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l . INTRO DUCT ION 

Our paper aims at presenting a thorough study of the semantics of a 

number of concepts in concurrency. We concentrate on shuffle and 

synchronization merge, local and global nondeterminacy, and deadlocks. 

Somewhat more specifically, we provide a systematic analysis of these 

concepts by confronting, for three sample languages, semantic techniques 

inspired by earlier work due to Hennessy and Plotkin [HP, PLl, Pi2] 

proposing an operational approach, De Bakker et al. [BBKM, BZl, BZ2, BZ3] 

for a denotational one, and the Oxford School [BHR, OHl, OH2, RB] serving -

for the purposes of our paper - an intermediate role. 

Our operational semantics is based on transition systems [Ke] as 

employed successfully in [HP, Pil, Pi2]; applications in the analysis of proof 

systems were developed by Apt [Apl, Ap2]. Compared with previous instances, 

our definitions exhibit various novel features: (i) the use of a model 

involving languages with finite and infinite words (cf. Nivat [Ni]) or 

streams [Br]; (ii) the use of full recursion (based on the copy rule) rather 

than just iteration; (iii) an appealingly simple treatment of synchronization; 

(iv) a careful distinction between local and global nondeterminacy; (v) the 

restriction to ur:iforr:; concurrency. 

Throughout the paper we only consider uniform statements: by this we 

mean an approach at the sJ~~~atiJ level, leaving the elementary actions 

uninterpreted and avoiding the introduction of notions such as assignments 

or states. Many interesting issues arise at this level, and we feel that 
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it is advantageous to keep questions which arise after interpretation 

for a treatment at a second level (not dealt with in our paper). 

We shall study three languages in increasing order of complexity: 

.£0: shuffle (arbitrary interleaving) + local nondeterminacy 

£ 1: synchronization merge+ local nondeterminacy 

£2: synchronization merge + global nondeterminacy 

For S'.i with typical elements s, we shall present transition system 

Ti and define an -Induced operational semantics <Si[s], i =0,1,2. We 

shall also define three denotational semantics ~i[sl based, for 

i =0,1 on the 11 linear time" (LT) model which employs sets of sequences 

and, for i = 2, on the "branching time" (BT) model employing prcces2-3s 

(commutative trees, with sets rather than multisets of successors for any 

node, and with certain closure properties) of [BBKM, BZl, BZ2]. Throughout 

our paper we provide ~i only for S'.i restricted to guarded recursion 

(each recursive call has to be preceded by some elementary action); we 

then have an attractive metric setting with unique fixed points for con­

tractive functions based on Banach's fixed point theorem. (Our 0i do 

assign meaning to the unguarded case as well.) 

Our main question can now be posed: Do we have that 

( 1. 1 ) 

We shall show that (1.1) only holds for i =O. For the more sophisticated 

languages £. , i = 1,2, we cannot prove (1.1 ). In fact, we can even show 
1 



that there exists no denotational ff. 
l 

satisfying (1.1), i =1,2. 

than trying to modify 8. (thus spoiling its intuitive operational 
1 

character) we propose to replace (1.1) by 

CS..[ S l = a.(.lY.[ S )) 
l l 1 

3 

Rather 

( 1. 2) 

where a.i , i = 1,2, is an abstractior... operator which forgets some in­

formation present in .&i[ s l. The proof of (1.2) requires an interesting 

technique of introducing a transition based intermediate semantics <$.~[ s]. 

For i = 1 we shall show that 8~[ s l = .&; [ s ] . Next, we introduce our 

first abstraction operator a.1 (turning each failing communication into 

an indication of failure and deleting all subsequent actions) and prove 

The case i = 2 is more involved, because £1 has local, and £2 

global nondeterminacy. Consider a choice a or c, where a is some 

autonomous action and c needs a parallel -c to communicate. In the case 

of local nondeterminacy (written as a U c) both actions may be chosen; 

in the global nondeterminacy case (written as a+ c 11 +11 as in CCS [Mi]) 
-c is chosen only when in some parallel compound c is ready to execute. 

Therefore, £ 1 exhibit different deadlock behaviours. 

o2 is based on the transition system T2 which is a refinement of T1 , 

embodying a more subtle set of rules to deal with nondeterminacy. The 

denotational semantics b 2 is as in [BBKM, BZl, BZ2]. In order to relate 

~2 and e;2 we introduce the notion of readies and an associated inter-

mediate semantics ~2, inspired by ideas described in [BHR, OHl, OH2, RB]. 
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~2 involves an extension of the LT model with some branching information 

(though less than the full BT model) which is amenable to a treatment 

in terms of transitions. Besides the operational c2 we also base an 

intermediate denotational semantics £>* 2 on the domain of readies. To 

prove the desired result (1.2) for £2 , we shall show that cs2[ s l = 

and then relate (S2 with ~* t* with g2 ' and thus (; with £2 ®'2 ' 2 2 
a careful choice of suitable abstraction operators. 

As main contributions of our paper we see: 

1. The three transition systems Ti, in particular the refinement of 

T 1 into T 2 . 

2. The systematic treatment of the denotational semantics definitions 

£.2[ s l 

by 

(for the guarded case) together with the settling of the relationship 

(S. =a.. of).. (a.0 identity). 
l l 1 

3. Clarification of local versus global nondeterminacy and associated 

deadlock behaviour. 

4. The technique of intermediate semantics 0i and, in particular, 

c~ and £2 . 
The rest of our paper is organized into Sections 2 - 4 dealing with 

the languages £0 - £ 2 . For each 1 anguage .s:i the corresponding section 

is divided into four subsections. The first three introduce the transition 

system Ti, the operational semantics G; and the denotational semantics 

.&; , respectively. Most demanding is the fourth one which settles the 

relationship between (Si and £,. 
1 

by establishing c
1
. =a. o i, .. 

1 1 
To avoid 

repetitions, we elaborate on a different aspect for each £. . For £ we 
1 0 

concentrate on recursion, for £1 on synchronization merge and for £2 on 

the intermediate ready semantics. 

Finally, an appendix summarizes all results in a diagram. 
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2. THE LANGUAGE £0: SHUFFLE AND LOCAL NONDETERMINACY 

Let A be a finite set of uninterpreted, elementary ac-::::.-J"'-3• with 

a EA. Let x, y be elements of the set stmv of s-:;:;:,tement ::a:riables 

(used in fixed point constructs for recursion). The set £0 of 

(concurrent) s~Jte-:77ents, with s, t e r 0 , is given by the fo 11 owing syntax: 

Thus every action a e A denotes a statement, the one which finishes 

(successfully terminates) after performing a. s1 ;s 2 denotes (sequer:--:::.u.l) 

cJrr.position such that s2 starts once s1 has finished. s1 u s2 denotes 
' 

r;,:.;ndetenninistic e;:oice, also known as local nondeterminism [FHLR]. s1[ls2 

denotes concurrent execution of s1 and s2 modelling shuf;!.,e (arbitrary 

interleaving) between the actions of s1 and s2 . µx[s] is a recursive 

statement. For example, with the definitions to be proposed presently, the 

intended meaning of µX [(a;x) U b] is the set a*· bU (aw}, where aw is 

the infinite sequence of a' s . 

In general, we will restrict attention to syr;,tactically closed statements 

(i.e. those without free statement variables), since only such statements 

have a meaning under the operational semantics to be defined below. (We 

will not always state this explicitly.) 

A transition describes what a statement s can do as its next step. 

This concept of a transition dates back to [Ke] and to automata theoretic 
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notions [RS]. Following Hennessy and Plotkin [HP, Pil], a transition 

system is a syntax-directed deductive system for proving transitions (see 

also [Apl, Ap2, Pi2]). In this section we use this idea for £0 . 

First we need some notation. Let i ; A. Then the set Ast of 

words [Ni] or streams [Br], with u,v,w E Ast, is defined as 

Ast includes the s.et ACD = A* U A_J of finite and ir...~inite words or 

streams over A [Ni] , and additionally the set A*· [J.} of ur..-'ir..i2;:e::. 

words or streams. Let e denote the empty word and ~ the pre;ix re:2-;ion 

over words. We define J. • w = J. for a 11 w . 

A aonfiguration is a pair (s,w) or just a word w. A tra.nsi-ti::'V!.. 

relation is a binary relation - over configurations [Ke]. A transitior:. 

is a formula (s,w) - (s' ,w') or (s,w) - w' denoting an element of a 

transition relation. A transition system is a formal deductive system for 

proving transitions, based on axior::.s and rules. Using a self-explanatory 
l .... 2 notation, axioms have the format 1 - 2, rules have the format 3 .... 4 . 

For a transition system T, T j-1 - 2 expresses that transition 1 .... 2 

is deducible in the system T. Then 1 ... 2 is also called a T--;r:;;:-:si-;ion. 

For a finite sequence 1 .... 2 .... - n of T-transitions, we also write 

T !- l .... * n • 

We will present a particular transition system T0 for £0 . Before 

doing so, we introduce a notation which permits a compact representatio1 of 

the transition rules. 
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We follow Apt [Apl, Ap2] and explicitly allow the empty statement 

E (not present in a.0) . We then assume identifications between expressions 

generated by the following equalities: 

( E, w) = w , 

s = s;E = E;s = s[lE = Ells. 

Then in the notation 

(s, w) ... (s',w'), ( 2. l) 

the pair (s', w') on the r.h.s. has two possible interpretations: 

( i) as shown, with s' e .r.0 , and al so (ii) with s' = E and (s' , w' ) = w' . 

Thus (2.1) represents either of the transitions 

( i) (s, w) ... (s1 
, w') (with I • 

s e £oJ' 

(ii) (s,w)-w'. 

We now present the system r
0

. 1 

'.;.) * r } For w e A U A • 1,.1.. and s e J.:
0 

we put 

(s ,w) ... w , 

* and for we A we distinguish the following cases: 

( e lemen tm'y action) 

(a ,w) ... w • a 

(local non.determinacy) 

(s 1 U s 2 ,w) ... (s 
1 

,w) 

(s
1 

u s2 ,w) ... (s2 ,w) 
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(;.ix[s], w) - (s[µx[s]/x], w) 

where, in general, s[t/x] denotes substitution of t 

for x in s . Thus recursion is described here by 

syntactic substitution or copying. 

( -~cmposi ti.)~) 

(s 1 ,w) - (s' ,w') 

(s1 ,w) - (s' ,w') 

(s 1 ,w) - (s' ,w') 

(s2!1s 1 ,w} - (s2Us' ,W'} 

Note that our convention regarding the empty statement applies to the 

composition and shuffle rules given above. Thus, for example, the first 

shuffle rule has two interpretations: (i) as shown, with s' E£0 , and 

a 1 so (ii): 

(s1 ,w) - w' 

(s 1 Us 2 ,w} - (s2 ,w'} 

At the beginning of this section we said that a transition describes 

what a statement can do as its next step. For T0 this is made precise 

by the following lemma. 



9 

2. 1. 1 LEMMA Unitial Ster;;). T 0 ~ (s ,w) - (s' ,w') iff there exists some 

be AU (d with w' = w • b and T0 I- (s,e) - (s' ,b). 

PROOF. By structural induction on s . o 

2 9 T' ,~ t . 1 ~ , • re-. 
• w ne "~·q,ru i.onai, oeman-ci.cs \:to 

By an op2~~tional S6~antics we mean here a semantics which is 

defined with the help of a transition system. As a first example we 

introduce now an operational semantics G0 for £0 . Formally, cs0 

is a mapping 

with $= P(Ast) denoting the set of infinitary languages, which may 

contain both finite and infinite words over A. 

We first give some definitions. 

(1) A transition sequence is a (finite or infinite) sequence of 

T 0-trans it ions. 

(2) A path from s is a maximal transition sequence 

where s0 = s and w0 = e . 

(3) The word. associated with a path TI, word (TI), is defined according 
~ 

to the following three cases. 

(a) TI is finite, and of the form 

(s0,w0) - ... - (sn,wn) - w. 
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Then word (TI) = w . 
~ 

(b) TI is infinite: 

and the sequence (wn)n is infinitely often increasing. 

Then word {11) = supnw (sup w.r.t. the prefix ordering), 
~ n 

an infinite word. 

(c) TI is infinite as in (b), but the sequence (wn)n is 

eventually constant, i.e. for some n wn+k = wn for 

all k~O. 

Then~ (11) = wn • l. • 

It is easy to see that these are the only three possibilities for a path 

in T 0. 

We now define for s e £0: 

c0[s l = £~ (11)!11 is a path from s}. 

We conclude with two simple facts about (SO. 

2.2.1 LEMMA (::2'fi"'"',fr!e.1,:;). tt
0 

is well-defined, i.e. 00[ s] r <!> 

for every s e £0 . 



PROOF. The claim follows from the fact that for each configuration 

(s,w) at least one transition (s,w)-+ (s' ,w') exists in T0 . o 

11 

2.2.2 LEMMA (_Dr•along,:iti,-:in). If T
0 

~ (s,e) ... * (s' ,w) and w' e0
0
[ s' l, 

then a 1 so w • w' e 00[ s l . 

Proof. By the definition of 00 and Lemma 2.1.l. o 

We remark that corresponding lemmas will also hold for the operational 

semantics to be discussed subsequently. 

i.3 The Denotati~~.ai Semantics £0 

The operational semantics G0 for £0 is global in the following 

sense: to determine G0[ s l we first have to explore the T0-transition 

sequences for a 11 of s, and only then we can retrieve the result 00[ s l . 

Further, in T0 , and thus in <90 , recursion is dealt with by syntactic 

copying. We now 1 ook for a deno;;ationai semantics £0 for r 0 . A 

denotational semantics should be compositional or homomorp~ic, i.e. for 

every syntactic operator J:?J?, in ~O there should be a corresponding 
~ 

semantic operator 2e. O satisfying 

and it should tackle recursion semantically with help of f~xed points. 

This of course requires a suitable structure of the underlying semantic 

domain. 
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For ~O we shall use metric spaces (rather than the more customary 

cpo's) as semantic domain. Our approach is based on [BBKM], [BZ2]; for 

general topological notions such as closeiness, li~i~s. . . . 
.::ar::-7/rz.t-t:. :;~1 and 

compZe&eness, see [Du]. 

Following [BZ2], ~O will be defined only for guarded statements, a 

notion which we define below. We must first define the notion of an 

expos~i occurrence of a substatement in a given statement. 

REMARK. By "(occurrence of) a substatement of a statement s 11
, we 

will always mean a statement not containing any free statement variables 

which are bound in s . For example, a;x is a substatement of 

µ.y[a;x;y], but not of µx[a;x;y].) 

We now define the notion: an occurrence of a substatement t of s 

is ex-:Josed in s. The definition is by induction on the structure of s: 

(a) s is exposed in s . (More accurately, the unique occurrence 

of s in s is exposed in s . ) 

(b) If an occurrence of t is exposed in s 1 ' then (and only then) 

it is also exposed in s1;s2, s1Us 2, s2\ls1' sl u s2 , s2 u s1 
and ~x[s 1 J (and also sl + s2 and s2 + s1 , in the case 

of the language £2 of Section 4). 

