{[s and

szlis will turn out the same. Thus we cannot retrieve 6, from this o’g .

To solve this problem, we introduce for (9; a new semantic domain
which, besides streams weI-\s‘lC » also includes very weak information

about the local branching structure of a process. This information is

&
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called a readyset or deadlock possibility; it takes the form of a subset

X of C,the set of communications, and may appear (locally) after every
word weA* of successful actions. Informally, such a set X after w
indicates that after w the process is ready for all communications ceX
and that deadlock can be avoided only if some communication cé€X can
synchronize with a matching communication ¢ in some other péraﬂe]
component. Thus X can be seen as a "more informative &". This view is
confirmed by ,‘the fact that there will be no ready set X after w if the
process can do an elementary action a€A\C and thus avoid deadlock on its
own. With some variations this notion of a ready set appears in the work

of [BHR, FLP, OHl, OH2, RB].

Formally, we take A = @(C) and define the set of streams with ready
-gets as

d - AStyA*:

A"
where A*:a denotes the set of all pairs of the form w:X with weA* and
Xen. For Xea,letX={c|ceX}. As intermediate domain we take the ready
domain

R=p(A") .
Just as we did for ASt and ASt(é), we can define a metric d on Ard

and a corresponding metric d on R. This d turns the collection

R c R of closed subsets of A'® into a complete metric space (R ,d).
c = C

. , . . *
The Intermediate Operational Semantics 6,

We now turn to the intermediate operational semantics (9; on R.
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It is based onthe following transition system TE which consists of

all axioms and rules of Ty extended (for weA*) byl:
(commnication™)

(C, W) »wW-cC
(ready sets [or: deadlock possibilities])

(i) {c, w) = w:{c}
(sl, W) = w:X

(ii)
(51;52, w) = w:X

(S15 W) = w:X, {5,, W) = w:Y
. 1 2
(ii1)

(514-52, w) = w:(XUYj)

(S, W) = w:X, €{5,, W) = w:Y
. 1 2
(iv)

(sylisys wd = wi(XuY)

where XNOY = ¢ .

Axiom (i) introduces ready sets or deadlock possibilities, and rules (ii)-(iv)
propagate them. In particular, rule (iii) says that $1+5s, has a deadlock
possibility if s; and s, have, and rule (iv) says that slus2 has a
deadlock possibility if both $1 and Sy have, and no synchronization is

possible.

Since the rules (iii) and (iv) have two premises, deduction in T;
need not start any more from a single axiom. But every deduction of a

transition

(s, w) = (s’ , W)
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or

(s, w)y = w

or

(s, w) = w :X

in T; is such that all its axioms are instances of the same scheme. Thus
similarly to Section 2.4 (see TYPES OF TRANSITIONS) we may talk of an (Ax) -
cranaition if (Ax) is the name of the axiom. Note also that the Initial

Step Lemma 2.1.1 remains valid for T; .

The intermediate operational semantics

is defined in terms of T; just as @2 was defined in terms of T2 . In

particular, for each finite path w of the form

(s, €) = (so, wO) - .- (sn, wn) - w:X
we include word(m) = w:X in @EESZE.
EXAMPLES. (i) GZEa (b+ c)I = {ab,ac}.

PROOF. We explore all transition sequences in T; starting in <(a;(b+c), e):

(1) <a, e) - a elementary action)
(2) (as(b+c), e)=(brc, a)

(3) (b, ay - ab

(1), composition)

elementary action)

(
(
(
(

(4) (c, a) — ac communication)
L
a:{c}
(5) (b+c, a) = ab ((3), (4), global nondeterminacy)

Y

ac
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No more transitions are deducible for <(b+c, a) .
(6) Thus

a;(b+c), e) = {(b+c, a) = ab
e
ac

are all transition sequences starting in <{a;{(b+c), ¢).

This proves the claim. O
(i1) eylasb+ asc] = {ab, ac, a:{c}} .

PROOF. Here we only exhibit all possible transition sequences in T;

starting in <(aj;b+ajc, ¢):

{a;b+ajc, ¢) = (b, a) = ab
N
{(c, a} = ac
Y

a:fc} . o
Note that we can prove <(a;b+ajc, ¢) = {c, a) and {c, a) = a:{c}, and
therefore {a;b+ajc, ¢) =" a:{c} . However, we have (a;(b+c), e)={b+c, a),
but we cannot prove <(b+c, ay = a:fc}. (By rule (iii) of ready sets this
would only be the case if we could prove, besides (c, a) — a:{c}, also
(b, a) = a:X for some X < {c} . Since the only possibilities for X are

6 and {c}, this cannot be proved.) Consequently, <(a;(b+c), ¢) # a:{c}.

