
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

T. Tomiyama, H. Yoshikawa

Extended general design theory

Department of Computer Science Report CS-R8604 January

• ., ' '1.: ' -~~· t ~

}';~,/,")t~1~J:.. u•

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

CooynQ,ht :(. Stichting Mathematisch Centrum, Amsterdam

Extended General Design Theory

Tetsuo Tomiyama
Centre tor Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Hiroyuki Yoshikawa
Department of Precision Machinery Engineering
Faculty of Engineering, the University of Tokyo
Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

Computer Aided Design (CAD) systems are getting more and more popular in many industries. Because
designing is an intellectual process, CAD systems of next generation are supposed to have intelligence.
This is why many researchers are recently working on knowledge based CAD systems. However, despite
of these efforts, it is now becoming clear that ad hoe approaches are unsuccessful and that we need a
guiding principle for implementing such CAD systems. In this paper, we propose a design theory to
formalize design processes and design knowledge. GENERAL DESIGN THEORY is based on axiomatic set
theory, and it clarifies what designing is, how to formalize a design process, and how to describe design
knowledge. We begin with three axioms which define an ideal state. Then, we think about a real problem
by adding a hypothesis about the physical aspect of our world, so that we can deduce theorems about real
design processes and discuss theoretical problems of the data description method of future CAD systems.

1980 Mathematics Subject Classification: 03E30, 54A05, 54D35, 69K14, 69L60
1982 CR Categories: H.2.1., 1.2.4., J.6 bCj +\ 2.. l

Key Words & Phrases: Design theory, axiomatic set theory, machine design, data model, knowledge
representation, CAD.
Note: This paper was originally presented at IFIP Working Group 5.2 Working Conference, 'Design Theory
for CAD,' held in Tokyo, Japan, from October 1, 1985, to October 3, 1985. It is to appear in H. Yoshikawa
(ed.), Design Theory for CAD, tp be published from North-Holland, Amsterdam, the Netherlands. This report
is its revised version.

1. INTRODUCTION

Design methodology has been studied steadily (e.g., see [l]). However, most of the studies are
discussing how to design only phenomenologically. They do not give sufficient and scientific
explanations on basic problems such as what is design. Thus, this style of study would be done in an
inductive way. Although this is an important attitude in scientific researches and the results are
practically valuable for designers, at the same time it may yield several problems. For instance, the
observational accuracy of a design process at the moment is insufficient and we cannot avoid
ambiguity or vagueness of the theories. Furthermore, there is no way to provide logical verifications
of the theory, since it would be sometimes too phenomenological and empirical.

Generally speaking, design theories are no more able to change real design activities than linguistic
theories are able to change our language life. This implies that a design theory might be able to give
an advice about what to do next during a designing process but not about what a future CAD system,
e.g., an integrated and intelligent CAD system [2], should be. From these two reasons, design theories

Report CS-R8604
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 Review on General Design Theory

seem almost useless.
On the other hand, definitely we still need some tough guiding principles used for building such an

advanced system from the following reason. Clearly, we need innovative methods of computer science
for the implementation of these systems. Knowledge engineering is one of them, and it seems
promising (e.g., see [3]). Among the problems found in applying knowledge engineering, the problem
of knowledge representation is essential. In order to solve it, we must clarify our total viewpoint for
design [2]; i.e., we must have a theory as the guiding principle to frame the structure of the design
knowledge, to arrange the knowledge properly, and to utilize the knowledge efficiently as symbols.

GENERAL DESIGN THEORY based on axiomatic set theory was developed for this purpose. We first
assume three axioms which outline our design knowledge, then we deduce theorems about designing
itself and design processes. We can avoid the problem of observational accuracy and provide a
method to verify the theory in such a way. But, unfortunately, theorems obtained in the former
report [4] are insufficient to deal with real design processes, because we only paid attention to the
formal world which really does not exist. To increase the power of the theory, we must give full
consideration to the aspect of the physical world.

In the present study we attempt to extend GENERAL DESIGN THEORY and show its effectiveness in
dealing with real design processes. To begin with, in the next chapter, briefly we review the reported
part of GENERAL DESIGN THEORY. In Chapter 3, we argue its extension by adding a hypothesis
about the physical world. Finally, in Chapter 4, we use the results of GENERAL DESIGN THEORY to
obtain a guiding principle for building future CAD systems. We briefly analyze a problem about data
description methods of future CAD systems.

2. REVIEW ON GENERAL DESIGN THEORY
Most of the contents of this chapter were already reported in the previous paper [4]. For the reader's
convenience, we quote the main discussions.

2.1. Methodology of general design theory
GENERAL DESIGN THEORY is a theory which deduces theorems from three axioms based on axiomatic
set theory. After the derivation, we examine and evaluate the compatibility or consistency of the
theorems with realities. Only thi,s test can certify the validity of the axioms.

GENERAL DESIGN THEORY aims at the following three points;
(a) clarifying the human ability to design in a scientific way;
(b) producing practically useful knowledge about the design methodology;
(c) framing design knowledge in a certain formality suitable for its implementation to a computer.

Before we discuss the theory itself, we must clarify our philosophical standpoint. From now on, we
consider three worlds shown in FIGURE 1; i.e.,
R : the real world where all the concrete entities that we know exist;
C : the conceptual world where we think about entities of the real world, or more precisely this is

the world that we have in our minds; an individual may have his/her own conceptual world;
L : the logical world; this is the world of symbols, logics, mathematics, philosophy, etc.

Having this world view, we obtain physics, epistemology, logic theory, engineering, technology, etc.,
as mappings among these three worlds. For example, design theories deal with a mapping from the
conceptual world to the real world via the logical world. Here, designing is an activity to create an
entity in the real world, through the logical world where drawings are existing, from the first idea
about the design object born in the conceptual world. Note that written specifications normally exist
in the logical world. Physics is a mapping from the real world to the logical world via the conceptual
world. The first half of this mapping would be called observation, and it is governed by epistemology
which has been one of the major concerns of philosophers. The latter half would be called
mathematics or logic operations which helps physicists to describe physical phenomena in an objective
and scientific way. Engineering or technology is a mapping from the logical world to the real world,
which transforms logical descriptions to a concrete entity. Here, logical descriptions usually

Formulation of the problem 3

Real World Conceptual World
'

EPISTEMOLOGY

TECHNOLOG

Logical World

FIGURE 1. World View of General Design Theory

· correspond to drawings and an entity corresponds to a product of manufacturing.
In this context, a design theory cannot be argued without mentioning its engineering aspect that

designing is a mapping from the logical world to the real world. In fact, the former report [4] was

lacking this aspect and discussing only the mapping from the conceptual world to the logical world.

Therefore, the results were rather ideal and did not seem practically useful. In Chapter 3, we will
discuss the engineering aspects of designing. Sections in this chapter only deal with rather ideal

mappings.

2.2. Formulation of the problem
The necessary condition for designing is an ability to form a concept about nonexistent things as a

result of logical operations of knowledge about existent things. In other words, a conceptive ability is

essential for designing. From this point of view, we argue designing, design process, and design

knowledge.

specifi:~~--;;..I ._ _n_e_s_ign--Pr-o-ce_s_s___.i--------3' ~~:Won
FIGURE 2. Design Process

A design process is commonly illustrated as in FIGURE 2, where its input is design specifications

which might include both requirements and constraints for the design object, and the output is a

design solution. Normally, design specifications are supposed to be written functionally in a language

including symbols, numbers, existing machines, etc. Design solutions are to be described attributively

4 Review on General Design Theory

in drawings, in models, and sometimes in a language. Both are described in the logical world L.
Based on this idea, let us begin the formulation of the problem with defining basic terms.

DEFINITION 1 : The entity set is a set which includes all entities in it as elements. By all
entities, we mean entities which existed in the past, are existing presently, and will exist in the
future. This set is denoted by S '.