EXAMPLE. In the statement x;a U b;x, the first occurrence of x 

is ex;asei, while the second is not. 

ti. statement is now defined to be g:tarded (cf. [Mi] or [Ni]) if for 

all its recursive substatements µ.x[t], t contains no exposed oce:.rrences 

of x ' 
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EXAMPLES. ~x[a; (x!lb)] is guarded, but µ.x[x], µ.y[y\lb] and µ.x[µ.y[x]] 

(as well as statements containing these) are not. 

One advantage of the guardedness restriction is that we will be 

able to invoke Banach 1 s classical fixed point theorem when dealing with 

recursion. 

Let us now introduce the metric domain for .&0 . For u e Ast 1 et 

u[n], n ~ 0, be the prefix of u of length n if this exists; other­

wise u[n] = u . E.g., abc[2] = ab, abc[5] = abc . We define a natural 

metric d on Ast by putting 

d ( u , v ) = 2- ma x ( n I u [ n] = v [ n] } 

with the understanding that 2-"" = 0. For example, d(abc,abd) = 2-2 , 

d(an,aw) = 2-n . We have that (Ast,d) is a complete metric space. 

For X c Ast we put X[n] = (u[n]]u e X}. 
A 

A distance d on subsets 

x.v of Ast is defined by 

d(X,Y) = 2-max[n[X[n] = Y[n]} 

Let Sc c§ denote the collection of all metrically closed subsets of 

Ast. It can be shown that ($c' d) is a complete metric space (see [Ha]). 

A sequence (x;>7=o of elements of §c is a Cauchy sequence whenever 

Vt: > 0 3:N lfn,m ~ N[d(X .x) <d. For (X.). a Cauc_hy sequence, we n m i i 

write lim; X; for its limit (which belongs to $c by the completeness 

property). 
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A A 

A function ~: {Sc, d) - (Sc' d) is called contracting whenever, for 
A 

all X Y d{ m(X) ~(Y)) ~ for some real number a with ' ' T ''t' Cl. 

0 ~ Cl.< l A classical theorem due to Banach states that in any complete 

metric space, a contracting function has a unique fixed point obtained 

as lim; <l>i(x0) for arbitrary starting point x0 . 

.&O USO and 1111tO We now define the semantic operators on $c . 

(For ease of notation, we skip superscripts ~O if no confusion arises.) 

a. X,Y ~A* U A"k • .(J.}. For X;Y =df X • Y {concatenation) and 

X U Y (set-theoretic union) we adopt the usual definitions 

(including the clause J. • u for all u). For Xl[Y (shuffle or 

merge) we introduce as auxiliary operator the so-called left-merge 

lL (from [BK]). It permits a particularly simple definition of 

ll by putting 

Xl!Y=(XILY) U(YILX) 

where IL is given recursively by X IL Y = U(u LLYlu e XJ with 

e!LY=Y, (a·u)ILY=a·((uJBY) and J.lLY=(J.}. 

b. X,Y eSc where X,Y do not consist of finite words only. Then 

x.e.e,v = limi(X[iJ£e,Y[i]), 

for £1?,el;, U, l!J. In [BZ2] we have shown that this definition 

is well-formed and preserves closed sets, and the operators are 

continuous (assuming finiteness of A, as in [BBKM]). 
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We now turn to the definition of ~O. We introduce the usual notion 

of envirorn~n~ which is used to store and retrieve meanings of statement 

variables. Let r0 = ~ -$c be the set of environments, and let 

ye r 0 . We write y' = df y(X/x) for a variant of y whi eh is like 

y but with y'{x) = X . We define 

as follows: 

1. t 0[a](y) = [a] 

2 . .i90 [s 1 ~s2 ](y) = s0[s 1](y) 2.e,~0 [s 2 ](y) 

3. t 0Kx](y) = y(x} 

4 . .i.\i0[1.i.x[s]](y) = limi Xi. where x0 = [.L] and 

xi+l = .i90[x](y(X/x)}. 

By the guardedness requirement, each function <P = A.X . .190[ s] (y(Xix)} 

is contracting, (Xi)i is a Cauchy sequence, and limixi equals the 

unique fixed point of ~ [Ni, BBKM, BZ2]. For statements s without 

free statement variables we write .i90[s] instead of .190[s](y). Since 

.i90[s] is a set of (linear) streams, -90 is called a Linear time seman~ics 

[BBKM]. (Such a semantics may constitute the basis for a linear time 

temporal logic for £ 0 .) 

REMARK. An order-theoretic approach to the denotational model is also 

possible ([Br, Me, BMO], see also our survey [BKMOZ]), but less convenient 

for our special purposes. In fact, the order-theoretic approach does not 
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provide a direct treatment for the unguarded case either, it seems to 

require a contractivity argument for uniqueness of fixed points just 

as well, and, last but not least, as far as we know, it cannot be used 

as a basis for the branching time semantics used later in Section 4.3. 

2.4 Pela~ionship cetween c0 and hO 

In this section we will prove: 

2.4.1 THEOREM. 00-~sl = ~0[5] for all (syntactically closed) guarded 

The proof of Theorem 2.4.1 is by induction on the structure of s. 

For the induction argument we need two important facts about GO which 

we develop first. The first fact states that (90 behaves compositionally 

over the operators op e [; ' U ' H l ,..,.. of .£:0 in the sense or Section 2.3: 

We shall not give a full proof here, but refer to Section 3 where this 

result is established in the more general setting of language £ 1 . 

Instead we concentrate here on the second fact dealing with recursion 

because its proof carries over to the languages £1 and £2 virtually 

without change. We wish to show that 

~· 
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where o is a certain auxiliary statement and t(n)(·) denotes n-fold 

substitution (to be explained in the sequel). This proof is quite 

involved; it requires a number of auxiliary results on the transition 

system r0 and the operational semantics l$0 . 

In the following, we make the general assu.rrrption that all our statements 

are (syntactically closed and) guarded (unless explicitly stated otherwise). 

Guardedness comes into our work in two ways: 

(l) in proving the technical results below on transition sequences, 

notably the Basic Lemma (2.4.4), and 

(2) more fundamentally: t;0[s) is only defined for guarded s! 

(On the other hand, ~0[s) is only defined for syntactically 

closed s . ) 

Let us now turn to the first fact about G0 . 

Compositionaiity of G0 • 

We state (more generally): 

2.4.2 THEOREM. 

.&o 
(b) G0[s1 u s2J = ~0[s 1 J u ~0[s 2 J 

(c) o
0
[ti. x [s]] = G0[s[µ. x [s]/x]] 

bo 
(d) G0[s 1;s2J = c0[s 1J ; G0[s2l 

f; 

( e ) GO [ S 1\IS 2] = GO [ S 1] U O GO [s 2 l 
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PROOF. (a), (b) and (c) are clear, by considering transition sequences 

from (a,€), (s 1us2, €) and (µx[s], €),which must start with the 

transition rules of elementary action, local nondeterminacy and recursion 

respectively. Part (d) is proved like (e), but more simply, and the proof 

of (e) is postponed to Section 3 (Lemma 3.4.6), in a more general context. o 

We now develop a series of auxiliary results leading to the main 

fact about recursion (Corollary 2.4.16) used in proving Theorem 2.4.1. 

NOTATION. To display all free occurrences of a variable x in a statement 

s , we can write s = s(x) . Then the result of substituting a statement 

t for all free occurrences of x in s is denoted formally by 

s[t/xJ and informally by s(t). 

We also speak of the context s(·) of the occurrence(s) of t 

dis p 1 ayed in s ( t) . 

Note that if t is a proper substatement of s = µ. x [s1 (x)] , then 

(by the remark on substatements in Section 2.3) t is a substatement of 

s1 , not containing x, so we can write, informally, s = µ. x[s 1(t,x)]. 

We indicate a speaij'i.J occurrence of a substatement t of s by 

v.?cder•Zining it: s CU . 

We also speak of the ac•:::-2:::t s(·) (or s(_:_)), meaning that part 

of the expression s(t) (or s(!_)) excluding the displayed occurrence(s) 

of t. 
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TYPES OF TRANSITIONS. We must make a closer analysis of T0-transitions. 

Since every deduction rule in T0 has only one premise, every r0-transition 

(s ,w) ..... {s' ,w') (2.2) 

is deducible from a single axiom: eZementai'y action, 1iondeterminacy or 

1°ecursion, by a sequence of applications of the rules composition and 

shuj'fZe. 

There may actually be more than one deduction of (2.2). For example, 

the transition 

(µ.x [xJllµy[y],w) ..... {µ.x [x]i!µ.y[y],w) 

has two different deductions, one starting from µx [x] and the other 

from µy[y]. Notice, however, that in this example the µ-substatements 

are unguarded. If (according to our general assumption) we restrict our 

attention to guarded statements, it is not hard to see that every deducible 

transition has a unique deduction (although our results do not really depend 

on this fact). 

According to which axiom was used in its deduction (elementary action, 

nondeterminacy or recursion), (2.2) is called (respectively) an <:-transition, 

'J-tran2:'.-:;ion or µ-transition. 

SUBSTATC:MENT INVOLVED IN A TRANSITION. Any transition 

{s,w)-{s1 ,w') (2.3) 
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irwolves some (unique) occurrence of a substatement of s. This notion 

can be defined by induction on the length of the deduction of (2.3). 

(i) Ba3-z,a. If (2.3) is an axiom, then it involves the occurrence 

of s shown. 

(ii) Induction step. If the premise of an instance of one of the 

rules in T0 involves an occurrence of s, then the conclusion 

invol~e3 the corresponding occurrence of s . 

For example, in the following form of the shuffle rule: 

if the premise involves the occurrence of t shown in s1 , then the 

conclusion involves the corresponding ocaurrence of t shown in s'Usi. 

Note that we have not defined the notion of corresponding occurrer.ce 

precisely, but it should be clear enough. 

It is clear that the substatement involved in a transition is the 

same as the statement on the i.h.s. of the corresponding axiom. 

EXAMPLES. 

( 1 ) 

is an a-transition, involving the occurrence of a shown. 

(2) 

is a u-transition, involving the occurrence of s1 U s2 shown. 



(3) 

is a µ-transition, involving the occurrence of µ x[s2(x)] 

shown. 

PASSIVE SUBSTATEMENTS. We say that a transition 

(s (~) ,w) - (s' ,w') 
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(2.4) 

affect3 the substatement occurrence t if it inv0Zve3 some substatement 

of t (perhaps t itself). Conversely, t is said to be passive in 

{.2.4) if it is not affected by (2.4). Denote the (unique) statement 

occurrence involved in (2.4) by !a. Then it is easy to see that the 

fol lowing three statements are equivalent: 

(i) t is passive in (2.4). 

( i i) !a is not contained in t . 

(iii) t is either disjoint from !a, or properly 

contained in !a. 

2. 4. 3 LEMMA (S:lbstitu-f;ion of Passive Substatements). Given a T 0-trans it ion 

(2.5) 

if s1 has the form s; UJ , where t is passive in the transition, 

then s2 can be written in the form s2(t) (displaying 0, l or more 

occurrences of t), such that for any statement t' , there is corresponding 

T 0-trans it ion 
" 
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PROOF. By induction on the length of a deduction of (2.5). Briefly, the 

deduction of the new transition is formed simply by replacing certain 

occurrences of t by t' in the deduction of (2.5). The details are 

left to the reader. o 

BASIC LEMMA ON TRANSITIONS. The following basic lemma shows the signi­

ficance of the guardedness assumption. It enters three times into our 

working below! - (a) in the proof of Theorem 2.4.10 (via the Decreasing 

Exposure Lemma 2.4.7 and the Finiteness Lemma 2.4.8), (b) in the proof of 

Theorem 2.4.11, and (c) in the proof of Lemma 2.4.14 (via Corollary 2.4.13), 

which in turn is used in Theorem 2.4.15. 

2.4.4 (BASIC) LEMMA. In the transition 

(2.6) 

if a substatement occurrence t is not exposed in s1 , then t is 

passive (and so the lemma of the previous subsection applies). 

PROOF. By induction on the length of a deduction of (2.6). 

BASIS. Suppose (2.6) is an axiom. Then, since _! is not exposed in 

s1 , it cannot be equal to s1 , i.e. it is a proper substatement of s1 . 

Hence ! is passive in (2.6) (since by definition only the full statement 

s 1 is involved in an axiom ( 2. 6) . 
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Induction Step. Consider first the comtJosition rule, and take the 

case 

By assumption, t is not exposed in s1 ;s. Hence (by definition) t is 

either in s or (not exposed) in s1 If t is in s , then it is 

certainly passive in the conclusion. Suppose ! is (not exposed) in s1 . 

By induction hypothesis, t is passive in the premise (i.e. the substatement 

of s1 involved in the premise does not occur in !_). Hence clearly, t 

is also passive in the conclusion. 

The shuffle rule is handled similarly. o 

A useful version of this lemma is given by: 

2.4.5 COROLLARY. If a transition (s1 ,w1) - (s2 ,w2) involves a sub­

statement occurrence ! in s1 , then ! is exposed in s1 • 

PROOF. This is a trivial consequence of the Basic Lemma. {It could also 

easily be proved directly, by induction on the length of a deduction of 

the transition.) o 

PASSIVE AND ACTIVE SUCCESSORS. Consider a transition (s, w) - {sJ,w' ). 

Let µO = µX[t
0

(x)] be a µ-substater;ient of s, and consider a partiC'Jlar 

occurrence of ~O in s . Then there may be one or more 
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in s', stemming from this occurrence of in 

s. These are called the s-:,lcces.wY.'{aJ of this occurrence of 110 in s. 

We do not give a complete formal definition of the notion of successor; 

consider, as an example, the following form of the rule of carrrpositio~: 

(s 1 ,w) - (s' ,w) 

The displayed occurrence of µ0 on the r.h.s. is a successor of that on 

the Lh.s. 

Most other cases are just as trivial - call these passive successors -

except for the case that the transition actually involves the occurrence 

of µ0 considered: 

( 2. 7) 

(where, as stated above, µ0 = µx [t0(x)]). 

In this case, each occurrence of µ0 shown inside the occurrence of t 0 
on the r.h.s. of (2.7) is an active successor of the occurrence of µ0 
shown on the i.h.s. 

The transitive relation generated by the successor relation is 

called descendant; the converse of that is called ancestor'. 