X
M, i -y jo vt [ a [ N 4 iy Aoy
Thne Imzermediate Denotational Semantics 8,

’]
]

*
5 % 52

We start by defining semantic operators ; =, + and on

R. . (Again we omit superscripts &; whenever possible.) Let Wy W,

st
EIRC 3nd w,wl,wzeA .
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(a) wp.W, © ATUA® - {LJUA": 4. Then

N] ;WZ = {w] .Wz l wl EW] and erwz}
U fwyiX | wpsX ey}

U {w] -wZ:Xleew1 and  wy:X €Wy}

Wy + Wy = {wiwew]uwz}
U{e:(XUY)ie:XEw] and  e:Y Wy}

U f{w:X|w#e and wiX € Wy UW,}

i

Wiy = (w] Wy U (wy L w])u (w] I WZ)U (w] fow,)

where wy vy = Ulwy L Wy | wy €W} with e [ Wy = W,, (asw )L Wy =a-({w;{W,),
(a-w]:X)Q_w2=a-({w]:x}i{w2), L isz= {1}, e:X | W=5,and Wy | Wy =Ul(wy | wy) |wye Wy
and w, €Uy} with (coup) | (Coup) = 7-(uBil{u,}) and wy [wy =0 for

Wy W not of the above form, and

Wy # Wy = {eXUY|e:Xel, and e:YeW, and XNV = ¢} .

(b) w] ,wze IRC and w] ,N2 contain also infinite words. Then extend

the previous definitions by taking limits in ]Rc .
Now we define

1'9;: guarded £, - (I‘; - IRC)

with % = Stmv = R in the usual way:

1. 8[aD(y) = {a}

2. &0cT{v) = {c, e:ich
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3. s5Ls;op 5,0 (v) = 5505, T (¥) ops5Ls, T (v)

4. S5Ex T (v) = v(x)

5. &;[[ux[s]]] (v) = h‘m]. w,i, where wo = {1} and

R
Wipy = S50 T (v /) -

- T
Fzlating 6, and G,

The relationship between Gy and "; is similar to that between
6 and @? in Section 3.4. In fact, we shall prove:
4.4,1 THEOREM. 62[[5'_[] = restr ]R(G;[[S T) for every s €L, .

Here restrR: R - $(&) is a restriction operator similar to

restr$: $(8) » $(8) of Section 3.4. For WeR and wei\St we define

restr]R(W) = {w | weW does not contain any ceC}

U{w-6 | 3X<a: w:XeW and w does not
contain any ceC

For Theorem 4.1 we need the following result concerning the transition

systems T, and TZ (compare Lemma 3.4.4) .

4.4.2 LEMMA. For all seg,, s’ exzu{E} and w,w € (A\C)™:

(1) Ty Fs,wy = (s, W
iff
5 Fds, wh = (s!, w')

(ii) (s, w) isadeadlocking configuration for T,

iff

X c C: T; Fqs, w)y »w: X .
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PROOF. ad (i): "=" 1is clear because TE is an extension of T2 . For
"=" note that, by the assumption w,w € (A\C)*, none of the new axioms

and rules in Tg was used in proving the transition
(s, w) = (s', W) .

Hence it can also be proved in T2 .

ad (ii): First we analyze the structure of deadlocking configurations
(s, w) in T,: their statements s (with possible subscripts 1 and 2)

have the following BNF-syntax:

:: = ¢ for arbitrary ceC|
sy3t for arbitrary ted, | s1t sy |

SqiiSy where there is no synchronization-transition

possible between Sy and Sy -

Thus in a deadlocking configuration (s, w) all the initial actions of s
are communications and in the case of a shuffle sllls2 no matching initial
communications (leading to a v-action) can be found in its components s,
and Sy - We can express this property more precisely by introducing a
partial function

part

‘dead: £, —> b= 2(C)

such that {s, w) is deadlocking iff dead(s) 1is defined. Its definition

runs as follows:
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(i) dead(a) is undefined, for aeA\C
(i1)  dead(c) = f{c} , vfor ceC
(i11) dead(s;3t) = dead(s;)

(iv)  dead(s;+s,) = g&yyi(slilJlgggg(sz)

dead(sl)LJdead(sz),

(v) dead(s;ils,) = if dead(s,) Ndead(s
undefined, otherwise .