DEFINITION 2 : An attribute of an entity is a physical, chemical, mechanical, geometrical, or
other property which can be observed by scientific means.

DEFINITION 3 : When an entity is exposed to a circumstance, peculiar behavior manifests
correspondent to the circumstance. This behavior is called a visible function. Another behavior
is observed under a different circumstance. The total of these behaviors are called a latent
function. Both are called function inclusively. Sometimes, we use a function for a visible
function when no confusion occurs. The field is the circumstance which is effective for a
function to manifest.

DEFINITION 4 : A concept of entity is a concept which one has formed according to actual
experiences with an entity. This concept is different from an abstract concept, i.e., a concept of
attribute or function, which is abstracted from the entity.

DEFINITION 5 : An abstract concept is derived from classification of the concepts of an entity
according to its meaning or value. As a result of classification, we get classes each of which
includes entities carrying common meaning or value and corresponds to a peculiar abstract
concept.

DEFINITION 6 : A concept of attribute is one of the abstract concepts. This concept is effective
for one to recognize entities. This concept has no direct relationship with value. The
classification according to this concept is used, when one intends to classify entities
independently of value, that is, scientifically.

DEFINITION 7 : A concept of morphology is a sub-class of the concept of attribute. When
attention is paid intensively to the morphology, this concept forms.

DEFINITION 8 : A concept of function is a sub-class of the abstract concepts. When attention is
paid to the functional value, it forms. In other words, when an entity has a peculiar latent
function and is able to tum it into visible one in an existent field, then the entity is classified
into a class which was made under the name of the peculiar function.

From now on, we use the following notations, such as
T: the abstract concept,
T 0 : the concept of attribute,
T 1 : the concept of function,
T2 : the concept of morphology.

All these concepts belong to the conceptual world C. Once they are written in a language, a syntactic
description belongs to the logical world L, while the concept itself remains to be a semantic existence
in the conceptual world.

2.3. Axioms
Here we are given three axioms.

AXIOM I : (Axiom of recognition) Any entity can be recognized or described by attributes
and/ or other abstract concepts.

This axiom guarantees the observability of entities, but we have not described how to recognize or
observe an attribute itself in DEFINITION 6. In order to solve this problem, first we must clarify what
an entity is. Though DEFINITION I defines the entity set, we did not define the term entity. As easily

Ideal knowledge 5

imagined, questions of this type are philosophically tough to answer, but we try it in Chapter 3.
In fact this axiom is seemingly trivial, but it yields a further philosophical big problem. It is that

the description method of an entity concept must be extensional or denotative, but not intensional nor
connotative. The entire axiomatic system of GENERAL DESIGN THEORY was built extensionally or
denotatively, indeed. This will be discussed minutely in Section 4.2, showing its advantages and
disadvantages for CAD applications.

AXIOM 2: (Axiom of correspondence) The entity set S' and the set of entity concept (ideal) S
have one-to-one correspondence.

This axiom indicates that it is enough to think about only the set of entity concept S instead of the
entity set S ', and that between the real world R and the logical world L in FIGURE l there is a
perfect mapping. But by definition, S may include even entities which will exist in the future, and
this ideal knowledge is far from our real knowledge. In this context, this axiom guarantees the
existence of a superman who knows everything; or in other words, it just shows an ideal and ultimate
state of our knowledge, and that we have only imperfect design knowledge. This forces us to check
the feasibility or compatibility of the knowledge with the realities besides the completeness,
soundness, and inconsistency checks. This is assured also by the discussion in Section 2.1 where we
introduced physical aspect to our world view.

AXIOM 3 : (Axiom of operation) The set of abstract concept is a topology of the set of entity
concept.

This axiom signifies that it is possible to operate abstract concepts logically, as if they were just
ordinary mathematical sets. Accordingly, we get set operations, such as intersection, union, negation,
etc. As discussed in the previous section, this operatability is essential to design.

It sometimes matters whether a topology is defined to be an open set or a closed set. In pure
mathematics open or closed is a relative problem and these two are essentially identical; however, this
influences the interpretation of concepts. Suppose a concept, 'the color is white,' is an open topology,
then its logical negation, 'the color is not white,' becomes a closed topology. But, this is obviously a
confusing situation that there is no uniformity in interpretation of concepts as topology. To avoid it,
we consider the negation of 'the. color is white' is 'it does not happen that the color is white' but not
'the color is not white,' and we discriminate these two negative concepts. Here, the concept, 'it does
not happen that the color is white,' is closed; but both 'the color is white' and 'the color is not white'
are open concepts. Under this interpretation, it becomes difficult to recognize that the semantic
negation of 'the color is white' is 'the color is not white.' In order to know it, we must have special
semantic correspondences between them, and also we must construct a universal set S to follow so­
called the open world assumption. Mathematical operations become a little bit difficult, because we
must think about semantic negation.

To sum up, we have decided to follow the open world assumption, and logical operations are not
the same as those of natural deduction. Instead, we must use intuitionistic logic or constructive
mathematics where law of the excluded middle does not hold; or at least we need to use three valued
logic with unknown truth value in addition to true and false.

These conclusions are valuable, when we think about where to extend GENERAL DESIGN THEORY

and how to apply it to CAD systems.

2.4. Ideal knowledge
Let us derive theorems about the ideal knowledge which only a superman is allowed to have. In this
and the next sections, we do not give proofs of the theorems just to save the space. Readers may
refer to the former report [4] for them.

DEFINITION 9 : Let the ideal knowledge be the knowledge which knows all of the elements of
the entity set and that can describe each element by abstract concepts without ambiguity.

6 Review on General Design Theory

THEOREM 1 : The ideal knowledge is a HAUSDORFF space.

Next, we argue design specifications in the ideal knowledge.

DEFINITION 10 : The design specification Ts designates the functions of the designed machine
(system) using abstract concepts. Thus, the specification is TsElr and sETs is the design
solution. Conversely, suppose s' is given, then the specifications of s' are any of the
neighborhood system of s'. Practically, a specification is described in terms of functions, hence
Ts E lr 1 which is called a functional specification.

THEOREM 2 : A set of specifications can be described by an intersection of proper abstract
concepts.

THEOREM 3 : A set of design specifications, unless contradictory, is a filter.

THEOREM 4 : From the preceding definitions, the following properties are easily deduced.

i) lr :J lr 0 :J lr 2•

ii)lr :J 1"1.

Then we can discuss the design solution.

DEFINITION 11 : The design solution is an entity concept, s, that is included in the
correspondent specifications Ts and carries all the necessary information for manufacturing.

THEOREM 5 : The entity concept in the ideal knowledge is a design solution.

THEOREM 6: The entity concept in the attribute space (S, lr 0) is a design solution.

THEOREM 7 : A design solution is represented by the intersection of properly selected elements
of the set of attribute concept.

From THEOREM 2 and 7, both the design specifications and the design solution are to be given in
the abstract concept space. This leads us to a discussion about design processes.

DEFINITION 12: Designing is to designate a domain on the attribute concept space (S, lr 0)

corresponding to the domain specified by the specifications on the abstract concept space
(S, lr).

Suppose the knowledge is not always ideal and the specifications are described in terms of function
concepts, then the existence of a known mapping between the function space and the attribute space
becomes the necessary and sufficient condition to be able to design. Thus, we have the followings.

DEFINITION 13: Designing is a mapping of a point in the function space onto a point in the
attribute space.

'fHEoREM 8 : If the abstract concept space on which the specifications are described is limited
to the attribute space as the subspace of the former, then designing is completed when the
specifications are described.

THEOREM 9 : In the ideal knowledge, the solution is obtained immediately after the
specifications are described.