2.4.6 LEMMA (TY'c:;nsitiv'l:t!-1 of exposz,r><:>). Given a statement s1 , containing 

a substatement occurrence ~2 , containing in turn a substatement occurrence 
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(a) If ~3 is exposed in s2 ' 
1 

~2 is exposed in sl ' then ~3 ana 

is exposed in s, . However if either (b) ~3 is not exposed in s2 ,; 2'l 

(c) ~2 is not exposed in s 1 ' then ~3 is not exposed in s, 

PROOF. In all cases, by induction on the structure of s. o 

DEGREE OF EXPOSURE OF A STATEMENT; DECREASING EXPOSURE LEMMA. The 

s , de ( s) , is defined to be the number of ,...,...., 

eapos2d oe::.trrertee?s of '..l-statements of s. ~<Je have an important lemma, 

which uses the guardedness of statements. 

2 . 4 . 7 LEMMA . If (s,w) -- (s' ,w') is a µ.-transition, 

then de(s') <. de(s) . ........, ,...,..., 

PROOF. Suppose this transition involves an occurrence of µ.0 = µ.x [t0(x)], 

and put s = s(µ.0), displaying this occurrence. Then s' = s(t
0

{µ.
0

)) 

By the Basic Lemma, ~ is exposed in s. However, all its (active) 

successors are not exposed in t 0{µ.0) (since, by assumption, µ.0 is 

g:tarded) and hence also not exposed in s' (by the Lemma (2.4.6) on 

Transitivity of Exposure). 

Now consider all other occurrences of µ.-substatements in s{µ.0). 

Any occurrence which is contained in the context s(~) (i.e. ~at in the 

displayed occurrence of µ.0 ) has exactly one (passive) successor in 

s(t0(µ.0)), which is clearly exposed if and only if the original is. 

Finally, consider an occurrence of another µ.-substatement, say µ. 1 , 
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within µ.0 , i.e. within t 0( ·). We write µ.0 = µ.x [t0 (~ 1 ,x)J, and so 

(?.. 8) 

Now ~l has, in general, mand (passive) successors in s' , which we 

can write as 

(2.9) 

The first ~l in (2.9) is exposed in (2.9) iff ~ 1 is exposed in (2.8), 

that is (in both cases) iff ~l is exposed in t 0 (1~i, x.) (by the Lemma on 

Transitivity of Exposure, since ~ is exposed in s(-2.o)). All the other 

occurrences of u1 in (2.9) are, in any case, not exposed in s', since they 

are in u0 = µx[t0 (~-l' x)], which is not exposed in t 0(µ 0) (again, by the 

assumption that µ.
0 

is guarded) . 

Putting all this together yields the result. o 

The above lemma is used in the Finiteness Lemma in the following 

subsection. 

NON-INCREASING TRANSITIONS AND TRANSITION SEQUENCES; FINITENESS LEMMA. 

A transition (s, w)-+ (s',\'1) is said to be non-~r:creising if w' = w, 

and in..:?.'easin:..~ otherwise (i.e. if w' = w·a for some a eA). Similarly, 

a transition sequence (s ,w) -+ ....... (s' ,w') is said to be ncv:-inci'':!asin..g 

if w' =w. 

Clearly, a transition is non-increasing iff it is a ll-- or U-transition 

(cf. TYPES OF TRANSITIONS above), and increasing iff it is an _1-transition. 
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We now give an important lemma, which will be used in the proof 

of Theorem 2.4.10 (via Corollary 2.4.9). 

2.4.8 LEMMA (Finiteness). Any non-increasing transition sequence is 

finite. In fact, for any s, there is a positive integer C, depending 

only on the length of s (as a string of symbols), such that any non-

increasing transition sequence of the form 

(s ,w) = (s1 ,w) ........... (sn ,w) = (s' ,w) (2.10) 

(for any s', w) has length n at most C. 

Praof. Let Q, be the length of s, and d = de(s). Now a non-increasing ,...,.., 

transition sequence (2.10) can only contain U-transitions and µ-transitions. 

This can include at most d µ-transitions, by the Decreasing Exposure 

Lemma (2.4.7). Also, each u-transition decreases the length of the 

statement. Hence (by a crude estimate, since the length of a statement 
2d 

can be at most squared by a µ-transition) (2.10) can include at most i 

2d 
u-transitions. Hence the length of (2.10) is at most d + i , and so 

2d 
(since, trivially, d s: i) we can take C = i + Q, o 

COUNTEREXAMPLE for an unguarded statement. Let s = µx[x; au b] . 

Starting with (s, e), we can perform a µ-transition, followed by a 

u-transition, k times (for any k)' to get: 

k ... (s;a ,e), 

a non-increasing transition sequence of length k. 
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2.4.9 COROLLARY. For a given s, there are only finitely manJ transition 

sequences of the form 

(s ,w) ........... (s' ,w) ... (s" ,w · a) (2.11) 

(for any w, s', se, a). 

PROOF. By the Finiteness Lemma, there is a f'~nite upper bound to the 

length of(2.ll). Also, at each step there are only finitely many 

possibilities for the next transition (as is clear from an inspection of 

the transition rules). o 

COUNTEREXAMPLE for an unguarded statement. Let (again) s = µx[x; au b]. 

For any k , we construct the sequence 

* k (s,e) .... (s;a ,e) 

... ({s;aUbj;ak,e) 

k 
-+ (b;a ,F) 

k .... (a , b) • 

(as in counterexample after 2.4.8) 

{µ-transition) 

(U-transition) 

Such sequences are distinct for different k. 

2.4.10 THEOREM. For any s, o0[ s) is closed (in the metric on Ast 

given in Section 2.3). 
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PROOF. Let (u1 ,u2, ... ) be a CS (Cauchy sequence) of words in ~0[s]. 

Let u = i imnun . We must show: u E 00[s] . 

If u is finite, it is easy to see that (un)n is eventually 

constant, i.e. un = u for n sufficiently large. Hence u e c0[s] . 

So suppose u is infinite. The idea of the proof is to find a 

subsequence of (un)n such that not only do the words converge, but 

also the paths producing them converge (in a suitable metric, to be 

discussed in 2.4.13) to a path n of s 

which the result follows. 

such that u E word(n) , from ,...,..,...,... 

(As before, we use the notation u[n] for the initial segment of 

a word u of length n. ) 

We proceed inductively. 

S i n c e ( u n ) n i s a CS , for n s u ff i c i en t 1 y 1 a rg e ( say n ~ N 1 ) u n [ 1 ] 

is constant, i.e. un begins with the same letter, say a1 (which is 

also the first letter of u). 

For all n, let nn be a path from s producing un. Consider 

the first part of nn, up to the first appearance of a1 on the r.h.s. 

of a configuration: 

By the Corollary (2.4.9) to the Finiteness Lemma, there are only fidtely 

many such transition sequences possible. Hence there is a subseque~~e 
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(u , u , ... ) of (u ) such that the corresponding n all begin n1 n2 n n nk 
with the s::r:e transition sequence (up to the first appearance of a

1 

on the r.h.s.). 

Since 

constant, i.e. u 
nk 

is a CS, for k sufficiently large u [2] 
nk 

begins with the same two letters, say a
1
a

2 

is 

(which 

are also the first two letters of u ). Again, by the Corollary to the 

Finiteness Lemma, we can get a subsequence of (un ) such that the 
k 

corresponding paths all begin in the same way, up to the first appearance 

of a1a2 on the r.h.s.: 

Continuing in this way, we get, for all k, successive subsequences of 

(un)n such that the corresponding paths all begin in the same way, up 

to the first appearance of k letters on the r.h.s., say a1a2 ... ak, 

which are also the first k letters of u. Finally we take the 

"diagonal sequence", by piecing together> the initial segments of these 

paths, to obtain the path 

n: (s ,€) _.. ... _,. (s
1

, a
1

) -+ ••• 

~ (s
2

, a
1

a
2

) _.. •.. 

_, (sK, a1a2 ... ak) _, 

Clearly, nE~(s) and u=a1a2 ... ak ... E~(n). o 
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,...., 

DISCUSSION (metric on the set of paths). We can define a metric d on 

the set ~(S) as follows: O(TI, TI1 ) = 2-n if TI and TI
1 agree Up 

to the first appearance of a word of length n on each: 

(Note: this is not equivalent to agreeing up to the first n transitions!) 

The proof of Theorem 2.4.10 produces a subsequence of (un)n such 

that the corresponding se~:<ence of paths also converges (in the metric 
,.., 
d ) to a 1 imiting path TI, with u e word(n) . ,...,...,...,.. 

COUNTEREXAMPLE to Theorem 2.4.10 for an unguarded statement. Again, 

let s = u x [x;a U b]. Then 00[s] = b.a*u (.LJ . This set is not 

closed, since if we take un = b.an e 00[s] , then x.imnun = b.aw ~ 80[s] . 

Note that the un are produced by paths 

(as in Counterexample after 2.4.9) 

(by n a-transitions). 

But the initial parts of these paths, up to the first appearance of b 

on the r.h.s., are all di:ferent, so there is no limiting path (in the 

metric d) ! 

LinkiY1..g operational and s.:.r;tai..;tic approximation. 

ITERATED SUBSTITUTION; DEPTH OF A µ-STATEMENT IN A PATH. From now on, we 

will concentrate on a specific µ-statement, 11 = µx [t(x )] (which, by 
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our general assumption, is syntactically closed and guarded). 

We define the n-:7Zd sucstituticn in t(x) by a sequence of 

- n ( ' ( statements t x, n = 0,1 ,2, ... ) where 

= n 

Since µ is syntactically closed, t(x) contains at most x free. 

However, there may.be many occurrences of x in t (none of the exposed!). 

If, for example t(x) = t(.2S_,.2S_,.2S_) (3 occurrences of x), then 

t 2(x) = t(t(.2S_,.2S_,.2S_), t(.2S_,.2S_,.2S_), t(.2S_,.2S_,.2S_)) . 

We call a transition involving an occurrence of µ. a µ-transition. 

Now consider a path from some statement s0 containing µ: 

We define the de-;;:;h of an occurrence of µ in sn (in n), by induction 

on n : 

Basis (n = 0) Every occurrence of µ. in s0 has depth 0 . 

Induction step ( n - n + 1 ) . Given any occurrence of µ. in sn of depth 

d, any passive successor (cf. PASSIVE AND ACTIVE SUCCESSORS above) of 

this occurrence also has depth d; all aetivq successors have depth d+ 1. 

In other words, the depth of an occurrence of µ in TI counts the 

number of µ-transitions involving ancestors of that occurrence. 
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SYNTACTIC BOTTOM SYMBOL; TRUNCATION OF A PATH. As a technical aid, we 

adjoin the symbol 11 ~ 11 to the syntax of s:.0 , and the transition rules 

(actually axioms): 

( .c:l ) : ('~·s ~4, ' w) .... (~ 
.~, w) 

(~j! 
~·li s' w) .... {::' w) 

( ,1,.... S 11u, w) .... <~~' w) 

(~2): <~-:' w) - W • .1. 

to T 0 . We a 1 so define £0[.-:] ()') = (.LJ • This symbo 1 wi 11 not appear 

in our final result (2.4.1). 

We now define the of a path TI (w.r.t. µ:), trunc (n) 
~n 

This is the path n' formed by utruncating TI at a depth of n11
, by 

(1) replacing all occurrences of µ in n, of depth n, by r., and 

(2) replacing the first transition involving an occurrence of ~ of 

depth n : 

(-) CD (-(-· n: ... - (s 1!'. , w) - (s ~), w) .... 

by transitions involving r.: 

11
1 

: • • • - ( s (f) , 
® 

* w) _.. W.L ' 

thus terminating n' . foe transitions in the sequence ® are deduced 

from instances of axiom (~ 1 ) by successive applications of the 

composition and shuffle rules, paralleling the deduction of Q) from an 

instance of the recursion rule. 
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Note that step (1) in the construction of trunc (n) above has the 
·----~n 

effect of replacing 11-transitions, involving occurrences of µ: of depth 

n-1, by 11 non-standard µ-tra:r:sitions 11
, in which the active successor of 

µ. is not tC~) but t(G) . 

Next we give a notation for the word associated with the n-truncation 

of n: 

and finally define the n-:~p7r1 _;~·1:r-:,_;:t-ZJr: of the operational meaning of 

The following theorem shows that for c0 , operational approximation 

(via n-truncation) coincides with s~Jntactic appY'Oximation (via n-fold 

substitution). This result facilitates the subsequent considerations on 

metric 1 imits. 

2.4.11 THEOREM. G~n)[ik] = l9
0

[ t(n)(G)] for n = 0, 1, 2, ... 

PROOF. We will actually prove, more generally: for any statement s
0

(x) 

(with only x free, and not containing G), 

(l) ~: (This is relatively straightforward.) Let nEJ?.<:"t:b.n (s
0

{}1)). 

We must find n' Epath(s0 (t(n)(~-:))) such that ~(n') = ~(n). 

Note that each occurrence of ~ in n has depth 
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< n (by definition of ~n) . 

Form 11' from TI in two steps: 

(a) Repiac~ each occurrence of µ of depth d(< n) -n-d by t (ri) . 

(b) Consider a µ-transition in n: 

n: ... - (s(i1), w) - (s(t(i1)), w) ... 

Actually, s may contain a number (say m) of occurrences of µ.: 

s(µ) = s(~.~ •...• ~). Suppose w.1.o.g. that the first of these occurrences 

shown is involved in the i1-transition: 

n: ...... (s(~,µ:, ... ,~), w) 

- (s (t(\k), ~ •.. .,~), w) 

-
Suppose that the m occurrences of µ shown on the 1.h.s. of this 

transition have depths d1, ... ,dm(< n). Then all occurrences of µ: in 

t(jj:) have depth d1
+1 (they are the active successors of the first 

~ on the l .h.s.), and the remaining ~·s on the r.h.s. (still) have 

depths d2 , .•. ,dm (they are the passive successors of the corresponding 

~·s on the 1.h.s.). Then from step (a), n' is so far (putting ei=n-di): 

(
_e1 _e2( _em . 

n' : . . . ... ( s t ( ~i.) , t G) , . . . , t ( 0) ) , w) 

,-(_e1-1 _ ) _e2 _ _em 
... (s\t t (.~) ,t (.;) , .. .,t C.~)), w) 

Now coUaps:: the above "identity transition" into a single configuration 
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TI
1

: ••• _. (s( ... ), w) ........ 

(2) =:: (Trickier, here we use the Basic Lemma, and the assumption that jJ: is 

guarded.) Let rt' t J2.~~(s 0 Ct
11 (n))). We want to find a path TI e ~(s0 (jj:)) 

with the same associated word. Roughly, we replace occurrences of 

~(~-:) (0 < e :s; n) in TI
1 by µ. (of depth n - e, as it turns out). 

We wil 1 construct TI step by step from TI' • With each configuration 
_e1 _em( , 

(s, w) in TI
1 will be associated a finite sequence (t (~), ... ,t ."..)j 

(0 <e.< n) of occurrences of substatements of s. Then TI is extended 
1 

by adjoining a configuration (s', w), where s' is formed from s by 
e. 

replacing t 1
(.-;.) oy ~ (of depth n-e1). In detail, the construction 

of TI from TI
1 proceeds as follows. It starts in the obvious way 

(displaying the different occurrences of tn(o) in s 0 ): 

TI
1

: (s
0

Ctn(o), ... ,tn(G)), €) .... 