Now we can prove (ii):

(s, w) 1is a deadlocking configuration in T,
iff dead(s) is defined

(by the analysis above)
iff EX <= C: T3k s, w) = w:X with X = dead(s)

(by the rules (i)-(iv) for ready sets in T3) . o

Intuitively, Lemma 4.4.2 (ii) says that the ready set rules (i)-

of T; are complete for detecting deadlocks. Using Lemma 4.4.6 we can

now give the

PROOF OF THEOREM 4.4.1. Let sed,. Note that

Gz[[s T, restrp (0’2*[[ s1) (A\C) u (A\C)” U (A\C)*

We distinguish the following cases.

5)

{.L,- 8} .

= ¢
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Case Z: we (A\C) U (A\C)” U (A\C)™ « {1} .
As an immediate consequence of Lemma 4.4.2 (i) and the definition of

restr R we have:
w€_®2[[s]] iff werestr IR(G;l]:s]] ) .

Case 2: WO E (A\C)* - {63 .
Here we have the following chain of equivé]ences:
wéEuz[[s]]
iff (s, w) 1is a deadlocking configuration in T2
iff aXea: Tg b {s, w) = wiX (by Lemma 4.4.2 (ii))
iff aXea: wiXxegyls]

. *
iff waerestrR(ez[[s]]). o

»

Relatirg &, and &

[S\)

The relationship between Sy and ,,&5 is given by an abstraction

operator readies: P-— IRC. For p={al,...,am,[b],q]],...,[bn,qn]}eIP~

we put inductively

1Y

Y‘eadieS(p) = ‘a]""’am}u

U {bj - readies(gj) | j=1,...,n}

U {€:X i X = {a'ls---aam’b]9~o-’bn} _C_:'C}
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For pe IP\IPw we have p = hmn P, with Py € IPn , and put
readies(p) = 11’mn(readies(pn))
where “h'mn" is taken (as before) w.r.t the metric on ]RC .

4.4.3 THEOREM. 850sT = readies(s,IsT) for all guarded seg,.

The proof follaws from:

4.4.4 LEMMA. The operator readies: P- ]RC is continuous and behaves
homomorphically, i.e. for gpef{+, ;, ||} and p, p’clP,

IS o
readies(pop 2 pl) = readies(p) op 2 readies(p’) .

PROOF. Continuity is established by a variation of standard reasoning
as in [BBKM], [BZ2]. For the same reason it suffices to prove the homo-
morphism property for p, p’ € JPm only. We proceed inductively and

assume

O
i

tags..osaps [byaaylsenoulbpag 13,
- 4 2 P ? 4
p - {al""’am’ [bl’qu""’[bn’qn"]}

with m,n,m ,n’ = 0.

£
readies(p + 2p") = readjes{pup’)

- 4 d

= {a-l,...,ams a“""’am}b

UI{b, - readies(q;) [ i=1,...,n}U

U{bg . readies(gf].) li=1,...,n"}u
fe:(XuY)|X

Y

(1]

{a]a---,ams b]s--'sbn} EC a“

e

7 7 1 7 -
{a],...,am.-. b ""?bn'} cCl

4
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{w | we readies(p) U readies(p’ )3}
Uie:(XUY) | e:X e readies(p) and e:Y e readies(p’)}
Utw:X | w # ¢ and w:X € readies(p) U readies(p’ )}

ﬁ*
readies(p) + 2 readies(p?)

£
readies(p ; 2 p’) = readies(p - p’)

readies({[a;.p’1,... 02 .0 ],
[bys aq - p'1,...ulbys a,0p" 1)
{e:X]X ={aj,...oa., bys...ub b < CRU
{_’!{ai - readies(p’) [ i=1,...,m}U
:;{bj . readies(qj -p?)ij=1,...,n}

fe:X]...}u L"{ai - readies(p’) | ...}y
ﬁ*

’__f"{bJ. . (readies(qj) ; ° readies(p’)) | ...} (by induction)

fe:X]...}U ',:{a]. - readies(p’) | ...} U
é§*
by - readies(ai)) ; 2

readies(p’) | ...}
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= ({e:X| X = {al,...,am, b]""’bn} < C}u

{ay,-..ha 3y

*
e . . 85
{Ibj - readies(qj)}) ; © readies(p’)
39*

= readies(p) ; 2 readies(p?)