THEOREM 9 merely describes an ultimately ideal design process where designing will be completed
in a certain finite period of time at an infinite design speed. Consequently, a superman can guess the
design solution immediately after he got the specifications. This does not necessarily mean that a
design process is a transformation or mapping process shown in FIGURE 2, because here the designing
is finished by just an association between attributes and functions. However, real design processes are
definitely more complicated than that sort of associations, and there must be a more substantial

Real knowledge 7

designing process where designers think about the design solutions, calculate their performance, and
draw figures. This point is argued in the next section. Here, we just add three theorems about
designability in the ideal knowledge.

THEOREM 10: If designing is possible, the identity mapping from the attribute space (S, lr 0) to
the function space (S, lr i) is continuous.

THEOREM 11 : If two design solutions can be discriminated functionally, then lr 0 C lr 1•

From THEOREM 10, we can derive the next theorem about design specifications.

THEOREM 12: If designing is possible, the design specifications are described by an intersection
of elements of the set of attribute concept.

This theorem suggests a possibility to describe a function by attributes. Generally speaking, a
function might be expressed in the following form;

to X Y,
where X is a verb and Y is its objective. THEOREM 12 states that there exists a way to express
functions other than this to X Y form. Let us call it an attnoutive expression of a function.

DEFINITION 14 : A function root is an element of the attributive expression of a function.

If any of the function roots of a design solution, s, were changed, the function of s would change
accordingly. For example, the fact that

the base circle of a gear is a true circle
is a function root of

smooth rotational power transmission.
If we obtained a collection of such relationships between function roots and functions, we might be

able to transform specifications to attributes very easily. This transformation is possible only in the
ideal knowledge, but pursuing this idea is important for the construction of knowledge based CAD
systems.

2.5. Real knowledge
In this section, we intend to discuss real design processes where designers work and where
unfortunately no ideality is guaranteed at all.

The real knowledge is peculiar for its finiteness:
FI) Finiteness of the amount of our knowledge, i.e., our storage capacity is limited.
F2) Finiteness of the operational speed.

Due to these two, some imperfections may occur as follows.
II) Imperfections concerned with the entity concept; it is possible that some abstract concepts

include no entity concept (vacancy).
I2) Imperfections concerned with categorization of entities by abstract concepts; the topology is

not perfect, hence insufficient separation of entities (dislocation). Some entity can be isolated
without categorization (impurity).

I3) Operational imperfections; due to erroneous set-theoretical operations, it is possible that the
filter condition, THEOREM 3, is violated in the detailing process of the specifications; or else, it
takes an infinite time for convergence.

I4) Imperfections concerned with the mapping; it is impossible to expect a known correspondence
between different topologies.

IS) Imperfections concerned with the analysis; in a design process analytic operations are
indispensable as shown in THEOREM 9. The solution cannot be sometimes described even when
we succeed to make the specifications converged into a known entity concept.

Designers who cannot avoid these imperfections still skillfully succeed to design excellently. In order
to understand this phenomenon, it is essential to find out the conditions to be able to design in spite
of these imperfections.

8 Extented General Design Theory

DEFINITION 15: The real knowledge is the knowledge obtained by introducing imperfections to
the ideal knowledge.

THEOREM 13 : The design process appeared in THEOREM 9; convergence to an entity in the
abstract concept space; discovery of the necessary filter in attribute space; does not operate in
the real knowledge.

This leads to the following theorem.

THEOREM 14: In the real knowledge the design is possible, if and only if there is any rule of
direct correspondence between the topologies of abstract concept and of attribute concept
without intervention of the entity concept.

THEOREM 14 says that, in the real knowledge, designing is impossible like in the ideal knowledge
where designing is an association to an entity concept from the specifications. Nonetheless, we must
find out some realistic correspondences between topologies of the function concept and of the
attribute concept. For instance, if both the function and attribute spaces are EUCLIDEAN, the
correspondence can be given by a set of mathematical equations. Something equivalent to these
equations are indispensable for real designers.

THEOREM 14 also indicates that designing is an activity to find imperfection of our knowledge about
entity concepts. Because we cannot find out an entity concept directly from the specifications, we
have to create a new entity. This is why we design.

3. ExTENTED GENERAL DESIGN THEORY

In the previous chapter, we have discussed the real knowledge as the negation of the ideal knowledge.
THEOREM 14 simply tells that designing in general is impossible, and we cannot continue the
discussion to get further useful conclusions. This is basically because we have introduced finiteness
and imperfectness that cannot be analyzed mathematically enough to our knowledge in DEFINITION
15; although we started from the three axioms and have been discussing in a deductive way, this
definition negated the logical basis of the whole discussion, i.e., the axioms.

However, we can go on discussing by introducing another realistic assumption that explains real
design processes and, at the same time, preserves the idealities of our knowledge to continue
mathematical derivation. If we called the definition of the real knowledge in DEFINITION 15 negative
definition, we should call this knowledge positive definition in the sense that it does accept the three
axioms.

3.1. A hypothesis
We need to have some realistic constraints in order to consider the realities of the real world where
we live and which is governed by so-called physical laws or rules. To do so, let us begin with defining
physical laws and attributes using physical quantity and field as nondefined terms.

DEFINITION 16: A physical law is a description about the relationship between physical
quantities of the entity and the field.

This definition suggests that we may write a physical law Pi using related attributes a; (l .;;;;;i .;;;;;N), for
instance, in an equation,

Pj(ai. a 2 , ••• , aN) = 0

Note that this is not the definition of a physical law but an example expression.

DEFINITION 17 : An attribute is a physical quantity which is identifiable using a set of a finite
number of physical laws.

This definition of attributes does not contradict DEFINITION 2, because in DEFINITION 2 an
attribute is a physical, chemical, mechanical, or geometrical property of an entity, and because those

A hypothesis 9

properties are, in fact, supposed to be identified in a certain physical phenomenon by experiments
that are theoretically derived from physical laws.

DEFINITION 18 : A concept of physical law is one of the abstract concepts. This concept is
formed, when one looks at a physical phenomenon as manifestation of physical laws.

From this definition and AxloM 3, we have the topology of the concept of physical law T/. Since
the set of entity concept S contains by definition all the entities that we can imagine, it may include
things unrealistic such as a perpetual mechanism. Thus, we have

S fl. T/,
which means T/ is not a topology of the set of entity concept. But if we think about S, a subset of
S, within which things do not contradict the known physical laws, we get

SET/.
- -

From now, we use S instead of S, the set of entity concept, and in S we think that the three ¥ioms
hold. Theref_gre, some of the characteristics of the ideal knowledge are still kept as well as in S. Let
us call this S the set of feasible entity concept. (See i::'..IGURE 3.) The topology of the concept of
physical law is, therefore, defined precisely by using this S as follows;

Tp = {t It= u n T, TET/, uE~(S)},
- -where ~(S) is the power set of S. _

Next, we consider the relationship between TP and T 0 on the set of feasible entity concept S.
From now on, II indicates the end of a proof. Basically, we attach a proof to a theorem, but if the
theorem can be easily proved its proof may be omitted.

THEOREM 15: On the set of feasible entity concept S, the topology of physical law concept TP
is a subbase of the topology of attribute concept T 0 •

PROOF: Firstly we show that TP is a subset of T0• Because a physical law Pj is identified by
a set of attributes, a; (1 ~i ~N), like

Pj(a1, a2, · · · , aN) = 0,

we can express Pj ET P corresponding to Pj using T/ ET 0 corresponding to a; as follows.
N

Pj = nJ1 ETo.
i=O

Therefore, any Tin TP satisfies TET0 • This means TP is a subset of T0, and that TP is a
sub-topology of T0 • Next, let us consider the following proposition;

- -
O={UE'!J>(S)I (3tCTP, itl<oo,t=t=S, u=nt)}.

Then a proposition,

VX[XETo ~3t(O, X= LJ t)],
is satisfied, if all the attributes are identifiable using physical laws. And it is satisfied by AxloM
I and DEFINITION 17. Thus, 0 is an open base of (S, T0), and consequently Tp is a subbase of
To. II

We see that an attribute is identifiable, recognizable, expressible, and describable using physical
laws. Thus, we can employ physical laws to describe entities, because even attributes are recognized
by them. This idea results in a hypothesis which defines the real design in a positive meaning.