TI : (SQ(~, ••• , ~) , € ) .... • •• 

Now assume (inductively) that TI has been constructed from TI
1 up 

to a certain stage: 

TI' : 

TI : - (s(~ ..... ~), w) 

e e 
where (i 1 (~), ... ,t m(~)) is the sequence associated with the configuration 

e. 
in TI', and (by assumption) each t 1 (G) has been replaced in TI by an 
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occurrence of µ of depth n - ei ( 1 :::;: i:::;: m) . Now consider the next 

transition (1 in TI
1

• There are two possibilities: 
e. 

(a) Transiticn L does not affect any of the t 1 (G) ( i = l, ... ,m) . Then 

the construction of TI is extended another step in the obvious way. 

e. e. 
(b) Transition Q: affects one of the t 1 (o), say (w.1.o.g.) t 1 (r.). 

There are two subcases: 

(i) e 1 > 1. Now since µ is guarded, the occurrences of x are 
e. -1 

not exposed in t(x) , hence the occurrences of t 1 (G) are not 
e -1 e 1 . 

exposed in t(t 1 (r.)) = t (~-:), and hence (by the Lemma {2.4.6) 
e -1 

on ransitivity of i<posure) also not in s(t(t 1 (.-~)), ••. ). Hence 

by the Basic Lemma, they are passive in J:, , and so, by the Lemma (2.4.3) 

on substitution of Passive Substatements, J, has the form: 

(
_e1 ( ) _e2( _em . 

11
1 

: ••• - (s t n , t ~), ... , t (o)), w) 

e -1 e e 
= (s(t(t 1 (o)), t 2(o), ... ,t m(o)), w) 

Q) e -1 e e 
- (s(t'(t 1 (~)), t 2(o), ... ,t m(o)), w) 

-
The sequence associated with this last configuration is the sequence 

e -1 
of occurrences of t 1 (n) (shown in the context t' (')) , followed 

_e2 - _em ,.. 
by t (. .• ), ... , t ( .. ) as before. 

Now the construction of TI proceeds with a µ-transition, followed 

by a transition .::ar1r•es2onding to Cl> (as given by the Lemr.>a on the 

Substitution of Passive Substatements): 



38 

TI: ... - (s(~, ~ •... ,~), w) 

- (s(t{µ), ~' ...• ~), w) 

- (s(t'(}1), ~ •... ,~). w) 

(ii) e1 = 1. Again, by the Basic Lemma, transition 1: has 

the form: 

n' : 
- _e2 _em 

- (s(t(.-.), t (.~), ... ,t {c.)), w) 

1 e e 
- (s(t'(~), I 2 (~) •... ,t m(n)), w) 

-
The sequence associated with this last configuration is no~ 

e e 
(t 2(n), ... ,t m(c)) , and the combination of TI proceeds \vith 

a non-standard µ-transition (converting µ to t(o): note 

that this occurrence of µ has depth n -1 ), followed, again, 

by a transition corresponding to J) : 

TI: ... - (s(~, ~ •...• ~), \v) 

.... (s(t(G), ~ •...• ~), w) 

_. (s(t' (G), ~ •...• ~), w) 

To show that TIE£~~~n(s 0 (µ;)): notice that Q is introduced into rr 

(only) from non-standard µ;-transitions, involving occurrences o; µ of 

depth n . Now we can construct a path from TI , such that TI is its 

n-truncation, by: 
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(1) replacing all non-standard µ-transitions by standard µ-transitions, 

(2) removing all Q1-transitions, 

(3) replacing the c2-transition (assuming there is one!) by a µ-transition, 

and then continuing the path arbitrarily. 

We leave the details to the reader. o 

REMARKS. (1) We believe that the mappings between ~n(s0 Cik)) and 

~(s0 (tn(G))) given by the above proof are inverse bijections. 

(2) Although guardedness was used in this proof (via the Basic Lemma), 

we cannot find a counterexample to the theorem by dropping this assumption. 

Taking Limits 

2.4.12 LEMMA. Consider a path from µ: 

'T' 
''-!./ 

(p;,e) - ...... (s,w) ... (s' ,w') ... 

@ 
... ( s" , wu ) ... ( s iu , w'u I ... 

where transition J) involves an occurrence of µ of depth d and 

transition ·:f, involves an occurrence of a descenc.;!nt of µ of depth 

d + 1 • Then w" is lor.ger than w' . 

PROOF. By the Basic Lemma, only expr,sed occurrences of µ can be involved 

in a µ-transition. Since µ is guarded, no successor of this occurrence 

of µ in is exposed, and, in fact, no descendant of this occurrence 

of µ is exposed, as long as there are only µ- and U-transitions (the 

proof of which is left to the reader). 
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Hence, before transition Cg) , there must be at least one a-transition, 

which will lengthen the word. o 

Let us write I w I to denote the 1 ength of the word w . 

2.4.13 COROLLARY. If, in a path from µ: 

(~,e) ........... (s,w) 
:J) 
.... (s' ,w') .... . . . ' 

the transition ,:p i nvo 1 ves an occurrence of µ of depth d , then 

lw! ~d. 

COUNTEREXAMPLE for an unguarded statement. Let s = µx[x;aU b]. Taking 

the sequence described in the counterexample following 2.4.8, with 

transitions involving µ-statements of arbitrary depth, we remain with 

the empty word. 

2.4.14 LEMMA. The sequence is a Cauchy sequence in 

(see Section 2.3). 

PROOF. This follows from the fact that for all TI E .P}~ ~~ (\k) , word (TI) .... word ( rr) ...............n .......,..__., 

as n .... 00 , W!iformly in n (i.e. independent of TI) in Ast. More 

precisely, by Corollary 2.4.13, for all rrE~(\k), n, k: 

d(v-1ord (TI), word +k(TI)} :::; 2-n. """""'n .....,..,,,..,.n 

Hence for al 1 n, k: 

D 
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PROOF. By Lemma 2.4.14, the limit on the r.h.s. exists. It is equal 

to (see [Ha]) 

flim w l (w ·) is a CS in (Ast,d) and wne(S0(n)[~]}. i.. 'n n n n r-

We will show that each side is a subset of the other. 

(1) c: Clear, since for all TIEJ?.~~~(µ), :!'~(TT)= lim (word (TI)). ·---- n ~n 

exists vneG0[µ] 

(Take v = word(TT) 

which extends wn and such that w = 

for any TI such that w =word (TT).) 

limv also. 
n n 

Then also 
n ,..,........... n .........,._..n 

o0[ µ] is closed (by Theorem 2.4.10), 

We can now state the main fact about recursion used in proving 

Theorem 2.4.l. 

PROOF. By Theorems 2.4.15 and 2.4.11. o 

SIMPLE EXAMPLE. Let t{x) = a·xU b, µ = µx[t(x)]. For all n, 

c
0
[tn(.:-J)] = o~n)[\k] = (aiblO~ i<n}u (anJ.}. This is a CS of sets, 

\vith limit a*bu (aw} , which is equal to rs0[\1] , as promised by 

the Theorem. 

./ 

0 
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COUNTEREXAMPLE for an unguarded statement. Let t(x) = x·aub, µ=µ.x[t(x)]. 

For all n, &
0

[ tn(c)] = 06n)[µ;] = {ba i iOs. i < n] u (.LJ. This is again 

a CS, with limit * ba tJ {ba"', .L] . However this limit is not equal to 

which is not even a closed set! 

?roe: of Theorem 2.4.1 

Finally, we are ready to prove that 

Since we are assuming that s is syntactically closed, we do not display 

the environment with b0[ s] above. However, in order to prove it, we 

must prove a more general result, in which s is not necessarily syntactically 

closed (but still guarded!), namely 

(b) t. 
1 

is syntactically closed for i = l, ... ,k, 

( c) 00 [ t; ] = x 1 for i = 1 , ... , k . 

(2.12) 

The theorem is then (of course) a special case of (2.12) with k = 0. 

The proof of (2.12} is by induction on the structure of s. All 

cases are straightforward (using Theorem 2.4.2) except for s = µ.y[s 0J 

(assuming w. Lo.g. y t- x1, ... , xk). Now 



where 

and 

where 

k 
!So [ µy [so J [ t / x i J i = 1 ] 

= Oo [ µy [ s 0 [ t / x i ] ~ = 1 ] ] 

= l im CS [r ] n 0 n 

(assuming w.i.o.g. no 
variable c1ashes) 

(by Corollary 2.4.16) 

So it is sufficient to show 

for al 1 n, by induction on n. 

For n = 0, this is clear. Assume (2.13). We must show 

0o[ r n+ 1] = Y n+ 1 ' i · e • 

k k e;
0
[s

0
[t./x.]. 

1
[r /y]]= s0[s0](-y(X./x.). 1(Y /y)). 

l i 1= n i i i= n 
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(2.13) 

But this follows by the main induction hypothesis on (2.12), with s0 

replacing s and k + l replacing k, and using (2.13) to establish 

the (k+l)-st part of condition (c). o 
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3. THE LANGUAGE £1: SYNCHRONIZATION MERGE AND LOCAL NONDETERMINACY 

For £ 1 we introduce some structure to the finite alphabet A. 

Let Cc A be a subset of so-called communications. From now on let 

c range over C and a over A\C . Similarly to CCS [Mi] or CSP 

[Ho] we stipulate.a bijection - : C ~ C with c = c which for every 

c e C yields a matching comrrrunication c There is a special action 

TE A\C denoting the result of a synchronization of c with c [Mi]. 

As syntax for s e £ 1 we give now: 

s · · = a \ c I s 1 ; s 2 I s 1 u s 2 I s 1Hs 2 I x I µx [ s J . 

Apart from a distinction between communications and ordinary elementary 

actions, the syntax of £ 1 agrees with that of £0 . The difference between 

£1 and £0 lies in a more sophisticated interpretation of s1Hs 2 to be 

presented in the next subsection. 

3 .1 The T!'ansition System T 1 

Let o;Au [.L] oe an element indicating failure, with 6 • w = 6 for all 

w . The set of streams or words is extended to 

with u,v,w now ranging over Ast(o). 

The transition system T1 consists of all axioms and rules of T0 
extended with 1 



45 

(s,w)--w for weA1nuA*·(6,J.J, 

* and for weA with: 

( 3.Jmmur'.ication) 

(c,w) -> w·o 

(an individual communication fai1s). 

(ayrichrof!iz'J.tior:) 

I ( S I ~IS 2' w) .... I ., I 
(sl l1s2' WT) 

((s1 ;s)Us2, w) -> ( ( I • '11 I Sl ,SJaS2' WT) 

((s1lls)Hs2, w) -> ( ( s; 11 s) II s2, WT) 

((s[ls 1)!1s 2, w) -> (s'll(s;l!s), WT) 

< s .
1

11 ( s 2; s) , w > - ( S
1 a ( S2; S) , WT) 

(s
1
U(s2\ls), w) ... (s'll(s2\ls), w-r) 

(s 1l[(sl[s 2), \'I) -> (se HCslls2}, w-r) 

where sl or s2 or both may be E, and where the premise of the rule 

is a synchronization-transition between s1 and s2 such that si 

stems from s1 and s2 stems from s2 . 

The last rule requires some exp1anation. First consider a transition 

of the form 
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An occurrance of a substatement s of s' 1 is said to stem ;ram s1 
(or s2) if whenever s1 and s2 were colored 'blue' and 'green' 

respectively, s would be exclusively colored 'blue' (or 'green'). 

Note that the concept of coloring is just a convenient way of tracing 

occurrences in configurations changed by transitions. For example, in 

the transition 

((c;s1 )l[Cc;s), w) .... 

s1 stems from c ;s 1 

form 

and s2 stems from c;s 2 A transition of the 

is called a synchronization-tr2nsition between s1 and s2 if a 

deduction of (3.1) starts with a synchronization axiom 

<cHc, w) .... W•'f 

( 3. 1 ) 

such that s1 has the same color as c and s2 has the same color 

as c . 

In contrast, a transition 

( ll ) ( I I~ J I ) s11s2, w .... s1us 2, w (3.2) 

is called a Z:Jc.>a.l tran3ition if a deduction of (3.2) starts with an 

axiom of the form (s,w) .... w' such that s is a substatement of either 

s1 or s2 . (Note: the "111' shown in (3.2) is introduced by the shuffle 
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rule, notthe synchronization rule, and so s = s1 or 2 2 

EXAMPLES. 1) { ( I · I\ ( ( p-) J ) ) ( I " ( J • ) c;s 1J11 Cuc ;s2 , w -. s111 c;s 2J, WT is a 

synchronization-transition between s1 = c;sl 

2 ) ( ' I ) 11 J ) 
\ C ; S l ii S 2 , WT is a local transition 

involving only the second argument s2 = (c(lc);sz of the top-level;, 1: 11 

operator. 

Finally we remark that the Initial Step Lemma (2. 1 .1) originally 

stated for T0 holds also for T1 . 

3. 2 The Operational Semantics c1 

Analogously to c0 we base an operational semantics o1 on T1 . 

fS1 is a mapping o1: £1 -. $ (o) with S{o) = p(A5 t(o)), and o1[s] 

is defined exactly the same way as o0[s] in Section 2.2. 

EXAMPLES. cs,[c] = i<>l' o,[c l[c] = £<>, -rl. G1[(a;b) u (a;c)] = 

o1[a;(bU c)] = £ab, ao}. 

Thus under G-1 , communications c always create failures - whether or 

not they can synchronize with a matching communication c . Also the two 

statements (a;b) u (a;c) and a;(bU c) obtain the same meaning under o1 

This is characteristic of local nondeterminacy s1 U s2 where the choice 

of s1 or s2 is independent of the form of the other component s2 or 

s1 respectively. A more refined treatment will be provided in Section 4. 

We remark that the Oefinedness Lemma (2.2.l) and the Prolongation Lemma (2.2.2) 

of Section 2.2 hold also for 01 . Note also that for C = cp the semantics 

o1 coincides with the previous o0 . 
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REMARK 1. It is possible to do away with occurrences of o in sets 

c1[s] in the case an alternative for the failure is available. Technically, 

this is achieved by imposing the axiom 

(oJUX=X, X'f<P (3.3) 

In the above example applying the axiom would turn the sets {oJ , 

(6, TJ dnd {ab, aoJ into (oJ, (TJ and (abJ, respectively. (For 

the latter case we take (ab, aoJ =a· ((bJu (oJ) =a· (bJ = (abJ.) One 

might argue that imposing (3.3) throughout would be more in agreement with 

the intuitive understanding of communication. The reader is, of course, 

free to do this throughout Section 3. Our reason for not doing this 

is that our main result relating 01 and ~l does not depend on it. For 

both 01 and .&1 , (3.3) may or may not be imposed (simultaneously) with­

out affecting the result of Section 3.4. 