Casz 3: 0p = |

By definition

where
p e’ = {lap’lli=0,....m
U {[bjaqjupl]ljﬂ,...,n} )
o’ Lp = {[a&,p]ik=1,..,,m’}
u {0bg.a5lipl [ 2=1,...on"}
plp! = (¢ ECEC:CE{aI,...,am} l

and EE{aﬁ,...,arnJ}j

g -
U {L 9] | BceC: cE{al,...,am}

and ¢ =1b’ and ee{l,...
U {[*,qj] dceC: CE{a’],...,ar’n,}

and ¢ = bj and je{l,.
i J i . = = h \
U {[T,qjuqz] dceC: ¢ bj and C = b} i
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Thus

readies{pjip’)

= {e:(XUY) ! XY = ¢ where

|

U readies(p ;. p’)\ e:a

X = {aj, .58, bysenusbd C,|

13
J r J J
(... als s b, cc)

<
1

[

U readies(p’ | p)\ e:
U readies(pp’) \ e:a
= readies(p) # readie;(p’)
U readies(p) || readies(p’)
U readies(p’) || readies(p)
U readies(p) | readies(p’)
(by definition of readies and induction)

AS*
readies(p) || ° readies(p’)

Here we must simultaneocwzly prove, by induction:

readies(p I p/)\e:o readies(p) | readies(p’)

1]

readies(p\p’)\e:n readies(p) | readies(p’)

i

readies(p # p’) readies(p) # readies(p’)

The details are left to the reader. o
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. I
Relating 6, and &,

Here we discuss

4.4.5 THEOREM. G’Z'[s]] = ASE[[S T for every guarded s €L, .

Again,its proof follows the structure of that for "@OEs]] = JQOU:SII "
(Theorem 2.1). In particular, Theorems 2.4.10, 2.4.11 and 2.4.15 remain

valid with (3;, 5’2‘ and £, in place of Gq &O and &£ Thus it

<5 0
remains to show compositionality of &b, analogously to Theorem 2.4.2,

but now involving the ready domain R and giobal nondeterminacy "+".

4.4.6 THEOREM. For op¢ t;*, 5,1} and $135, €4 5
2 ok
. _ Lk 2 _*
S3ls10 50 = &3y T 9o © 6505, T -
PROOF. Case 1: op = +

First we state some simple facts about the rule of global nondeterminacy

in the transition system T’Z‘:

(i) u-unfolding:
T; F(sy*sy, €)= (s, e)

iff

fx]

st es,(s! =5 ts, ATy Fsq, €)= (sh, €))

AARERS

[t

N~

€ £(s’ sl+'s’2 A T"Z‘ F sy, €)= (s"z, e))

(i1) selection by an action beA:

TS F sy *sp, ) = (s', b)
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iff
(s’ stems from s, A T; F¢sys €2 = (s', b))
v (s’ stems from s, A T; F sy, €2 = (s?, b))
(ii1) ready sets:
. .
T, F (sy*59, €) ~e:l
iff
aX,yccC: Z =XuY
A T; = (Sl, e) = e:X
A T; = (52, ey = e:Y
Let us now analyze the possible elements of @ZII 5;* 52]] . These are of
the form e:z or b-w with beA and weA™ = aStyua*:a . (Note that

c £ (9;[[5]] for any sE£2.)

Subcase 1.1: e:L

. *
(e:2) e6,Ls;+ s,
. %*
iff T, F (s, + 550 €0 7 el
iff aX,Y < C: Z = XUY
A T; F sy € - el

A TE F (s, €) ~* e:Y (by facts (i) and (iii) above)

iff 8X,Y ©C: Z = XUY A (exX)eoyls, T

A (e:Y) 6(95[[ 52]]
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Subcase 1.2: bW
. Lk
bew € 62[[sl+ 32]]
iff as’ €L, U {E}:
T3 b s+ 5, €2 =% (st b)Y Awessls ]

(by convention, we put here ¢ e@ElIE]] )

iff as! e i, U {E}:
(T5 F<sqs €2 =" (5%, ) Aweas[s' T)
V(T F<sys e) =" (87, b) Awesy[s’ 1)
(by facts (i) and (ii) above)
iff  brweojls; T vb-w ¢ 650s, T

By the analysis in Subcase 1.1 and 1.2, we finally have:

@’5[{31+52]]= {e:(XUY) 93X€@§[[51]] 1

i * ';
A e.YEGZ[[sz]] j

u{werst | wesils, T uojls,T}

U w:XeA":al w#en

w:X 6(9’2‘[[5] Ty @"2‘[[52 Jii

*

&
. J_2 *
= o553+ 6ls, T

Case o: op = s

Straightforward.
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Case 3: Qp = u

First observe that the Synchronization Lemma 3.4.7 also holds for L5
and T; instead of 3’.1 and TT . Note that the rules for "global
nondeterminacy: selection by synchronization" in T; are needed here
because the contexts considered under (3.7) and (3.8) in the proof

of Lemma 3.4.7 may now contain "+". E.g. in (3.8) we how have:

TR clsl;sls]uslsi{s] | sy+sls+sy .