HYPOTHESIS I : The real knowledge is the set of feasible entity concept which is made
compact by coverings selected from the topology of the known physical law concept.

10 Extented General Design Theory

S (Set of entity concept)
-
S (Compactified by

Concept of Physical Laws)

FIGURE 3. The Set of Feasible Entity Concept

This hypothesis does not contradict the real knowled_ge in DEFINITION 15, because in the set of
entiJy concept S the three axioms do not hold, while in S they hold. It also indicates that any entity
in S is explainable by not an infinite but a finite number of physical laws, and that this entity has
physical constraints exactly of that number (FIGURE 3).

We can derive some properties of the real knowledge from HYPOTHESIS 1.

'IJrnOREM 16: The topology of attribute concept T0 on the set of feasible entity concept S,
(S, T0), is a compact HAusDOR!F space.
PROOF: From THEOREM 1, (S, T0) is a 14usDORFF space. Because TP is a subbas~ of T0

from THEOREM 15, Tp makes coyerings for (S, T0). Because HYPOTHE~IS 1 says that (S, T0) is
compact, any open covering of (S, T 0) has finite subcoverings. Thus, (S, T 0) is compact, hence
a compact HAusDORFF space. II

This theorem says that (S, Tp) in HYPOTHESIS 1 and (S, T 0) in this theorem are equivalent, because
bot~ of them are com2act HAusDORFF spaces. Thus, from now on, we consider the real knowledge to
be (S, T 0) instead of (S, Tp). Next four theorems deal with the properties of this space.

THEOREM 17: The real knowledge (S, T 0) is second countable.
PROOF: A topological space (X, 0) is second countable, if a countable s~t O' can be chosen as
its open base. Here, Tp is an open base, since it is a subbase of (S, T0). And Tp is a
countable set, because T P is made from a finite, or at least countable, number of known
physical laws. Therefore, the real knowledge satisfies the second countability axiom. II

THEOREM 18: The real knowledge (S, T 0) is a closed subset of the (ideal) set of entity concept
s.
PROOF: From THEOREM 1 (S, T0) is a HAUSDORFF space, and from THEOREM 17 (S, T0) is
~mpact. Since a compact subset C of a HAUSDORFF space X becomes a closed set of X,
(S, T 0) is a closed subset of S. II

Convergence of design solution 11

THEOREM 19 : If a continuous function

/: s~R (R: the set of real numbers)

exists in the real knowledge (S, lr 0), this function f has the maximum value and the minimum
value.
PROOF: From THEOREM 18 and the theorem of maximum and minimum values, it is obvious.

II
THEOREM 20: The real knowledge (S, lr 0) is a LINDELOF space.
PROOF: A topological space is a LINDELOF space, when any of its open coverings has at most
a countable number of subcoverings. The real knowledge (S, 1!"0) is a HAuSDORFF space from
THEOREM 16 and, consequently, it has a finite number of subcoverings. Therefore, it is a
LINDELOF space*. II

THEOREM 17 tells the relationship between 1!"0 and lrp and that a topology of 1!"0 has countable
neighborhood systems. THEOREM 18 and 19 state that in our world everything has the maximum and
minimum limits for its attributes, because it should be more or less influenced and governed by
physical laws. For instance, we can by no means produce a machine which is infinitely heavy; there

is clearly the upper limit, i.e. the weight of the earth. We cannot produce a machine of which eigen
frequency is equal to zero, either. However, an infinite can mathematically exist, since it shall not be
influenced nor governed by physical laws; this fact does not contradict THEOREM 19.

3.2. Convergence of design solution
Let us argue the convergence problem of the design solution in the real knowledge.

Firstly we think about design specifications. Like in the ideal knowledge a specification is a filter,
in the real knowledge it should satisfy some conditions to guarantee its convergence to a certain entity
concept. In the ideal knowledge, there are three classes of specifications as follows, where T is a

specification and each s; is an entity as a solution.
(1) An ambiguous case; T = {si. s 2 , • • • }.

(2) An ideal and noncontradictory case; T = {si}.
(3) A contradictory case; T = { 0 }.

These three also apply to the case of the real knowledge. Let us call first two cases feasible
specifications and the third one impossible specification. Note that the impossible one may include an

impossible one, such as a perpetual mechanism, together with a nonfeasible one, such as an alloy
which has absolutely no imperfection at all and is at present difficult to obtain. We call feasible
design specifications just specifications from now on, and we define them more precisely as follows.

DEFINITION 19 : Let lr be a topology of abstract concept and A be a countable set. Feasible
design specifications,

T = n T,_ (T,_ Ell", T,_=/=0),
AEA

is defined by the following conditions;

nr,.=t=0.
Next let us consider the convergence problem of design specifications of DEFINITION 19.

THEOREM 21: Any feasible specification in the real knowledge has a cluster point.
PROOF: To begin with, let us show that from a specification

T= n T,_,
>.EA

* It is known that a second countable topological space is a LINDELOF space, and from this we can also prove the theorem.

12 Extented General Design Theory

we can make a point sequence in (S, T0),

{xN} (n EN, N: the set of natural numbers).

Since A is a countable set, we can use N instead of A. Thus, the specification is rewritten as
follows;

T= n Ti (Ti ET).
iEN

Next, we define Tn in the following way;

T1 =Ti (*0: from DEFINmON 19),

Tn = Tn-1nTn*0;

and we choose an arbitrary element Xn from Tn. Then, here we obtained a point sequence
{xN} (n_EN). A LINDELOF space Lis compact, iff any point sequence of Lhasa cluster point.
Here, (S, T0) is a LINDELOF SP.,ace from THEOREM 20, and it is compact from THEOREM 16.
Therefore, any {xN} (n EN) of S has a cluster point. 11

TIIEoREM 22 : In the real knowledge, it is possible to make a converging subsequence from any
design specifications and to find out the design solution for the specifications.
PROOF: It is sufficient to show that there exists a subsequence of {xN} (n EN) made from the
specifications, and that this subsequence converges toy that is the cluster point of {xn}· From
THEOREM 20, it is possible to define a fundamental countable systems of the neighborhood of y,
V(Y). Suppose Vi (i EN) be an element of V(Y), then

n
Un= n Vi (nEN)

i=I

is a neighborhood of y satisfying

We can make a set of

Sn,m = {xEUm I 3k(kEN, n<k, x=xk)}* 0 (n, mEN)

and its selection function if; of which existence is guaranteed by the axiom of selection. Using
this if;, we have a sequence {yk} (k EN) such as,

Yt =if;(S1,1)=x1>

Y2 = if;(Sn., 1) = X2,

Yk = if;(Sn k-1• k) = Xk>

This {yk} is a subsequence of { Xn} which converges toy. II

Now, from THEOREM 21 we are able to obtain the design solution for any specifications as a set of
cluster points, i.e., there is a possibility of having more than two candidate entities. However,
THEOREM 22 tells that we can get one specific design solution by some method which is symbolized to
be if; in the proof. And it also explains the fact that design solutions which depend on the designer
are generally different, because each designer has a different selection function if;.

Our next goal is to find out convergence policies, so that we can get the design solution not as a
cluster point but as one point. To do it, it is sufiicient that the design specifications make a directed
sequence of points, because such a sequence si ES (i EN) converges due to its upward boundedness,
i.e., compactness. To sum up, a convergence policy to find out the solution is to give some partial

Metamodel 13

order to entity concepts, such as distance, for example. This discussion is actually equivalent to
defining a selection function mentioned above, and we can get the following theorem.

THEOREM 23 : In the real knowledge the design specifications converge to one point, if it is
possible to get a directed sequence of points from the specifications.