REMARK 2. Clearly, by taking C = <P the semantics 01 coincides with 

the previous c0 . 

3.3 The Denotational Semantics ~l 

This is as in Section 2.3, but extended/modified as shown below: 

Firstly, we refine the definition of 1:: Sc(o) x g)c (6) ... Sc(o) as 

follows 

1. For X,Y ~A* U A*· (l.,cl we define 

XllY = (X lLY)U (Y ILX)U (X!Y), 
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where 

( i) X l Y = U(u 1L Y: u e XJ, J. IL Y = (.1.J, 6 IL Y = (6), e IL Y = Y, 

(a· w) IL Y =a· ((wJ[IY), and similarly with c replacing a, 

(ii) X!Y = u[u[v: ueX, veYJ, where (c,u1)[(c,v1)=T((u1Jl!(v1)) 

and uii = ~ for u,v not of such a form. 

2. For X or Y with infinite words we define 

where X(n), Y(n) are, as before, the sets of all n-prefixes of 

elements in X and Y. (This definition of XUY is from [BK].) 

The definition of ~l 

and let "Ye r 1 . We define 

Dy the clauses 

L
1 
[ a ] h) = (a} 

~l [ c] ()') = (c} 

is now as follows: Let r1 = stmv ~ § (o) 
~ c 

for a e A\C , 

for c e C , 
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Thus, apart from the clause for 
fJ 

refinement of ll 1 with respect to 

is as &0 but for the 

3.4 Relatior:.=;hip bet;,;een o1 anc .&1 

Here we do not simply have that 

holds for all guarded statements s E £ 1 . As a counterexample take 

(3.4) 

s =c. Then G1[c] = (oJ but £.1[s] = [cJ. Even worse, we can 

state: 

3.4.1 THEOREM. There does not exist any denotational (implying compositional) 

semantics fJ satisfying (3.4). 

The proof is based on: 

3.4.2 LEMMA. o1 does not behave compositional1y over l[ , i.e. there 

exists no "semantic" operator 

such that 

holds for all (guarded) s1, s2 e £ 1). 

PROOF. Consider 

Suppose now that 

s1 = c and 

llfJ exists. 

s2 =c in .£1 • Then C$1[s1 ]=o1[s2 ]=ioJ. 

Then (ol = 01 [ s1 l\s 1] = o1 [s1 ]!lfJ 01 [s1] 

;. " ' f;; 
Gl [ s l ] II <s1 [ s 2] = 01 [ s 1 u s 2] = ( 0 ' 'f l . Contradiction. 0 



We remedy this not by redefining r 1 (which adequately captures 

the operational intuition for .r1 ) , but rather by introducing an 

abs::::racticr; oper2tor a 1: ${ o) ... $( o) such that 
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(3.5) 

holds for guarded s e .r.1 . We take a 1 = ~S which for We S (o) 

is defined by 

we W does not contain any c e CJ 

U[ w • o :!Le' e C , w' e Ast ( o) : w · c1 ·w' e W 

and w does not contain any c e CJ . 

Informally, .r:.~st':s replaces all unsuccessful synchronizations by deadlock. 

It thus resembles the restriction operator ·\C in CCS [Mi]. 

But how to prove (3.5)? Note that we cannot prove it directly 

by structural induction on s, because a.1 = ~S does not behave 

compositionally (over II) due to Lemma 3.4.2. Our solution to this problem 

is to introduce a new intermediate operational semantics 0~ such that 

we can show on the one hand 

by purely operational, i.e. transition based arguments, and on the other 

hand 

for guarded s, analogously to t9
0
[s] = .1!}

0
[s] in Section 2.4. Combining 
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these two results we will obtain the desired relationship (3.5). 

For o1 we modify the transition system T1 into a system T~ 

which is the same as T1 except for the communication axiom which now 

takes the form: 

(c, w) .... w • c . 

We base 0; on Ti just as we based c1 on T1 . 

EXAMPLES. Gi[c] = (cJ, G~[c lie]= (cc, cc, TJ, 01[(a;b)U(a;c)] = 

v}[a; (bU c)] = (ab, acJ. 

We first turn to: 

3.4.3 THEOREM. for every s e £.1 . 

The proof uses the following lemma which establishes the link between 

the underlying transition systems Tl and r; 
3.4.4 LEMMA. For all s e £ 1 , s' e .t1 U (E} and w,w' e (A\C)*: 

( i) T 1 l- (s, w) .... (s' , w') 

iff 

T~ I- (s, w) ... (s' , w') 

(ii) T, ~(s, w) - (s', w6) 
I 

iff 

dC e C: Ti I- (s, w) _, (s' , we) 
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PROOF. Recall that o 'f. A and that T1 and Ti differ only in their 

communication axioms: 

(c, w) - w·6 (3.6) 

in T 1 , and 

(c, w) .... w·c 

in T* 
1 Therefore every transition in T1 which is not a comnunication-

transition, is also a transition in Ti, and vice versa. This implies (i). 

On the other hand, every communication-transition in T1 corresponds to 

(another) communication-transition in Ti which is obtained by replacing 

axiom (3.6) by (3.6*) at the root of the proof tree, and otherwise applying 

exactly the same rules in T~ as in T1 . This argument also holds vice­

versa, thus proving (ii). o 

With Lemma 3.4.4 we are prepared for the 

PROOF OF THEOREM 3.4.3. Observe that both 

Therefore we consider the following cases. 

Case 1: we (A\C)* U (A\C/" U (A\C)* • l.1.) • 

Then as an immediate consequence of Lemma 3.4.4 (i) we have 

w e 01 [ s ] if f we cs7[ s ] • 

Ca.:;,e 2: woe (A\C)* • [o) . 

Then 
WO E (S.l [ s] 

if f T 1 I- ( s ' € ) .... * w 0 

iff ac' e C, s' e s.1 u [E}: Ti ~ (s, £) .... (s", we') 
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(by Lemma 3.4.4 (ii). Note that the second alternative can arise.) 

iff (.:ic' EC: T~ t(s, e) .... *we') 

v (::Le' EC, s' E.r.1, w' EA*uAwuA* • [J.): 

T~ t (s, e) -* (s', we) A w' E Gi[ s' ] ) 

(by the Definedness Lemma 2.2.l which also holds for G~) 

iff ::tc' EC, w' EA*uA"'uA* • (.L): wc'w' EGi[s] 

(by the Prolongation Lemma 2.2.2 which also holds for ~; 

Combining Cases 1 and 2 we find 

by the definition of ~s; This proves the theorem. o 

Next we discuss: 

3.4.5 THEOREM. Gi[s] = .&1[s] for all (syntactically closed) guarded 

S E £.1 . 

Its proof has the same structure as that of 11 0
0
[s] = .l\)0[s] 11 

(Theorem 2.4.1). In fact, Theorems 2.4.10, 2.4.11 and 2.4.15 also hold 

for rsi, ~'Y 1 and £ 1 instead of rs0 , ~O and .r.0 , with identical proofs. 

* We therefore concentrate here only on the proof that &1 behaves compo-

s i ti ona l ly over II (thereby completing the proof of Theorem 2.4.2). More 

precisely, we show: 

MA ~* [ II ] - -* [ ] ll * [ ] 3. 4. 6 LEM . Gl s 1 ll s 2 - Gl s 1 Ii (91 s 2 

As an auxiliary tool we need a result recalling Apt 1 s "merging lemma" 

in [Ap2]. 



55 

3.4. 7 LEMMA (Synchronization). Vs
1

, s2 e.£:1 Vsf, s2 e £ 1 U (E)Vw, w1, w2 e A*: 

iff 

where the considered transition is a syn-

chronization-transition between s1 and s2 

such that sl stems from s1 and s~ stems 

from s2 

:le e C: 

Ti ~ (s 1, w1) .... (s'l' w1 c) and 

Ti: ~ (s 2 , w2) .... (s~, w2c) 

PROOF. By the Initial Step Lemma it suffices to prove the present lemma 

for w = w1 = w2 = e only. 

11~ 11 : Suppose T~ ~ (s 1 II s2, e) .... (s]. Ii s~, ,-) as above. By the assumptions 

about this transition, its proof in Ti starts with a synchronization-axiom 

of the form 

in and - in By the definition of T* where c occurs sl c s2 . 1 , sl 

and s' 
1 (respectively s2 and s~) are obtained from c and E (c and 

E) by successive embeddings in contexts of the form 

• ; s ' • ll s and s n . ( 3. 7) 
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for arbitrary statements s e £ 1 (by the rule "synchronization in a 

* context" of T 1 ) . 

To construct a proof of (s 1 , e) - (sl' c) 

the axiom 

* in T 1 , we start with 

(c, e) - c 

in Ti and then lift this transition to 

(s 1, e) - (sl' c) 

by successive applications of the rules of sequential composition and 

shuffle corresponding to the successive context embedding of c described 

in (3.7). This proves T~ ~ (s 1 , e) - (sl, c) . Analogously we prove 

T~ f-(s 2, e)- (s2, c). 

u<=
11

: Suppose T~ ~ (s 1, e) - (sl, c) . Let us analyze the structure of 

s1 by. investigating the possible proofs in T~ leading to a transition 

which produces 11 c 11
• Clearly such a proof must start with the communication*-

axiom 

(c,e)-c, 

and it can proceed only applying the rules of sequential composition and 

shuffle. Thus s1 has the following BNF-syntax: 

(3.8) 

1.>Jhere s is an arbitrary statement in .r.1 . An analogous analysis holds 

for s2 in Ti ~ (s 2 , e) .... <s2, e). 



To show Ti ~ (s11ls2, E:) - <siUsJ2, T), we start the proof with 

the synchronization axiom 

57 

and complete it by successive applications of the rule for synchronization 

in a context according to the structure of s1 and s2 as determined 

in (3.8). Note that we may arbitrarily 11 interleave 11 the applications 

concerning s1 with those concerning s2 . This finally yields the 

proof of 

Now by its construction this transition is a synchronization 

transition between s1 and s2 such that sl stems from s1 and s~ 

stems from s2 . This finishes the proof of the lemma. o 

We now turn to the proof of the announced lemma. 

'19 
3.4.6 LEMMA. Gi[s1 Hs 2]=Gi[s1 ]11·· 1 Gi[s2 ] forall sl's2 e.£1 . 

PROOF. 11c 11
: Let wecsr[s 1 II s2], with weA*uAwUAwuA* • (J.}. (Note 

that o's are not present in (S~ .) Then there exists a finite or infinite 

transition sequence 

th • I II such at sn' sn may be E S
I 

, n stems from s1 and s~ from 

and the following holds: 
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( i ) if w E A* then 3:n ::::: 0: s' = sH = E /\ w = w n n n 
( i i ) 

( ; i i ) 

if w E A
00 

then 

if w EA* • (.l.} then a 2:: OV 2:: n : w = w /\ w = w J. n m m n n 

We have to find words and 

To this end, we first establish the following claim. 

with w E (u}li.& (v} 
1 

Claim. There exist finite or infinite transition sequences 

. . . ' 

such that there are sequences 

0 =:;;; ko =::: kl =::: k2 s; ... ' 

0 =:;;; io =::: i1 =:;;; .Q,2 s; 

with 

s' = t' and H = tH 
n kn Sn in 

wn E (uk Jll~ (vi} ' n 1 n 

n=:::k +i, n n maxf k , l1. } n n 
s; n 

for a 11 n2::0. 

P1'oof o/ -:;;:2 Cl.J.im. By induction on n ::::: 0. 

Bas-is. n = 0. Clear: choose k0 = !1.0 = 0. 

Hypothea·£a. Assume the claim holds for n 2:: 0, i.e. there are transition 

sequences 
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T* I- (s 1' € > -+ -+ ( t~ ' Uk ) , 1 n n 

T* 
1 I- (s~, € > -+ -+ ((' 

£ 
, v 9., > 

n n 

with s' t' s~ 
II w e (ui, J 11s1( J and n :;:;; k + £ = = tQ, , ii v £ , . n kn n ···n n n n n 

s~ep n-+ n + 1: Let us analyze the final transition producing wn+l in 

(3.9): 

Note that s~+l sterns from s' 
n and 

Cude 1: This is a local transition. 

from 

Then, say, the first component is affected, i.e. 

and s" = n 

s" n • 

(Note that we may have wn = wn+l. ) By the Initial Step Lemma, also 

Combining this transition with the hypothesis yields: 

(where, if w' is a word extending w, say w' = wu, we define 

w' - \-J to be u) . 

Now we define: 

kn+ 1 = kn + 1 ' r;.,n+ 1 = 2n 

tkn+l = s~+l ukn+l = ukn. (wn+l - wn) . 

(3.10) 
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By the definition of 
t 

'I 1 
Ii ' 

and of course n + 1 ~ kn+ 1 + in+ 1 . This proves the claim for n + 1 

in Case 1. 

C::.2e 2: (3.10) is a synchronization-transition between s
1 

and s
2 

. 

Then W = w 'T n+ 1 n and, by the Synchronization Lemma, there exists some 

C EC With 

Ti I- (s~, ukn) ... (s~+l' ukn. c) ' 

Ti 1-<s~, vkn) ... (s~-rl' vkn ·c). 

Combining these transitions with the hypothesis yields: 

r* I- (sl' e) ... ... (tk ' Uk ) ... (t~+ 1' Uk • c) 
' 1 

n n n 

T* !- (sL' e) ... ... ( t" v Q, ) ... ( t~;-1 ' v Q, . c> . 1 Q, ' n n n 

Obviously, we define 

kn+l = k + 1 ' Q.n+l = Q, + 1 ' n n 

t" I e II = sn+l = sn+l ' kn+l Q.n+l 

u = Uk • c v = v Q, • c . 
kn+l n Q.n+l n 
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f; 

By the definition of U 1 , 

and of course n + 1 :$;; kn+l + in+l . This proves the claim for n + 1 

also in Case 2. 

Hence the claim holds in general. 

Using the claim, it is easy to find appropriate words u, v. The 

construction corresponds to the case analysis (i) - (iii) of w above. 

For example, we define u as follows: 

if ak~ o: s' = E ' then u = Uk e A* k ' 

if Vk;;:. 0 :!iK> k: wk < wK, then u = supk uk e A!'i 

if 3.k~ 0 VK~ k: wk = wK' then u = u k l. e A* • t L} 

Ana 1 ogous ly we proceed for v . Cl early 

To verify 

(3.11) 

we examine the cases ( i) - (iii) of w . 

In case (i) we have a finite path 

By the claim and the definition of u,v 
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- (tk ' Uk ) = (E, Uk ) = u ' n n n 

- (tl.' ' v 9., ) = (E, v l ) = v ' Q, 
n n n 

and thus (3.11) as required. 