Using the Synchronization Lemma we can prove, analogously to Lemma 3.4.6:

*

S
. 2
WE@;ES]HSZ] iff E{UE@;[[S]]],VEGZ[[ 52]]: we {u}l] © {v} (4.3)
. st
for weA and 51,sze£2.

In the processof proving (4.3), we obtain:
] d Jd - *.
VSy,S, €8, VS7,55 € &5 U {E} WweA™:
T; l-(s]USz, e) = (s’]ﬂs’z, "
iff Fu,veA” aX,Y c C:
(4.4a)
* *
TZ l‘(s]s €>" (SJ]: U)
N To ks e =" (55, V)

o,
A wefudll © (v}

(compare Lemma 3.4.6). Furthermore we have
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VSE.£2 Vw:l € A*:A
w:Zee’z‘[[s]] iff g’ ey, T; Eds, e) = (', w) (4.4b)

/\T; F(s?,e) =e:Z
Moreover we have, as an immediate consequence of the rules for ready sets

in T; (4.4.2), especially rule (iv):

TE F (S]“SZ, e) 2 e:l

ifFf EX,Y < C: Z=XUuYAXnY=o
(4.4c¢)

/\T’Zr = (S], e) = ek

/\T; - (SZ, e) = e:Y

Combining (4.4a), (4.4b) and (4.4c) yields

* 1
w:Z € 6,Lsis, 1

iff du:X € G505, T, v:Y e 650s, 1 : (4.5)

*
Y
WE{u}uz{v}AZ=XuYAan=¢
With (4.3) and(4.5) we have indeed
*

G;Es]hszﬂ = @ZES]BllZ @2&52] )

This finishes the proof of Theorem 4.4.6. !

With Theorem 4.4.6 also our argument for Theorem 4.4.5 is completed.
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Putting It ALl Together

Before we can prove the desired relationship between (92 and 82

{cf. (4.2)), we need one more lemma.

4.4.7 LEMMA. For every peP,
streams (restrIP(p)) = res’tr]R(readies(p)) .

PROOF. By limit considerations it suffices to prove the equation for

p € le . We proceed inductively and assume
= {a1""’am’[b] :Q]]:---a[bn,qn]}
with X =4 {a],...,am,b],...,bn} . Then the 2¢.h.s. yields

restrp (p) = {ay | ajep and a; £ C}

U {[bj restrp (q )] [bj, qj] €p

and bj £ C}

and thus

(

laiEp and a; £ C}u

{vf{b -streams(restr (q ) | [b.,q:]€P
streams(restrp(p))=< 37 if X&C
~ and b.gC

J J
L {5} if x<¢
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Now the r.h.s. yields

readies(p) = fe:X | X <= C}

U {a; | a;€p}u

?T{bj - readies(aj) | [by.q;] < p)

and thus

restr]R(readiesxp))=<?_~ {bj- restrr (readies(qj))

L£6}

By induction, we have 2.h.s. = r.h.s.

Now we are prepared for the main result on

4.4.8 THEOREM. @2[[51] = az(aszﬂ:s]] ) for all guarded seg,,

o, = streams o restr .
2 Fata avaa o 4 NWVVP

{a; lacp and a, # C}U

.,a.] €
[bJ aJ] p
and bj ¢ C
£2:

where

PROOF. Theorem 4.4.1 states GZIIS]] = restrIR(G;[[s]]) for s €&,

Theorem 4.4.3 states 5[ s ] = readies (8,0s]) for guarded s € £, ,

and Theorem 4.4.5 states 63[s] = ;\95[[5]] for guarded s € &, . Thus

we obtain

(32[[5 7= restrIR(readies(£2[s 1) .

Using Lemma 4.4.7 completes the proof of this theorem. G

THE END




APPENDIX: DIAGRAM OF RESULTS

E Shuffle and Local Nondeterminacy
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TO guarded s
x
|
[
v
N ~ v
linear streams
K Synchronization Merge and Local Nondeterminacy
T] TT guarded s
. t
f |
, [
Voo orestre \’
o sJ<—— 6{[s T = 8;[sT
1\ N _J/
Tinear streams with 6
Lot Synchronization Merge and Global Nondeterminacy
T, TE guarded s
! I
! |
| I
V7 restrp 1/ readies
* *
(92[]:5]]('———'@;[[51]:492[[5]] < ﬁzl-.[s]]
® A___ﬂ_,,/”///
streams o vr‘es'cr*]p
N ~ Y, — Y N g o
streams ready domain branching processes

with &
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FOOTNOTES

1The transition rules given here are corrected versions of those

given in [BMOZ].

.
L
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