3.3. Metamodel
We discuss here a method to describe abstract concepts which is necessary to build models of entity
concepts, for instance of machine, in a computer. Firstly we introduce a description method of entity
concepts.

DEFINITION 20: A metamodel MA is defined in the real knowledge (S, T 0) such that

MA= nMx (MxETo),
>.EA

where A is a finite set.

DEFINITION 21: The metamodel set, Ml, is a subset of the set of all the metamodels and has the
property of finite intersection.

Meta usually qualifies a thing superior to others. We use metamodel in this sense, i.e., model of the
models, just the same as meta in metaknowledge which means knowledge to describe knowledge itself
or the usage of knowledge. This concept of model of the models is really needed in CAD systems,
because the integration of the models is one of the most urgent tasks in CAD studies [2]. Naturally,
models mean those of design objects.

Another meaning of introducing metamodels is a possibility to describe an entity with only a finite
number of attributes, although originally we have assumed an infinite number to do so. Thus, a
metamodel M is the representative of an entity s such that

sEM,

and it is described by a finite number of attributes.
The property of finite intersection of the metamodel set means that we are to think about only

models of feasible entities. In faet, it suggests

nM=I= 0 (M=/=0, MEMI),

which means there always exists an entity concept for a metamodel.
Several theorems about the properties of the concept of metamodel and the conditions t~ be able to

design can be easily proved.

THEOREM 24 : The metamodel set Ml is a topology of the real knowledge.

THEOREM 25 : The metamodel set Ml is a topology weaker than the topology of attribute in the
real knowledge.

THEOREM 26 : In the real knowled_ge the necessary condition to be able ~o design is satisfied,
when the topology of metamodel (S, Ml) is stronger than that of function (S, T 1).

PROOF: From THEOREM 25, we have

T0 :::::>Ml.

If

we have

14

implying the following condition necessary to be able to design,

To:JTI>

is satisfied. II

Extented General Design Theory

TuooREM 27: If desi~g is possible, the identity mapping from the attribute space (S, T 0) to
the metamodel space (S, IMI) is continuous.

THEOREM 28 : If th~ identity mapping from the metamodel space to the function space is
continuous, the identity mapping from the attribute space to the function space is continuous.

The idea of metamodel can be applied to the theory of design process model and the convergence
policy in the real knowledge. In the ideal knowledge, as mentioned in DEFINITION 13, designing is a
mapping from the function space to the attribute space, while it is rather difficult to get such a
mapping in the real knowledge. We then consider an intermediate space to decrease the difficulty to
find it. The metamodel space is expected to be such an intermediate space (FIGURE 4). Based on this
idea, the design specifications are described in the function space, and the designer rewrites them in
the metamodel space. Because the metamodel itself has only a finite number of attributes, he may
increase the number of attributes and detail the design object. We call this type of design process
model evolution model.

Function space Attribute space

(Ideal) Design
················· ··········i:>X

Specification

Metamodel Space

FIGURE 4. Metamodel and Design Process

In the evolution model, first there do not exist so many contents in an entity concept (FIGURE 5).
We get just a rough description of an entity concept corresponding to the specifications, and then we
detail its attributive descriptions. As the design proceeds, the amount of information of the entity
concept will be increased by detailing the attributes. And finally, we get the design solution. In each

Metamodel 15

e-------

··0·· ·. M .·

Metamodel Set

FIGURE 5. Evolution Model

detailing process there exists an intermediate solution which does not have all the necessary attributes
being an entity. On the contrary, in the ideal knowledge the specifications are first detailed, and then
we get the solution as an entity concept. The attributive information, necessary for manufacturing the
solution, will be obtained by analyzing its neighborhood.

The evolution model gives a good account of real design processes [2]. The first step where we set
up the first metamodel corresponds to a conceptual design stage; the detailing steps correspond to
basic and detail design stages. Checking a metamodel can be called evaluation. In fact, if the result
of an evaluation is not sufficient, the metamodel would be changed and tested again. This kind of
activities is often found in real design processes.

About this evolution model we can prove the following theorem.

THEOREM 29 : If we evolve a metamodel, we get an entity concept as the limit of evolution.
PROOF: A metamodel,

can be rewritten such that
n

Mn= nM;, (M;EMI, iEN, M;=/=0),
i=l

since A is a finite set. What we must prove is that the evolution of this metamodel is a
convergence process such that

00 -

limMn = nM; = {s}, sES, s=/=0,
n->oo i= I

16

where sis an entity concept as the design solution. Now define

M 1 =M1,

M2 =M1 nM2 =M1 nM2,

Mn= Mn-I n Mn (:f=0: The property of finite intersection),

Extented General Design Theory

and suppose sn be an element of Mn. The point sequence, {sn}, is a directed sequence due to
the inclusion relation,

Mn-I:::> Mn.

Therefore, from THEOREM 23, this sequence converges to

s = lim {sn},
n--+oo

where s is an entity concept. II

When we have a metamodel expression M for a design specification T, according to this theorem it
is possible to get an entity,

But this sequence converges in the metamodel space M, not in the abstract concept space lr. This
means that s is not the design solution but an approximation.

3.4. Function and physical phenomenon
We now know that mappings from the function space to the attribute space are basically hard to
obtain. The concept of metamodel was supposed to reduce these difficulties, prima facie.
Nevertheless, since it is attribute-oriented, there still remain difficulties to get mappings from the
function space to the attribute space. Thus, we need to study how to present functions by attributes
or how to transform functions to attributes.

In DEFINITION 3, a function was defined to be a behavior of an entity in a certain circumstance.
This behavior is apparently governed and controlled by physical laws from a point of view of simple
mechanical determinism. As we assumed in HYPOTHESIS 1 and DEFINITION 18, any entity fo the real
knowledge should be explicable by a finite number of physical laws. This idea leads us to the
definition of function using physical phenomenon as a nondefined word.

DEFINITION 22 : A function of an entity is a physical phenomenon caused by the physical laws
governing the circumstance where the entity was put in.

This definition does not refer to our sense of value. Of course, it would be possible to define another
'function' taking account of our values. But, in this study, we examine function only from a
viewpoint of physical phenomenon.

If a function could be defined as in DEFINITION 22, then we can use a special type of metamodels.

DEFINITION 23 : A function element is a metamodel,

such that

MA= n MA (MA Elro, A: a finite set),
AEA

'VMA E lrp (>-.EA).

A function element is an entity concept that materializes some physical phenomena caused by
pertaining physical laws. A simple example is a conductor in a magnetic field shown in FIGURE 6.

Function and physical phenomenon 17

B
I

F

F=IIB

FIGURE 6. An Example of Function Elements

Here, the conductor is the entity and the function element of a physical phenomenon, generation of
force; the electromagnetic field is the circumstance; the current in the conductor is an effect from the
electric field to the conductor and viceversa. The force to the conductor and its correspondent motion
are interactions between the conductor and the electromagnetic field. Physical laws are OHM'S law,
FLEMING's rule, FARADAY's law of induction, etc.

In the ideal knowledge, theoretically we need an infinite number of attributes to describe an entity
precisely, indeed. But this example tells us what we need is just a finite number of attributes, such as
the length of the conductor, the impedance, etc. This supports the idea of metamodel which merely
requires a finite number of attributes.

If we made a collection of these function elements, we would be able to get the design solution
easily because the specifications were described by physical laws. About this expectation, we have the
following theorem.

THEOREM 30 : If we choose function elements as the metamodel, we can describe the design
specifications by the topology of metamodel, and there exists the design solution which is an
element of this metamodel.
PROOF: The design specification is expressed by

T = n 'J1/ (11/ Elrp, I: a countable set).
iEJ

Now, I is a countable set and ,!llight be infinite; but, since lrp is in fact a finite set, we can fix
T=fa.0. From HYPOTHESIS 1, (S, lrp) is compact, i.e.,

T = U ~ (~ Elrp, A: a finite set).
;\EA

Because we have constructed a metamodel from function elements, a metamodel,

T= n~=fa.0,
;\EA

which can be actually derived from the finite intersection property of the metamodel space, is a
subset of the specifications (FIGURE 7), i.e.,

MACT,

and all the members of this metamodel satisfy the specifications,

18 Extented General Design Theory

'Vs(s EMA) s ET.