In case (ii) we have an infinite path (3.9) producing infinitely often 

increasing words wn. By the claim at least one of the paths of s 1 

and s2 , say that of s 1 , must also be infinite, producing infinitely often 

increasing words uk, yielding an infinite u = supk uk. Now by 

definition 

Consider now the approximation wn of w. By the claim, 

~ 

wn e (uk JU l(v9.,} 
n n 

Since max(kn• 9.-n} ::;; n, we have 

uk ::;; uLnJ and v !l ::;; v[n] . 
n n 

Thus 
d.91 

'iW e (u[nJJU {v[n]} with 

This shows 

~l 
welim ([u[n]}l[ [v[n]}), 

n 

and thus proves (3.11). 



In case (iii) we have an infinite path 

with wn = wn+l = and thus w = w i . n By the claim 

r* ~ (s l' e) .... ... (t~ ' Uk ) ' 1 Kn n 

r* I- <s 2, e) - .... (t~ • v '}., ) ' 1 n n 
~ 

with wne[uk }lj 1[v 1 }. 
n n 

Moreover, due to the condition 
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11 nsk + '}., 
n n 

for all n 11 in the claim, at least one of the transition sequences of 

s1 
(or s2) can be extended to an infinite one without expanding uk 

n 
(or vi). So u = uk i (or v = v'}., i). If the other path of s2 

n n n 
(or s1) is finite, we may assume w.Q,.o.g. that t~ = E 

n 
So then we have v = v '}., (or u = uk ) . Combining these 

n n 
(3.11) 

(or t1 = E) 
kn 

facts establishes 

~ 
11

:::) 
1
:: Let we ei[s1 ] U 1ei[s2]. Then there exist words 

u e csi[s 1], v e Gi[s 2 ] with 

We have to prove 

By definition of oi there are corresponding finite or infinite transition 

sequences in r* for 1 u and v: 
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( .:1 ) -. 1.,k' Uk -+ ••• ' (3.12) 

- (t~, vQ,) ........ , (3.13) 

where (in case of finite sequences) tk and t~ may be E. Recall 

that u and v are obtained from (3.12) and (3.13) just as described 

for w by the cases (i) - (ii) in part "c" We now construct a finite 

or infinite path 

(3.14) 

wh i c h i s maxi.'71a 7, w • r. t. 

w ~ w 
n 

and which moreover satisfies the following properties: there are sequences 

such that for each n ~ 0 

max [ k , Q, ) ~ n , n ~ k + i n n n n 

The construction of (3.14) proceeds by induction on n ~ 0. 

,.., · n - 0 Dt.J,dLd: - • Choose k0 = i 0 = o . 
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Hypothesis: Assume the construction wo.rks a 1 ready up to n ;;::: 0 • If 

the configurations 

( t~ ' v 9, ) 
n n 

(3.15) 

in (3.12) and (3.13) are both final ones, i.e. with tkn = 

constructed path (3. 14) is already maximal because also 

t' 
?. 'n 

= E , the 

holds. In all other cases (3.14) has to be extended. 

Step n- n+l: We analyze the configurations (3.15). 

Case la: Path (3.12) has a transition (tk , uk ) - (t~ +l' uk +l) 
n n n n 

and 

transition 

to ( 3. 14) . 

Then we put 

= tk + 1 ' s~+ 1 = 
n 

and add the 

.L
-; .!, • 
~. Symmetric to Case la, but with regards to path (3.13) . 

Cas.:J 2a: Path (3.12) has a transition {t~, uk )- (t~ +l' uk +l) with 
n n n n 

uk +l = uk • b •·1here b e A a d b ..,. n n " n wn • ~ w. 
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(Note: b can be an elementary action a, a communication c or T. 

w • b s; w is al ways true for b = a or b = T • ) Now we put 
n 

w = w • b n+l n 

and k = k + 1 · Jln+l n+ 1 n ' = in ' s~+ 1 = tk + 1 ' s~+ 1 = s~ ' 
n 

and add the 

transition 

to ( 3. 14). 

c~se 2~: Symmetric to Case 2a, but with regards to path (3.13). 

Case 3: Path (3.12) has a transition (tk , uk) - (tk +l, 
n n n 

uk + 
1 

= uk • c where c e C , but wn ·c 'f. w . 
n n 

Since we [u}llt (vJ, we conclude that 
1 

a transition 

(t~ , VJ/, ) - (t~ +l, VJ/, +l) 
n n n n 

with 

vi+l=vi ·c 
n n 

Then we put 

and that path (3.13) has 
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and 

kn+ 1 = kn + 1 ' in+ 1 = x,n + 1 ' s~+ 1 = t~ +l 
n 

and add the transition 

to (3.14). This finishes the construction of path (3.14). We now clai~ 

that (3.14) yields w according to the definition of Cti[s 1 Us 2]. This 

is clearly true for weA*uAw due to the maximality of (3.14) and the 
t 

conditions "wnefuk }l[ 1[vi} for n;;.: o·• which link up with 
~ n n 

we {uJ;; 1£v} analogously to part 11 ~ 11 • 

If we A*· [.i.}, then at least one of u or v, say u, is in 

A*· [.L} as wel 1. Then path (3.12) is infinite. By the conditions 

11max[kn,in} ~ n for n;;.: 0 ·•,also the constructed path (3.14) is infinite. 

Thus (3.14) yields indeed w in (9i[s 1 lls 2] . o 

This also finishes our argument for Theorem 3.4.5. By combining 

Theorems 3.4.4 and 3.4.5 we finally obtain our desired result: 

3.4.8 THEOREM. (91[s] = mtr:,::£ (.&1[s]) for every guarded s e£1 . 
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4. THE LANGUAGE ~2 : SYNCHRONIZATION MERGE AND GLOBAL NONDETERMINACY 

We assume the same structure of the alphabet A as for £
1 

But the syntax for s E £2 is now given by: 

s · · = a I c I s 1 ; s 2 I s 1 + s 2 l s 1Hs 2 ; x I µX [ s] 

The symbol 11 +" denoting global nondeterminacy is taken from CCS [Mi]. 

The Transition S.,;atem 7' 2 

T2 is like T1 but without the axioms for local nondeterminacy 

and for communication ( (c, w) - wo) . Instead we have new rules for 

(lJ.-unfolding) 
(s 1, w) - (s', w) 

(s 1 + s 2, w) - (s.: + s 2 , w) 

(s2 + sl' w) - (s2 + s' , w) 

Here the word on the r.h.s. of the premise is equal to the word on the 

.ii.h.s. (= w). This implies that the premise (and hence the conclusion) 

is a recursion transition. 

(aeZe~tion by ~eticn) 

(sl' w) -. (si , vl) 

(sl+sz, w) - (s' ' vl) 

(s 2 + s 1' w) _,, (s' ' w') 



69 

Here w' = wa (and hence the premise is an elementary action transition) 

or w' =WT (and hence the premise is a synchronization transition). Also 

s1 may be E . 

(selection by synchronization) 

(s1lls2, w/ .... (s' ' WT) 

((s1 +s)[ls 2, w) .... (s.,. ., WT) 

((s+s 1 )[ls~, w) .... (s' , WT) 

(s 1[1(s2 + s), w) .... (s' ' WT) 

(s
1
ll(s+s2), w) .... (s' ' WT) 

where s' may be E, and the premise of the rule is a synchronization 

transition between sl and s2. (Note that the 11
; II and 11 \1'1 - context rules 

for U remain valid.) 

REMARKS. To explain the difference between 11U11 and 11+11
: note first that 

for s 1,s2 e5:1 n.s:2 

implies 

T l ~ ( s l U s 2 , w) .... ( s' , w' ) 

but not vice versa. The essential difference between these two operators 

(and hence between T1 and T2 ) is how communication is treated in the 
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presence of nondeterminacy. For example, the £
1
-statement 

au c 

involving local nondeterminacy may choose 11 on its own 11 between a and c, 

i.e. in terms of T1-transitions we have 

{au c, w) - {a, w) 

{au c, w) - {c, w) 

The first alternative yields 

{a, w) - W·a 

whereas a communication can always deadlock in T1 

{c, w) - c·o 

Contrast this behavior with that of the £2-statement 

a+ c 

involving global nondeterminacy. The only transition possible is 

{a+ c) - w·a 

(we say the first alternative of a+ c is selected by the action a). 

In particular, a communication c in isolation does not produce anything 
-in r2 . But in cooperation with a matching communication c in another 

parallel component, c may produce a synchronization transition: 

((a+c)l\c) .... w·T 
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(we say the second alternative of a+ c is selected by the synchronization 

of c with c). 

This form of global noneterminacy is typical for languages like 

CSP [Ho], Ada [Ad] and Occam [In]. There the elementary action a corresponds 
-

to passing a true Boolean guard and the synchronization of c with c 

corresponds to matching communication guards in two parallel components. In 

the abstract setting of uniform concurrency global nondeterminacy was first 

discussed by Milner [Mi]. However, Milner takes from the very beginning 

a communication axiom corresponding (in our setting) to 

(c, w) - w·c (4.1) 

This enables him to state very simple transition rules for global non­

determinacy. We prefer not to adopt Milner's approach for T2 because(4.l) 

does not correspond to the operational idea of CSP, Ada or Occam where a 

communication c proceeds only if a matching communication c is available. 

Finally, note that in case of a u-term, global nondeterminacy 11+11 allows 

us to unfold the recursion before selecting any alternative. For example, 

holds in T2 . 

Gi 2 

(ux[a] + c, w) - (a+ c, w) - w·a 

1 ·~ '±. 6 7;,._,; Ope:t'<..r.tiona."l Semantics G.; ._, 

with 

.1:1 . The definition of c2[ s] is as for 00 and c1 , i.e. 

as for 
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However there is now an additional fourth clause in the definition of 

word (TI) , name 1 y: 
~ 

(d) if TI is finite, and of the form 

where no further transition (sn' wn)-(s1 ,w1) is deducible in 

T2 , then ~(TI) = ~"n • o . 

The pair {sn, wn) in (d) is called a deadlocking configuration. 

(Such configurations did not exist under T0 or T1.) Note that by (d) 

the Defi nedness Lemma 2. 2. 1 remains va 1 id for lS2: c2[ s ] F cp for a 11 s e J:2 . 

The following examples mark the differences from 01 . 

EXAMPLES. <S2[c]= (o}, c2[cl[c]= [T}, cs2[(a;b)+ (a;c)]= (ab, ao} , 

o2[a;(b+c)] = [ab}. (Remember, <S1[a;(bUc)] = <S1[(a;b)u (a;c)] =[ab, ao}.) 

Because it is important to see the difference between the last two 

examples, we shall show how they are derived: 

( i) 02 [ (a ; b) + (a ; c) ] = [a b , a o} . 

PROOF. Note that 

(a;b, e) - (b, a) - ab 

and 

(a;c, e) - (c,a) 

are deducible. So by selection by elementary action we obtain also 



{(a;b) + (a;c), e) .... ab 

and 

{(a;b) + (a;c), e) .... {c, a) . 

So, since no futher deductions can be made from {c, a), we get by 

the definition of G2: t.S2[(a;b) + (a;c)] = [ab, ao}. 

( i i ) G2 [ a ; ( b + c ) ] = [ a b} • 

PROOF. First note that 

{a;(b+c), e) .... {b+c, a). 

Since we have that 

{b, a) .... ab , 

we also have 

{b+c, a)-ab, 

and therefore 

(a;(b + c). e) .... ab. 
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Since we cannot deduce anything from (c, a), ab is al 1 we can deduce 

from {a;(b+ c), e). Consequently, cs2[a;(b + c)] = (ab}. 

Thus with gl oba 1 nondetermi nacy 11 + 11
, the statements s 1 = (a; b) + (a; c) 

and s 2 = a; ( b + c) get different meanings under cs2 . This difference can 

be understood as follows: If s 1 performs the elementary action a , 

the remaining statement is either the elementary action b or the 

communication c . In case of c , a deadlock occurs since no matching 

communication is available. However, if s 2 performs a , the remaining 

statement is b+ c which cannot deadlock because the action b is 
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always possible. Thus communications c create deadlocks only if 
-neither a matching communication c nor an alternative elementary 

action b is available. 

4. 3. The Denotational Semantics ~2 

We follow [BZl, BZ2, BBKM] 

semantics for £2 . Let, as usual, 

in introducing a 

i ; A and let A be short for 
.1. 

AU [i}. Again, we assume a special element -r in A. Let the metric 

spaces (Pn' dn), n;;::Q, be defined by 

P0 = P(A ) , lP +l = P(A U (A x lP ) ) 
i n i n 

where p( ·) denotes a 11 subsets of ( ·) , and the metrics dn wi 11 be 

defined in a moment. Let IP = U P • 
w n n Elements of IP 

w 
are called (finite) 

processes and typical elements are denoted by p,q, ... Processes p 

in IPn are often denoted by pn,qn, ... 

n such that p E IP n its degree Note 

a process has elements for which we use 

For p e IP we ea 11 the 1 east 
w 

that each process is a set; hence, 

x ,y' ... (not to be confused with 

x,yeStmv). For each p( E p ) we define its n-th projection p(n) as ,..,..,..,...,, w 

follows: 

p(n) = (x(n) i x e p}. n = 0 '1 ' ... 

x(n) = x if X E A 
.1. ' 

n = 0 '1 ' ... 

'a n = 0 
[a,p](n) = t~:. p(n-1)], n = 1,2, ... 



We can now define dn by 

with 

i"Q 

da(Pa· Pa) = I 1 
·-

-oo 
2 = 0 as before. 

if Po = p; 

if Po F Po 

= 
2
-sup[k I P~+l (k) = P~+l (k)} 
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On Il' w we define the metric d by putting d ( p ,q) = dn ( p ,q) where 

n = max{degree{p), degree(q)). We now define the set IP of finite and 

infinite processes as the completion of Il' with respect to d. A 
w 

fundamental result of [BZ2] is that we have the equality (more precisely, 

the isometry) 

Examples of finite elements of P are [[a,(b1}], [a,(b2}] and 

([a,(b1,b2}]}. The following trees represent these: 

Thus, the branching structure is preserved. An example of an infinite elementof 

IP is the process p which satisfies the equation p = (a,p], [b,p]} . 

Processes are like commutative trees which have in addition sets rather than 

multisets for successors of nodes and which satisfy a closedness property. 
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An example of a set which is not a process is (a,[a,(a}],[a,([a,[a}]J] ... }, 

where this set does not include the infinite branch of a's. 

REMARK. We observe that the collection of all finite and infinite trees 

over A (where J. occurs only at the leaves), modulo Park's equivalence J. 
relation of bisimulation [Pa], is isomorphic to lP. 

The empty set i3 a process and takes the role of o • 1~ote that 

in the previous linear ti~e (LT) framework ~ cannot replace o since 

by the definition of concatenation (for LT) we have a·~=~ which is 

undesirable for an element modelling failure. (An action which fails 

should not cancel al1 previous actionsl) In the present branching time 

framework, [[a,~]} is a process which is indeed different from (and 

irreducible to) ~ . 