Hence the theorem is proved. II

u~
7'.E

n~
7'.EA

s

FIGURE 7. Design Using Function Elements

This theorem guarantees that, if the physical laws could be used to describe the specifications and
to designate the physical phenomena needed, there should exist a metamodel derived from the
specifications and the design sohition obtained by detailing the metamodel. In this case, the solution
is not an approximation but an accurate one, and we surely get it, even if we are not able to make a
directed sequence as in THEOREM 23.

3.5. Metrization of the attribute space
We have considered attributes in general in DEFINITION 2 and 17. The word attribute should have the
same meaning or effect as we expect in its everyday usage. Accordingly, an attribute should have a
set of the name (or item) and the value. But, up to now, we have treated the attribute space to be a
topological space. This leads to metrization of the attribute space; we must make the attribute space
a metric space, such as a EUCLIDEAN space, for instance. From this metrization, furthermore, we can
use numerical calculation to detail metamodels. This conclusion of GENERAL DESIGN THEORY is quite
natural and acceptable, because our world is definitely a distance space.

Let us begin with four lemmas about metrization of topological spaces.

LEMMA 1: A compact HAusDORFF space is a T4 space.

LEMMA 2: A T4 space is a normal and T1 space.

LEMMA 3: (URYSOHN) A topological space N is normal, iff it has the property that for every
two mutually disjoint, closed subsets A, B of N, there exists a continuous function/: N ~ [O, 1],

1) such that f(x) = 0 for all x EA and f(x) = 1 for all x E B, and

2) such that for any xEN, Oo;;;;/(x)o;;;;I.

Finiteness in the theory 19

LEMMA 4 : A normal space is metrizable iff it is second countable.

Now, we can prove the following three theorems.

THEOREM 31 : The real knowledge is a normal space.
PROOF: From THEOREM 18 the real knowledge is a compact HAusDORFF space, and a
compact HAUSDORFF space is normal from LEMMA 1 and 2. Consequently, the real knowledge
is normal. 11

THEOREM 32: In the.real knowledge there exits a distance between two different entities.
PROOF: From THEOREM 31 and LEMMA 3 there exists a continuous function

f:S~[O,l]

for every two mutually disjoint, closed subsets A, B of the real knowledge, such that f(x) = 0
for all x EA and f(x) =I for all x EB. This fact can be easily applied to the relationship
between two different entity concepts, s 1 and s 2, and two different real numbers, a and b.
Thus, a function,

d(s1>s2)= lf(si)-f(s2)I = la-bj,

satisfies the axiom of the metric space. This means that there exists a distance between two
different entity concepts. II

THEOREM 33 : In the real knowledge an attribute has a value.
PROOF: Following the proof of the previous theorem, the real knowledge is metrizable. Here,
it is possible to make the real knowledge a metric space, which means there is a distance
between two different entity concepts. Using this distance, the attribute space can be formed.
This states that an attribute is given metric, i.e., it has a value. II

According to THEOREM 32 and 33, we get followings.
(1) Given a certain metric, different entities can be measured differently. We may normally

employ attributes as the metric as far as attributes are second countable. This requires
attributes should have a countable number of open basis. All the attributes can not be always
measured.

(2) When we have two candidate solutions, A and B, it is possible to judge whether A is nearer to
the specifications than B or not.

(3) It is also possible to measure the convergence speed of the design solution.
(4) Suppose an entity A has an index 0 and B has 1 in a certain context. From LEMMA 3, we now

know there exists an entity which has an intermediate value such as 0.5. This corresponds to
the fact that there exists a mule between father donkey and mother horse. Or, it must be
possible to convert a lathe to a milling machine continuously. This is the principle of design
by modification.

3. 6. Finiteness in the theory
In the present chapter, the discussion started from HYPOTHESIS 1 which preserved the completeness
and infinity of the ideal knowledge and which was restricted by compactness. Thus, the properties of
the real knowledge are still somewhat ideal, although apparently our actual knowledge is limited and
imperfect. In this section, we examine HYPOTHESIS 1 from a point of view that how much finiteness
and imperfectness are taken into consideration.

Followings are the finiteness and imperfectness of the real knowledge in the negative meaning
pointed out in Section 2.5.
Fl) Finiteness of our storage capacity.
F2) Finiteness of the operational speed.
II) Imperfections concerned with the entity concept.
I2) Imperfections concerned with categorization of entities by abstract concepts.

20 Some Comments on Data Description Method for CAD Systems

13) Operational imperfections.
I4) Mapping imperfections.
I5) Analytical imperfections.

Essentially, the real knowledge of HYPOTHESIS I is introgucing a sort of finiteness, i.e.,
boundedness, resulting from its compactness. Because, basically, S does not contain what we do not
know, FI and II are already taken into consideration.

Imperfections, I2 and I5, are related to finiteness in describing entities. Thus, we can replace I2
and I5 with another finiteness.
F3) Finiteness in describing entities (FIGURE 8).

Set of Entity Concept

·FIGURE 8. Finiteness in Describing Entities

Imperfection 13 and I4 would not be observed as far as the specifications are feasible and described
by physical phenomena or laws as in DEFINITION 19, for the existence of the design solution is
guaranteed by THEOREM 30. This is another finiteness we have instead of 13 and I4.
F4) Finiteness in describing the specifications.

Therefore, in the real knowledge we must pay attention to three points of finiteness, i.e., F2, F3,
and F4. Let us call them.finiteness in the real knowledge.

Because of them, obviously in real design processes, design specifications do not designate a specific
point in the set of entity concept. They only designate an area and, thus, they are ambiguous.
However, with even ambiguous specifications, real designers can design. This is perhaps because he
does not have to describe the design solution rigorously. In this case the design solution does not
need to be described minutely, either; it can also be an area (FIGURE 9). Additionally, designers can
sometimes change the specifications. This is another reason why we can design and, sometimes, why
we cannot design.

We can summarize the abovementioned issues as follows.

DEFINITION 24 : When the design solution is materialized, although it is exposed to the
specified field, it might have behaviors different from the specifications. These behaviors are
called unexpected functions.

THEOREM 34 : In the real knowledge the design solution has unexpected functions.

Example of measurable attributes

An Ambiguous Entity Concept
(Finite Description)

Area of Design Solution

Finite Design Specifications

FIGURE 9. Real Design

4. SOME COMMENTS ON DATA DESCRIPTION METHOD FOR CAD SYSTEMS

21

In this chapter we remark on data description methods of future CAD systems, as an application of
GENERAL DESIGN THEORY. It is expected that CAD systems in the near future should be materialized
by means of knowledge engineering [3]. What makes a system intelligent is its ability to operate the
meta-level knowledge, i.e., the framework of the knowledge. To do it, the integration of the data
descriptions is essential. From this viewpoint, the integrated data description schema would be the
most important factor among the elements of knowledge based CAD systems [2].

Now we have two questions. The first one is,
Do we really have a uniform method to describe an entity?

And the second one is like this;
ls that method feasible?

To answer the first question, the next section deals with an example of metrization of the attribute
space. We simply expect such distance brought into the attribute space to be an integrated and
objective way for representation. Secondly, in Section 4.2, we discuss an important issue derived from
the basic standpoint of GENERAL DESIGN THEORY. It is this discussion, of course, that deals with the
implementation problem.

But, unfortunately in the present paper, we can only show the necessary conditions to achieve our
goal. Nothing has been obtained for the sufficient conditions up to now.

22 Some Comments on Data Description Method for CAD Systems

5. ExAMPLE OF MEASURABLE ATIRIBUTES

THEoREM 32 and 33 state that attributes generally have values or that the attribute space is a distance
space. This conclusion might look too obvious or trivial. However, what we have now as attributes

are quite arbitrary and are in disorder; otherwise, they must have a kind of correspondence with the
natural numbers and must be used practically to put entities in order.

A
A' .·.

L\
B C B C B c

FIGURE 10. Similar Figures

FIGURE 10 shows three similar figures that possibly appear in mechanical parts. FIGURE 10 (a)
shows a triangle; in (b) the comer A is chamfered and the figure is a quadrangle; in 10 (c) comer A
is rounded and the figure is mathematically complicated, though it is quite usual as a mechanical part.
If we look at these three from a viewpoint of mechanical engineers, strictly speaking (a) is
nonexistent, while both (b) and (c) are feasible.

Thus, these three figures are geometrically different from each other. But, from a viewpoint of
mechanical engineering they must be dealt with similarly because these are originally representing the
same part. In conventional CAD systems these figures may be expressed by completely different data
structures, if we stick to calling them polygons. This produces a rather confusing situation, because
we want to use a data structure common to them. To sum up, if we gave distance to polygons by the
number of comers, it would not work well.

FIGURE 11. Definition of a Regular Polygon

Therefore, we should find out some attributes in order to describe polygons in a reasonable way.
One example is shown in FIGURE 11. A regular polygon with n comers can be defined by (J which is
central angle from one vertex to another, such that

n = 2.,,; o,
where n is not necessarily an integer. In FIGURE 12, three examples of polygons for non-integer
number of vertices are shown, such as

n = 2.5 (() = 144°).

'"

lntensional and extensional description 23

If the definition of polygons were the formula shown above, we could measure the distance between a
regular triangle and a regular quadrangle. Of course, this distance might not meet with our intuitive
distance for regular polygons. But, at least we could know the direction to get continuous distance
for polygons which might be used in describing the resemblance of the three figures in FIGURE 10.

(a) n=3 (b) n=2.5 (c) n=2.83

FIGURE 12. Regular Polygons

How do we interpret the case of n = 2.83, in FIGURE 12 (c), where the number of edges is infinite?
This polygon would fill out the whole area of the figure with its edges, but in fact the number of
edges would become infinite. This situation looks contradictory to THEOREM 19. However, even if we
used all the ink we have on the earth, we could not paint a mathematically infinite number of edges;
mathematical infinity is not a real existence but an imaginary product, and it is not

1

denied by
THEOREM 19.

This is the way we bring metric into the attribute space. In this direction we will find out a way to
. build the integrated data description method for attributes. However, we must always remind that
what we actually need in machine design is metrization of mechanical entities and that it is not
obtained from either THEOREM 35 nor 36. They simply refer to the possibility of making the attribute
space a distance space. Unfortunately, a reasonable way for metrization of all the attributes is not
obtained until now indeed, but analyzing aspects of physical phenomena of entities seems promising.

5.1. Intensional and extensional description
In Section 2.3, we mentioned that the description method of entities must be extensional or denotative
but not intensional nor connotative. Here in this section, we minutely examine this issue which seems
important in materializing an integrated data description schema for intelligent and integrated CAD
systems. This description method is considered to be the necessary condition to bring distance into
the attributes in a way explained in the previous section.

5.1.1. Extensional description. In AxloM 1 and 3, the set of attribute concept was a topology of the set
of the entity concept. Naturally, it is also possible to put it conversely. FIGURE 13 (a) and (b) show
extensional and intensional ways of describing entity concept, respectively.

In FIGURE 13 (a), the subject of the situation is an entity, and the predicate is its attribute; and the
total of this figure implies extensional facts about the entity that it has such and such attributes. This
statement can be accepted also as an extensional definition of attributes. The extensional definitions
are fact oriented, in this sense, and we represent an entity concept only by showing the properties of
the object or its relationships to other entities, and thus the entity concept itself simply has symbolic
meanings. When a set notation is used, the situation of FIGURE 13 (a) will be represented by

A = {s1> s2 , • • • },

where A is an attribute and s; is an entity. This is, needless to say, the extensional definition of a set

24 Some Comments on Data Description Method for CAD Systems

Entity Concept Abstract Concept

Abstract Concept Entity Concept

(a) Extensional Description (b) Intensional Description

FIGURE 13. Entity Concept and Abstract Concept

A. Here, each s; does not have a meaning more than just being a symbol.

5.1.2. lntensional description. On the contrary, in FIGURE 13 (b), the predicate is the entity to which
the attribute belongs, while the subject of the situation is an attribute. This implies a situation that
an abstract concept is found in such and such entities, and it is an intensional object oriented

statement that describes an entity itself. Consequently, using a set notation, the situation in FIGURE

13 (b) could be represented by

S = {a i. a2 , • • • },

where Sis an entity and a; is an attribute. Normally a set of constraints, ~. must be added to this
representation, such that this entity exists meaningfully in the real world. Therefore, we have a
different notation, usually, as a Cartesian product set,

S = {(ai. a2, · · ·) I ~(ai. a2, · · ·)}.

This is the intensional definition of a set A. In this notation, we represent an entity concept by
showing its structure which a priori exists, and each attribute, a;, has no meaning more than being a
symbol describing the structure.

In FIGURE 14, the two representation methods are compared. FIGURE 14 (a) shows that two

different abstract concepts are denoting an entity. This situation can be identically described in the
intensional definition of the concept (FIGURE 14 (b)). But, as in FIGURE 15 (a), if two similar or
hierarchical abstract concepts are denoting an entity, the similarity or the hierarchy cannot be
expressed so well in the intensional definition because even a subset of a certain set would be

recognized differently (FIGURE 15 (b)). Basically, the intensional definition method is not good to
describe relationships precisely.

The whole story tells that in case of the intensional definition method of concepts slight differences

in the meanings would be lost or quite similar concepts would be recognized differently. This would
happen to CAD systems, especially, if we changed the data descriptions and one of them were a
broader concept than the other. Therefore, the data description schema should be denotative or
extensional.

lntensional and extensional description 25

Entity Concept Abstract Concept

Abstract Concept Entity Concept

(a) Extensional Definition (b) Intensional Definition

FIGURE 14. Extensional and Intensional Representations

Entity Concept Abstract Concept

Entity Concept

(a) Extensional Definition (b) Intensional Definition

FIGURE 15. Disadvantage of Intensional Representation

5.1.3. Comparison between extensional and intensional description. Let us examine this problem with a
more concrete example. FIGURE 16 shows a cube, and the following facts denoted by predicates are
its extensional representations, because in an extensional representation system, the subject is an
entity and the predicates are its attributes.

vertex(l).

vertex(S).

line(l).

line(l2).

surface(l).

surface(()).

26

consists_of(l, 9).

consists _of(S, 9).

consists _of(l, 1).

consists _of(2, 1).

consists_ of(1, cube).

consists_ of(6, cube).

I

9
6

3

" ,,,,,,""8

Some Comments on Data Description Method for CAD Systems

4

3

2
4 11

I 10 5 8').. _
" -

7-----
2 7

FIGURE 16. A Cube

On the other hand, the intensional representation of this cube would be

cube{(1,2, · · · ,6,1,2, · · · ,12, 1,2, · · · ,8)1~(1,2, · · · ,6,1,2, · · · ,12, 1,2, · · · ,8)},

where ~ implies the necessary conditions for this object to exist as a cube. Here, the entity is the
predicate and the attributes are the subjects. Usually, this data structure can be realized in CAD
systems as a set of data connected by pointers shown in FIGURE 17, or sometimes as a tuple of a
relational database [5] (FIGURE 18).

The example leads us to the comparison of these two representations when they are used in CAD
systems.