The following operations on processes are defined. We first take the 

case that both processes are finite, and use induction on the 

degree(s) of the processes concerned: 

concatenation o: po q = U[x o q l x e p} , where J. o q = J., 

a o q = [a,q], [a,p1
] o q = [a,p1 o q] and similar clauses with c replacing a . 

. 
union U: p U q is the set-theoretic union of p and q. 

merge !I: p~;q = (p ll_q)U (q\Lp) u (p/q), where p il_ q = U(xli_ql x e p}, 

J. ~ q=J., a~q = [a,q], [a,p'J;~q = [a,p'llqJ and similar clauses with c 

replacing a. Moreover, plq=U{xjy: xep,yeq}, where 
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[c, P1 J i [c, q' J = H 'f , p' liq']} 

[c' p'] i q' = [ ['f' p']} 

c I [c ,q' J = f ['f' q']} 

cl c = f'f} 

and x I y = <l> for x ,y not of one of the above four forms. 

For p or q infinite we have (since P is defined by completion 

of lf\,) that p =limn pn, q = limnqn, pn and qn finite, n=Q,1, ... , 

and we define p ~ q = 1 imn(Pn QJL qn) , where ~et· , U, lll . It is now 

straightforward to define s2: guarded .1:2 - (r2 - IP), where i'2 = itJ!L~ - P, 

by following the clauses in the definition of s0 , s1 . Thus, we put 

s2[ a]()') = [a} 

s2 [ c ] ( y ) = [ c} 

s2 [ x] ( y) = y ( x) 

s2[ vx [s]] (y) = l im; P; , where Po= [l.} and 

pi+ l = S2 [ s ] (y ( p ;f x) ) • 

1>fu-:::i.tic "Tiutandis, the contractivity results for s0 , S, hold again. 
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4.4 Relationship between ~2 and ~2 

For J suitable abstraction operator a2 we shall show that 

(4.2) 

holds for all guarded s e£2 . We define a 2: IP-+§ (o) in two steps: 

l . First we define a res tri et ion mapping .r:.~~ti:lP : P _, IP . For p E lP w 

we put inductively: 

~lP(p) = (a I aep and a;c} 

U[[a •.i:.!:.~ti:w ( q)] I [a ,q] e p and a 'f. C} 

For p e P\ P w we have p = 1 imn Pn , with Pn e P n , and we put 

EXAMPLE. Let p = ~2[ (a+ c )[I ( b + c}] = ~2[ (a; ( b + c)) + ( c; ( b + c)) + 

(b;(a+ c)) + (c;(a+ c)) + T]. Then r.~~tr:,p (p) = ([a,(b}],[b,[a}],T} = 

.&2 [ (a ; b) + ( b ; a) + 'f] . 

2. Then we define a mapping streams: iP-+ § (o). For p e P we 
·------'"' c w 

put inductively: 

\ ( a t a e p} u 

streams{p} = <u(a ·s_treams(q) I [a,q]ep} if p -f <P 
~,.,,....,,,..,. ~ .......__ ......... >J 

i L loi lf p -f <!> 
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Note that a· streams(q) itself is a set of streams. For p e lP\lP ,......, ____ .., w 

streams{p) = lim (streams(p )) . 
~ n ~--..,..., n 

Note that 11 1imn 11 above is taken with respect to the metric on $c(o) 

[see Section 2.3]. 

EXAMPLE. With p as above we have streams(p) = [ab, ac, cb, cc, ba, be, ea, cc, -r} 
....... -- ... ~-w 

REMARK ON NOTATION. Above, and at some other places in this subsection, 

we are using the metavariables 11 a 11
, 

11 b11 to range over all of A (instead 

of A\C, according to our convention). We trust that this abuse of 

notation will be clear from the context and not cause confusion. 

Finally we put 

in (4.2). Similarly to a 1 , we cannot prove (4.2) directly by structural 

induction on s because a2 does not behave compositionally. Thus again 

the question arises how to prove (4.2). Note that here things are rather 

more difficult than with cs1[s] = a 1(.i.1)1[s]) because the semantic 

domains of G1 and ~l are quite different: linear streams vs. branching 

processes. 

Our solution to this problem is to introduce 

a new intermediate semantic domain R , 

a new intermediate operational semantics R ' 

a new intermediate denotational semantics ~2 on IR, 
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and then prove the following diagram: 

restr ..... ~JR readies 
~ 

= streams o restr 
·------~ ,.... ...... _.., 1P 

= restr o readies ............... ..,R ,.... .......... ~ 

wnere ~ lR . and readies 
~ ........ _.., are two further abstraction operators. 

The; Intermediate Ser.zantie Do"":ain lR 

We start with the intermediate semantic domain. To motivate its 

construction, let us first demonstrate that a simple strecun-like variant 

is not appropriate as intermediate operational semantics 

here. Indeed, if we base G~ - similarly to 0i - on a transition system 

obtained by just adding the axiom 

{c, w) .... w • c 

to T 2 , we cannot retrieve G2 from cs2 As a counterexample consider 

the programs s1 = (a;c1) + (a;c2), s2 = a;(c1 + c2) and s = c1 . Then 

02 [ s 1 U s ] = [a T , a o} f. [a T} = 192 [ s 2 Us ] , but G~ [ s 1 B s] = 19~ [ s 2 H s] . 

Thus whatever operator a we apply to Gz[ ·] , the results for s1 Us and 

s 2 ~is wil1 turn out the same. Thus we cannot retrieve 192 from this o2 
To solve this problem, we introduce for 192 a new semantic domain 

which, besides streams w E Ast, also includes very weak information 

about the local branching structure of a process. This information is 
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called a readyset or deadlock possibility; it takes the form of a subset 

X of C, the set of communications, and may appear (locally) after every 

word we A* of successful actions. Informally, such a set X after w 

indicates that after w the process is ready for all communications c e X 

and that deadlock can be avoided only if some communication c e X can 

synchronize with a matching communication c in some other parallel 

component. Thus X can be seen as a 11more informative o 11 
• This view is 

confirmed by the fact that there will be no ready set X after w if the 

process can do an elementary action a e A\C and thus avoid deadlock on its 

own. With some variations this notion of a ready set appears in the work 

of [BHR, FLP, OHl, OH2, RB]. 

Formally, we take ~ = p(C) and define the set of streams ~ith ready 

·sets as 

where A*: ~ denotes the set of a 11 pairs of the form w: X with we A* and 

Xe~. For xe~, letX=lcl ceX}. As intermediate domain we take the ready 

domain 

lR = P(Ard) . 

Just as we did for Ast and Ast(o), we can define a metric d on Ard 

and a corresponding metric d on lR. This d turns the collection 

IR c: iR of closed subsets of Ard into a complete metric space (IR d) c - c' . 

The Intermediate Operational Semantics 0; 
We now turn to the intermediate operational semantics IR . 
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It is based onthe following transition system T2 which consists of 

all axioms and rules of T2 extended (for weA*) by 1 : 

( . . *) comrmm-icat-ion 

(c, w) - w • c 

(ready sets [or: deadlock possibilities]) 

( i) 

( i i ) 

(ii i ) 

(iv) 

where 

(c, w) - w:[c} 

(s 1, w) - w:X 

(s 1;s2, w) - w:X 

(s 1, w) - w:X, (s 2, w)-. w:Y 

(s 1 +s2, w)-w:(XUY) 

(s1, w) - w:X, (s 2, w) - w:Y 

(s1[ls2, w) - w:(XU Y) 

x nv = cp • 

Axiom (i) introduces ready sets or deadlock_possibilities, and rules (ii)-(iv) 

propagate them. In particular, rule (iii) says that s1+s2 has a deadlock 

possibility if s1 and s2 have, and rule (iv) says that s1[ls2 has a 

deadlock possibility if both s1 and s2 have, and no synchronization is 

possible. 

Since the rules (iii) and (iv) have two premises, deduction in r; 
need not start any more from a single axiom. But every deduction of a 

transition 

( s , w) - ( s"., w' ) 
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or 

(s, w) ... w' 

or 

(s, w) ... w':X 

in T~ is such that all its axioms are instances of the same scheme. Thus 

similarly to Section 2.4 (see TYPES OF TRANSITIONS) we may talk of an (Ax) -

:;ra:n.=;ition if (Ax) is the name of the axiom. Note also that the Initial 

Step Lemma 2.1. 1 remains valid for T2. 

The intermediate operational semantics 

rr.* , lR ""2: ~2 ... 

is defined in terms of T2 just as 02 was defined in terms of T2 . In 

particular, for each finite path n of the form 

we include ~(n) = w:X in <S~[s]. 

EXAMPLES. (i) 02[a;(b+ c)] = [ab,ac}. 

PROOF. We explore all transition sequences in T~ starting in (a;(b+ c), e): 

( l ) (a, e) ... a 

(2) (a; ( b + c), e) ... (o.,. c, 

(3) (b, a) ... ab 

(4) (c, a) -+ ac 

"' a: (c} 

(5) (b + c, a) ... ab 
,,, "' ac 

a) 

(elementary action) 

((1), composition) 

(elementary action) 

(communication) 

((3), (4), global nondeterminacy) 
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No more transitions are deducible for (b+ c, a) . 

(6) Thus 

(a;(b+ c), €) - (b+ c, a) - ab 

ac 

are all transition sequences starting in (a;(b+ c), €). 

This proves the claim. o 

(ii) t,~[a;b+ a;c] = (ab, ac, a:(c}). 

PROOF. Here we only exhibit all possible transition sequences in T~ 

starting in (a;b+ a;c, €): 

(a;b+a;c, €) - (b, a) - ab 

"' (c, a} - ac 

"' a:(c} . o 

Note that we can prove (a;b+ a;c, €) - (c, a) and (c, a) - a:(c}, and 

therefore (a;b+a;c, €) .... * a:[c}. However, we have (a;(b+c), €)-(b+c, a), 

but we cannot prove (b+ c, a) .... a:(c}. {By rule (iii) of ready sets this 

would only be the case if we could prove, besides (c, a) - a:(c}, also 

(b, a) - a:X for some X ::=: (c} . Since the only possibilities for X are 

<!> and (c}, this cannot be proved.) Consequently, (a;(b+ c), €) +*a:[c}. 

We start by defining semantic operators 
~* 

2 i/ 
+ 2 and 

r-* 
:·""'2 
ii on 

IRc. (Again we omit superscripts ~2 whenever possible.) Let w1 ,w2 

e 1R and c ,. 
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w1 ;W2 = (w1 • w2 I w1 e w1 and w2 e w2} 

u (w, :X I wl:X e w,} 
U (w1 ·w2:Xjw1 ew1 and w2:xew2} 

~~ l + W 2 = ( w i w e w1 U w2} 

U (e:: (XU Y) I e:: X e w1 and e:: Y ; w2} 

U ( w : X I w f- e: and w : X e W 1 U W 2} 

where w1 ll_w2 = U(w1 !L w2 j w1 ew1} with e: ll_w2 = w2, (a·w1)1l_W2 =a·((w1lUW2), 

(a·w1:X)il._W2 =a·((w1:X}llW2), .L ll_W2 =(.L}, e::X ll_W=?,and w1 I w2 =u((w1 I w2)!w1e w1 

and w2 e w2} with (c·u1) I (c·u2) = T·((u1}U(u2}) and w1 I w2 = 4> for 

w1 ,w2 not of the above form, and 

w, #W2 = (e::XUY I e::xew, and e::YeW2 and xnv = <j>}. 

(b) w1 ,W2e:11\ and w1 ,w2 contain also infinite words. Then extend 

the previous definitions by taking limits in lRc. 

Now we define 

with r~ = Stmv -+ 1R 
L. .....,....,..., c in the usual way: 

l. L2[ a] h) = (a} 

2. tz[ c] ("() = £ c' e:: i c}} 
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3. ~2[s 1 op s 2] {y) = k~[s 1 ] ('()op ~~[s2 ] {y) 

4. ~2[ x ] {y) = y{ x) 

5. .&2[11x[s]] (y) = limi Wi' where w0 = (.!.} and 

Wi+l = ~~[s] {y(W/x)). 

1 • '" , - * F21;ati.ng \:1
2 

ana '512 

The relationship between c2 and G~ is similar to that between 

c
1 

and 8~ in Section 3.4. In fact, we shall prove: 

Here ~R: JR .... § (6) is a restriction operator similar to 

r.~~tr:.s;: § (o) .... § (o) of Section 3.4. For We R and we Ast we define 

~JR (W} = (w I we W does not contain any c e C} 

U(w·6 ax c b.: w: x e w and w 

contain any c e C 

does not} 

For Theorem 4.1 we need the following result concerning the transition 

systems r2 and T~ (compare Lemma 3.4.4). 

4.4.2 LEMMA. For all s e .s:2 , s' e .r2u (E} and w,w' e (A\C)*: 

" 

( i ) T 
2 

l- ( s , w) .... ( s' , w' ) 

i ff 

T; l- ( s , w) .... ( s' , w' ) 

(ii) (s, w) is a deadlocking configuration for r 2 

iff 

ax c C: T~ l- (s, w) .... w: X • 
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PROOF. ad (i): 11~11 is clear because T2 is an extension of T2 • For 

11~ 11 note that, by the assumption w,w' e (A\C)*, none of the new axioms 

and rules in T2 was used in proving the transition 

(s, w) .... (s! , w') . 

Hence it can also be proved in T2 . 

, { .. ) 
Q._l l l : First we analyze the structure of deadlocking configurations 

(s, w) in T2: their statements s (with possible subscripts 1 and 2) 

have the following BNF-syntax: 

s:: = c for arbitrary c e C I 

s1 ;t for arbitrary t e .L2 I s1 + s2 I 

s1Us 2 where there is no synchronization-transition 

possible between s1 and s2 . 

Thus in a deadlocking configuration (s, w) all the initial actions of s 

are communications and in the case of a shuffle s1Us 2 no matching initial 

communications (leading to a T-action) can be found in its components s1 

and s2 . We can express this property more precisely by introducing a 

pa rt i a 1 function 

part 
-- r:, = p(C) 

such that {s, w) is deadlocking iff dead(s) ,..,...,...,.., is defined. Its definition 

runs as fo 11 ows: 



88 

( i ) dead(a) is undefined, for a E A\C ,...,..,...,.., 

( i i ) dead(c) = (c} , ,..,.....,..,.. for C EC 

(iii ) ~(s 1 ;t) = ~{sl) 
•' 

(iv) ~(s.1 + s2) = ~(s 1 ) U ~(s2 ) 

~(s 1 ) u ~(s2 ) , 

( v) ~{s1lts2) = if ~(s1 ) n~(s2 ) 

undefined, otherwise . 