In an extensional representation system, the data would be described by a set of facts (e.g., by
predicate logic formulae) independent from each other. Even the constraints will be expressed
generally as a set of predicates. THEOREM 33 tells us that the value of an attribute, such as the

lntensional and extensional description 27

1 3
2 5

2
3 4 11 11 x
4 6 3

6 y
5 2 7

10 z
6 1 Edge

Edge List Vertex
Surf aces

FIGURE 17. Example of Data Structure of a Cube

Surf ace line line line line
1 1 2 3 4

2 5 8 7 6
3 1 9 5 10

4 3 11 7 12

5 2 10 6 11

6 4 12 8 9

FIGURE 18. Relation Type Data Structure of a Cube

coordinates of a point P, shall be originally expressed as a topology. Because this is rather difficult to
implement, normally we regard the predicate,

point(P),

as a function, and the value of this function becomes the coordinates, such as

[X, Y, Z] = point(P).

This means we can treat an entity, its attributes (i.e. predicates), and their values individually.
On the contrary, in an intensional representation system, the data would be totally described in a

chunk of data strongly connected by pointers together with the constraints ~. In this case,
dependencies between the data become so strong that it is difficult to change or to modify the data
schema. But, the meaning of a symbol can be easily decided by its relative position in the data
structure.

Moreover, there is no separation of an entity, its attributes, and their values. For example, in a
relational database system, we can separate relations and tuples like in FIGURE 18. But, this
separation of the relation and the tuple can be so complete that there will be an inevitable mutual
dependencies such as the order among the data in the relation.

To sum up, an extensional representation system has the following advantages and disadvantages.
EAl) It is easy to add new facts about entities, i.e., subjects.

28 Some Comments on Data Description Method for CAD Systems

EA2) It is also easy to modify facts and predicates.
EA3) Assertion of a proposition can be done by a simple search with pattern matching.
ED 1) It is rather difficult to grasp the entire meaning of what the logical formulae as a whole are

saying, because we need to interpret logically all of the descriptions and fairly large amount of
computation would be required.

ED2) Predicates may loose their meanings. In other words, they can have meanings defined by each
other. This is one of the typical disadvantages of formal logic and not particular to the
extensional representi:i.tion.

On the other hand, an intensional representation system has the following advantages and
disadvantages.
IAl) Normally the meanings of each predicate can be easily understood, because the constraints,~.

define them clearly.
IA2) What a piece of data says can be easily understood from its position in the data structure, i.e.,

by its address.
IDl) It is difficult to modify the data schema totally due to its strong mutual dependencies. But

adding new facts is quite easy.
ID2) Modification of the structure of propositions requires changing the constraints ~- This is also

difficult.
ID3) Assertion of a proposition may contain considerably complicated calculation of the constraints

~-

5.1.4. CAD applications. Usually in CAD systems, metamodels as the representation of design objects
have the following properties [2].
(1) Dynamic changeability; metamodels are evolved corresponding to the progress of design.
(2) Diversity; there may be various metamodels probably as many as elemental design evolutionary

steps.
(3) Bulkiness; data quantities would be large.
(4) No uniformity in interpretation of expressions; practically, expressions must be multi-purpose,

i.e., they are interpreted in various ways corresponding to the lack of uniformity in design
work.

These four points result in a conclusion that a CAD system must be equipped with a data schema
flexible enough to be modified, added, and deleted easily. But, at the same time the whole database
system must be sufficiently practical. For instance, it must be able to answer in a quick response time.

An extensional data description method is, generally speaking, suitable for CAD systems from the
points (1), (2), and (4). In addition to them, if we considered an example of FIGURE 10 where we
compared a triangle with a triangle-like quadrangle, the extensional description is much better than
the intensional one. For example, the differences would be detected clearly by a set of predicates in
the extensional representation method, while, in the intensional method, the differences are given by
only partial data.

A more concrete example is the chamfering of the comer A of FIGURE 10 (b). In the intensional
description, this chamfering causes a change of the data structure. The modified data structure
cannot be easily judged as different from the original because of its demerit pointed in Section 4.2.1.
On the contrary, in the extensional description, the chamfering is just an adding of a predicate

chamfered(A).

But, if we are going to use a computer, intensional description systems become much more
convenient than extensional ones. This is just due to that we can grasp the meanings of descriptions
at the moment we read them by using their positions, i.e., addresses. Moreover, the disadvantages of
the intensional description will be inverted to advantages. It is definitely difficult to change predicate
systems of the intensional representation. But as in business applications, once the conceptual schema
is fixed, data retrieval is easily executed, because it is done by calculations of addresses which is faster

References 29

than pattern matching contained in extensional representation systems.
Concerning implementation of CAD systems, this problem is crucial. Basically and logically, these

two description methods are equivalent. However, CAD applications theoretically may prefer
extensional description systems to intensional ones, because of the dynamic changeability of the data

schema, etc. But, if we think about real implementations, intensional one practically is better.

Without intension, we can never compute anything, actually.
Thus, what we must do here is to combine or integrate both extensional and intensional description

methods. But, this breaks out the uniformity of the information, since the transformation between the

extension and intension is no more reversible. A famous example is the morning star and the evening
star. The n;iorning star has an extension, Venus. The evening star is an intension of Venus. Thus, an

intension of an extension of an entity is not always identical to the entity. This suggests that we must

be careful to losses or changes of information, when there is a transformation between the extension

and intension.
As a matter of fact, up to now, we have not yet obtained the final solution to this problem. In this

paper, we could just point out the importance and the necessary conditions of this problem which is

the key to improve CAD systems of today. In other words, we need a new programming paradigm

which can solve the presentation problem for the implementation CAD systems.

6. CONCLUSION
(1) A hypothesis concerning the physical aspects of designing was introduced to GENERAL DESIGN

THEORY, and from it plenty of useful theorems were deduced.
(2) In the real knowledge, the design solution is obtained as a cluster point.
(3) In the real knowledge, the concept of metamodel which is defined by a set of a finite number of

attributes is useful, and it leads to a design process model called evolution model. This design
process model can give a reasonable explanation on real design processes.

(4) It is possible to give metric to the attribute space in the real knowledge.
(5) From GENERAL DESIGN THEORY, we can deduce several comments on the data structure of

CAD systems. For example, an extensional description method is more suitable for CAD

systems than intensional one theoretically, but practically we need to combine both of them.
(6) Future CAD systems would be realized by techniques of knowledge engineering, and as a

guiding principle to build such systems design theories would become important. GENERAL

DESIGN THEORY would serve as such a principle.

ACKNOWLEDGEMENT
We would like to thank Ms. Masami Kumazawa of the University of Tokyo for her helpful advice,

especially, about mathematical derivation. We are also grateful to Mr. Takaaki Yagyu of Univac

Japan for his stimulating us to study the data model description problem.

REFERENCES
1. V. HUBKA (1977) Theorie der Konstruktionsprozesse, Springer, Berlin, Heidelberg, New York.
2. T. TOMIYAMA, H. YOSHIKAWA (1985) Requirements and principles for intelligent CAD systems, in

[3], pp. 1.
3. J. S. GERO (ed.) (1985) Knowledge Engineering in Computer-Aided Design, Proceedings of IFIP

WG5.2 Working Conference 1984 (Budapest), North-Holland, Amsterdam.
4. H. YOSHIKAWA (1981) General design theory and a CAD system, in T. SATA, E. WARMAN (eds.),

Man-Machine Communication in CAD/CAM, Proceedings of IFIP WG5.2/5.3 Working Conference

1980 (Tokyo), North-Holland, Amsterdam, pp. 35.
5. R. A. LORIE (1982), Issues in database for design applications, in J. ENCARNACAO, F.-L. KRAUSE

(eds.), File Structures and Data Bases for CAD, Proceedings of IFIP WG5.2 Working Conference

1981 (Seeheim), North-Holland, Amsterdam, pp. 213.