Now we can prove (ii): 

(s, w) is a deadlocking configuration in T2 
iff dead(s) is defined 
~ 

{by the analysis above) 

iff sx c C: T2 t (s, w) - w:X with X = ~(s) 

(by the rules (i)-(iv) for ready sets in T2) . o 

= cjJ 

Intuitively, Lemma 4.4.2 (ii) says that the ready set rules (i)-(iv) 

of T~ are complete for detecting deadlocks. Using Lemma 4.4.6 we can 

now give the 

PROOF OF THEOREM 4. 4. 1. Let s E £ 2 . Note that 

We distinguish the following cases. 
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Case :: we (A\C)*u (A\C)
1
"u (A\C)* • (.L}. 

As an immediate consequence of Lemma 4.4.2 (i) and the definition of 

~iR we have: 

Ca3e ::.: woe (A\C)* • (o} . 

Here we have the following chain of equivalences: 

iff (s, w) is a deadlocking configuration in T2 

iff :::x e c.: T~ ~ {s, w) ... w:X (by Lemma 4.4.2 (ii)) 

iff ~Xet;: w:Xet92[s] 

iff wo E -~~~~r:_.R (lS~[s] ) . D 

' .r * i.t.., ana J.lf? 
6 u 

The relationship between L2 and i.tz is given by an abstraction 

opera tor ~: IP- lRc . For p = {a1, ... ,am, [b1 ,q 1], •.. , [bn ,qn]} e lP _ 

we put inductively 

readies(p) = (a 1 , .•• ,a }U 
~ m 

u [b. • readies{qj) I j = 1, ... ,n} 
J~ 
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For p e IP \IP we have p = 1 im p , with p e IP , and put 
w n n n n 

where 11 1 im II 
n 

readies(p) = lim (readies(p )) 
·------ n ·----·- n 

is taken (as before) w.r.t the metric on ll\. 

4.4.3 THEOREM. ~z[ s] = .r:.t:.~~~~(.©2 [ s] ) for all guarded s e £ 2 • 

The proof follows from: 

4.4.4 LEMMA. The operator readies: JP .... lR is continuous and behaves .--.-.... c 

homomorphically, i.e. for QQ.E (+, ; , U} and p, p' e IP , 

PROOF. Continuity is established by a variation of standard reasoning 

as in [BBKM], [BZ2]. For the same reason it suffices to prove the homo-

morphism property for p' p' E JP w 
only. 

assume 

with m, n, m1 
, n1 ~ 0 . 

C-;,ae 1: ,QQ = + 

= 

£2 
readies ( p + p' ) = readies ( p u p1 

) 
~ ~ 

f J 1-J 1. a -1 , ••• , am, a 1 , .•• , am U 

U£bi • JJ:~dj_e:_~(q;) I ; = 1, ... ,nl u 

l}(b'. • readies(g'.) l j = 1,. .. ,n'}u 
J ~ J 

We proceed inductively and 

(e: (X \J Y) X = (al' .. .,am' b1, ... ,bn} :'.: C ,l 
Y = (a,, ... ,a~:_, b,,. .. ,b~i}::: cJ 



= fw I we readies{p) U readies(p')} ,....,"""""""_...;"'Ow>J ,.... .... _ ........ 

Uie:(XUY) I e:Xereadjes{p) and e:Yereadies{p')} 
,.._ ...... ~ .. J ...... ~~ 

U(w:X I w i e and w:X e readies(p) U readies{p')} 
~~· ,.... .. ~--...~ 

t;* 
readies(p) + 2 readies{p') 
~............. 1""1'tw•-~ 

= 

c.:xse 2: Q£ = ; 
f, 

readies ( p ; 2 p' ) = readies ( p • pi.) 
~ ~ .......... .., 

= .r:.~ciJ!sJ ([a1 ,p'], ... ,[am ,p'] , 

[ b 1 ' q 1 • p' J ' · · · • [ b n ' q n • p' ]} ) 

= [e:X IX= {a1 , •.. ,a, b1, .•. ,b} c: C}u m n -

li£a; ·~(p') i i=l, ... ,m}U 

,,{oj • .r:.~m(qj • p') l j = 1, ... ,n} 

= [e :X 1 ... } u Uia; • r~d~~(p') I ... } u 
[)* 
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I l[o. • (readies(qj) ; 2 readies(p' )) I ... } - J ,.._~ ~--->.,# 
(by induction) 

= (e :X l ... } U _.[a. • rea_9je_?(p') I ... } U 
1 ·---~~-

[/ 
·,((b.· readies(qj)) ; 2 readies(p') I ... } ..... J .~~ ,...,..._ ...... tJ 
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= ((e:X IX= (a 1, ••. ,a, b
1

, .•• ,b} c C}u m n -

f)* 

!_Xbj • readies(qj)}) 2 readies(pJ) 
,..., ............. ...r"oJ ,...,,.._ ........... w ..., 

£)* 

= readies(p) 2 readies(p') 
~ ~ 

n 3 !i .._as.z : 2.P, = u 

By definition 

p ll PJ = ( p ll_ PJ ) u ( PJ ll_ p ) u ( p I PJ ) 

where 

u J p -· p = {[a i , pJ ] I i = l , .•. ,m} 

U H b j , q j H PJ ] I j = l , • • • , n} ' 

PJ [_. p = H ak , p] I k = l , ••• , mJ } 

u H b~ , q~ HP J I i = i , ... , nJ l , 

p I PJ = (1- d:c e C: c e la 1 , ... , am} l 
- fJ J }: and c e 1,a 1 , ... ,amJ j 

1 3:c e C : c e (a 1 , ... , am} 

and c = b' and 
,Q., 

J ' Q.E{l, .•• ,n }j 

l 
> 

ac e C: c e (al , ... , a~, } 

and c =b. and 
J 

j E t l , ... , n} j 
', 

ac e C: c = b. and c = b' 
J Q, 

and je(l, ... ,n} 

and ie(l, ... ,n'} I. 
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Thus 

= le: (XU Y) : X [', Y = <P where 

X = la1 , ... ,am' b1 , ... ,bn} :: C , 1 
Y = (al , ... , a~J , bl , ... , b~J :: C J 

U readies(p ~ pJ )\ e :L> ,..... ... -~-...._.., 

U readies(p i pJ) \ e :6 
~ 

= readies(p) # readies(p') 
rw.;r-.. .. --oJ ,.._,.........,~ 

U readies ( pJ ) ll._ readies ( p) 
~ ......... ~ 

U readies{p) I readies(pJ) ,...,....,...,,_,......,,, ...... ~ 

{by definition of readies and induction) 
........... ,..•'OJ 

L* 
= r~~dj~,?{p) H 2 rea_9ies(pJ) 

,.,,._~ -4"!b~ ,...., - -- ...... -

Here we must simultaneo~aly prove, by induction: 

readies(p l.L_p')\e:l1 = readies(p) ll_readies(pJ) 
,..__.,.. ___ >J ,,..... ...... ..... OJ ...................... .... 

~(p\p')\e:l1 = ~(p) l~-~~~(pJ) 

readies(p :f PJ} ·--..:-----""" 
= readies{p)#readies(p'} 
~ ............ ,..,,v 

The details are left to the reader. o 
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Here we discuss 

4.4.5 THEOREM. G2[s] = h;[s] for every guarded s e£2 . 

Again, its proof fo 11 ows the structure of that for 11 00[ s] = ~0[ s] 11 

(Theorem 2. 1 ). In particular, Theorems 2.4.10, 2.4.11 and 2.4.15 

valid with -* t;,* and rl.:2 in place of ta , f; and £ Thus G2 ' 2 0 0 . 

remains to show compositionality of * G2 ' analogously to Theorem 

but now involving the ready domain IR and global nondeterminacy 

4.4.6 THEOREM. For2!?,ef+, ;,U} and s1,s 2 es_, 
i::j* 

2 ~k 

82[ s1 21?. s2] = o2[ s1 ] .2.e. 2 cs;[ s2 ] • 

PROOF. Ccse 1: 21?, = + 

remain 

it 

2.4.2, 

11+11 • 

First we state some simple facts about the rule of global nondeterminacy 

in the transition system T2: 

(i) µ-unfolding: 

T; j- ( s l + s 2 , € ) .... ( sJ , € ) 

iff 

v as2 E J.:2(sJ = sl + Sz A T2 I- <s2, €) .... <s2. €)) 

(ii) selectionbyanaction beA: 

T2 ~ ( s l + s 2 , € ) .... ( sJ , b) 
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iff 

stems from s1 /\ T2 ~ (s 1 , E:) - {s' , b)) 

stems from * s 2 /\ T 2 I- ( s 2 , € ) - ( s' , b) ) 

(iii) ready sets: 

iff 

ax,Y ~C: z = XUY 

/\ T~ ~ ( s l, €) - E: : X 

AT~ I- (s 2 , E:)-E::Y 

Let us now analyze the possible elements of CS~[ s
1 

+ s2] • These are of 

the form E: :z or b ·w with be A and ~ e Ard = As tu A* :l:l • (Note that 

E: ~ 19;[ s] for any s e £ 2 . ) 

Subcase 1.1: E::Z 

( € : l) E (9~ [ S l + S 2] 

iff T2 ~ (s, + Sz· €) -* E::Z 

; ff ax , Y ~ c : z = x u v 

/\ T2 ~ ( s I , E: ) - * € : Z 

/\ T2 ~ ( s 2 ' € ) - * € : y 

iff 3:X, Y ~ C: l = XU Y J\ ( €: X) E 02[ S l ] 

/\ ( € : Y) E G2 [ S 2 ] 

(by facts (i) and (iii) above) 
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Subcase 1.2: b·W 

b·w E Gz[Sl + s2] 

iff as' e £ 2 u (E}: 

T2 ~ (s 1 + s2 , e) -* {s' , b) A we '9~[ s' ] 

(by convention, we put here e e 02[E]) 

iff as' E £2 U (E}: 

(T2 ~ (s l' e) - * (s' , b) A we o~[ s' ] } 

v n2 ~ (s2' e) -* (s' , b) A W E 02 [ s' ] ) 

(by facts (i) and (ii) above) 

By the analysis in Subcase 1.1 and 1 .2, we finally have: 

(92 [ s l + s 2] = ( e : ( X U Y ) e : X E 02 [ S l ] 1 
A e: Y E '92[ s2 ] j 

U (w:XeA*:t. w-/ e A } 

w:X e 02[ s1 ] U 02[s2 ] 

tt* 
. *[ ] J.. 2 r-*[ ] = G2 s 1 j \:72 5 2 • 

Ca • ' ". 00 = . 
Ot-.. £.J • ;::,.;;:_,, ' 

Straightforward. 



Case 3: £e_ = U 

First observe that the Synchronization LemQa 3.4.7 also holds for £2 

and T~ instead of .1: 1 and T~ . Note that the rules for 11 gl oba 1 

nondeterminacy: selection by synchronization" in T~ are needed here 

because the contexts considered under (3.7) and (3.8) in the proof 

of Lemma 3.4.7 may now contain 11 +11
• E.g. in (3.8) we how have: 

s1:: = c I s1 ;s I s1 Us I slls1 I s1 + s I s + s1 . 
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Using the Synchronization Lemma we can prove, analogously to Lemma 3.4.6: 

s* 
weo2[s 1 Hs 2] iff auers;[s 1 ],ve<S~[s 2 ]: we(u}ll 2 (v} (4.3) 

In the process of proving (4.3}, we obtain: 

iff * au , v e A ax • Y ::: c : 

/\ T~ l-(s2 , €)_,,* (s2, v) 
£;* 

/\ w e ( u} H 
2 '( v} 

(compare Lemma 3.4.6). Furthermore we have 

(4.4a) 
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* Vs e .r.2 vw: Z e A : t::. 

w:Z e cs~[ s] iff as' e J:2: T~ ~ (s, s) .... * (s', w) 

/\ T~ ~ ( s1 
' € ) .... € : z 

(4.4b) 

Moreover we have, a·s an immediate consequence of the rules for ready sets 

in T2 (4.4.2), especially rule (iv): 

/\ T~ ~ (s 1 , s) .... s: ,< 

/\ T2 ~ (s2, s) - s:Y 

Combining (4.4a), (4.4b) and (4.4c} yields 

W: Z E 0~ [ S la S 2 ] 

iff au: X e 0~[ s1 ] , v: Y e 0~[ s2 ] : 

EJ* 
we (u}U 2 {v} /\Z = XuY /\XOV= <I> 

\Jith (4.3) and(4.5) we have indeed 

This finishes the proof of Theorem 4.4.6. o 

(4.4c) 

(4.5) 

With Theorem 4.4.6 also our argument for Theorem 4.4.5 is completed. 
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"Putting It All Together 

Before we can prove the desired relationship between o2 and t 2 

(cf. (4.2)), we need one more lemma. 

4.4.7 LEMMA. For every peIP, 

~tre:.~ Cr:.~tr.rp ( P)) = re:.~tr:.JR (~dJ..~( P)) · 

PROOF. By limit considerations it suffices to prove the equation for 

p e IP . We proceed inductively and assume 
l..ll 

with X =df (a1 , ••• ,am,bl , ... ,bn} . Then the Lh.s. yields 

~IP (p) = 

and thus 

ia. I a. e p and a. ~ C} 
1 1 1 

[b., q.] e p} 
J J 

and bj ~ C} 

(a. I a. e p and a. ~ C} U 
1 l 1 

[b.,q.]eP1 
J J if x cf:. c 

and b.~c J ) 

(6} if Xc:C 
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Now the r.h.s. yields 

readies ( p) = ,..,..,,..,..,. 

U £a. I a. e p} U 
1 1 

and thus 

J J if x ~ c 
[b.,a.] e p} 

and b j ; C 

if x c c . 

By induction, we have i.h.s. = r.h.s. o 

Now we are prepared for the main result on £2 : 

4.4.8 THEOREM. C9
2

[ s] = et2 (~2[s] ) for all guarded s e £ 2 , where 

et2 = .~ti:_e:_~n:_~ 0 ~IP · 

PROOF. Theorem 4.4. l states t92[ s] = .'C~~·IR (~~[ s]) for s e £2 , 

Theorem 4.4. 3 states i)~[ s] = !.~~c!,~e:,~ (~2[ s] ) for guarded s e £ 2 , 

and Theorem 4.4.5 states 02[ s] = i)2[ s] for guarded s e £ 2 . Thus 

we obtain 

Using Lemma 4.4.7 completes the proof of this theorem. o 

THE END 



APPENDIX: DIAGRAM OF RESULTS 

r
0

: Shuffle and Local Nondeterminacy 

TO 
I 
I 
I 

w 
(90[ s] = 

linear streams 

£1: Synchronization Merge and Local Nondeterminacy 

Tl r* 1 
I I 

I 
I 

t restr ,...,_--...§ ~ 

CS[ s] csi[ s] = 

linear streams with o 

£2: Synchronization Merge and Global Nondeterminacy 

I 
I 
I 

'-¥ readies 
.~ 
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guarded s 

guarded s 

guarded s 

streams 
with o 

ready domain branching processes 
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FOOTNOTES 

1The transition rules given here are corrected versions of those 

given in [BMOZ] . 
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