
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.N. Kok

Denotational semantics of nets with nondeterminism

Department of Computer Science Report CS-R8605 January

',/

'· .

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11, 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Cooynght ;c;. Stichting Mathematisch Centrum, Amsterdam
'"

Denotational Semantics of Nets with Nondeterminism

Joost N. Kok
Centre for Mathematics and Computer Science

. P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We define a topological framework for streams of traces. With this approach Kahn's method generalizes to
nets with bounded nondeterminism. We consider fixpoints of multivalued functions. We have a standard

fixed point theorem, which can be used to model feed back loops. These fixed points can also be obtained

by iteration. We give a general syntax of nets and see how we can analyze them in our streamframework.

We show how to avoid the Brock-Ackerman and Keller anomalies. We are able to model the fair merge,

which is a continuous function in our framework, and delay along lines. We prove a lemma that says that

the order in which we connect nodes in our networks does not matter. If we have nets with nodes with

unbounded nondeterminism, we can still use these fixpoints, but we do lose in our topological framework

our iteration theorem.

1980 Mathematics Subject Classification: 68B10. f -· f. _,
1982 CR Gategories: D.3.1, F.3.2, F.3.3. b ~ i) '-'\ I '> 0 ~ I- ~ 'l. 1 O ~ t· } '3.
Key Words & Phrases: dataflow programming, dataflow networks, denotational semantics, metric topology,

multivalued functions, concurrency.

Note: this work has been carried out in the context of LPC: the dutch National Project for Concurrency,

supported by the Netherlands Organisation for the Advancement of Pure Research (Z.W.0.), grant 125-20-
04.
Note: this paper will also appear in the proceedings of the European Symposium On Programming (ESOP).

These proceedings will be a volume in the Lecture Notes in Computer Science series of Springer Verlag.

1. INTRODUCTION

1

Kahn [Kahn 1974] has introduced a semantic framework for deterministic dataflow nets. Many
researchers have tried to extend these ideas to nets with nondeterministic nodes, for example [Keller
1978], [Brock & Ackerman 1981], [Arnold 1981], [Boussinot 1982]. See also the references listed at the
end of this paper. A straightforward extension of Kahn's framework does not work, because serious
anomalies arise, as is shown by [Keller 1978] and [Brock & Ackerman 1981]. We introduce these
anomalies by two examples, for more details see the original papers.

Ex.AMPLE I (Keller Anomaly) Consider the following net:

Report CS-R8605
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

ml y

merge

plus_l

split

out
z

The tokens on this net will be integers. This net has one input- and one output line and it consists of
three nodes: - a merge node which merges its two input lines, - a split node which outputs its input
tokens on both output lines, - a plus 1 node which adds 1 to each token that passes this node. Now
consider what happens if we put a "l" on the input line of this net. It passes the merge node, and
arrives at the split node. The split node sends one copy of "l" to the output line and one copy to the
plus 1 node, which adds 1 to "l" and sends "2" to the merge node. Continuing in this way we see
that-the desired output is the infinite stream 123 Now let us look at what happens if we try to
apply Kahn's method to this net. First write down the set of equations: {merge(IN , Y) = X, split(
X) = <OUT, Z >,plus 1(Z) = Y}. The set of equations is derived from the net. IN, OUT, X,
Y, Z represent histories on lines in our net. A history is a sequence of values. Let E denote the empty
history. The nodes are represented by functions that map histories to (sets of) histories. We are look­
ing for a solution which can be obtained by iteration, as in Kahn's approach. We start by initialyzing
X = Y = Z = OUT = E and IN = 1. We now 'fire' the nodes and compute the 'new' values of
these variables: 1. X=IN ={ 1 }, OUT=Z=Y={ E }. We repeat this process (iteration): 2.
X=IN=Z={ 1 }, Y={ e }, 3. X=IN=OUT=Z={ 1 }, Y={ 2 }, 4. X={ 12, 21 },
IN=OUT=Z={ 1 }, Y={ 2 }, 5. X={ 12, 21 }, IN={ 1 }, OUT=Z={ 12, 21 }, Y={ 2 }. We
can continue this way and get (in the limit) sets of histories on all the lines. Remark that now there
can be some output (on OUT) that is not possible operationally. We see that in the limit there is an
infinite stream which starts with 21. By operational intuition this is not allowed.

Ex.AMPLE 2 (Brock-Ackerman anomaly). Consider the following two networks which each have two
input and two output lines:

3

1 buffe

-double is a node that when it receives a token will output it twice (for example double(l2}= 1122),
-1 buffer is a buffer of length 1 that behaves like the identity function, -2 buffer is a buffer of length
2 that, if it contains two tokens outputs both, but if it contains only one token, it waits until it
receives a second token. If we assume that all nodes work at a finite speed (not at zero speed) we see
that networks "A" and "B" have the same input-output behaviour. The double nodes mask the
difference between the two buffers. Now place the networks "A" and "B" in the following context:

plus_l

out

If we insert subnet "A" and use "l" as input the output 12 .. is possible, but if we insert subnet "B"
this is not possible. Let us look more carefully at what happens. When we use subnet "A" and use as
input token "l" this "l" will be doubled. Now imagine that one of these tokens remains for some
time between the double node and the merge node. The other token passes through the merge node
and the 1 buffer. After this it can go to the split and the plus 1 node. Now it comes back in the
subnet "A" as "2" and can pass the merge node before the second "l" which was still at its previous
position between the double node and the merge node. With subnet "B" this is not possible, because
before we have some output from this net both "l" tokens must have passed the merge node. So we
see, although nets "A" and "B" have the same input-output behaviour in isolation, they have different
behaviour in some context. We will try to explain (informally) some of the concepts of this paper.
We look at the behaviour of a node in a network. The behaviour consists of three stages: node con­
sumes input, node works on this input, node produces output. When a node consumes input, it takes
a sequence of tokens (called a trace) from each of its input lines. Then it works on this input, it

4
j

does some internal processing and outputs traces on its output lines. After this output, the ~ode starts
again consuming input. Note that a node starts outputting after it has finished to consume tokens.
The behaviour of a node can thus be described by a function that maps (tuples of) sequen~ of traces
to (sets of tuples of) sequences of traces. An infinite sequence of traces will be called a; stream A
finite sequence of traces can be made into an infinite by adding £'s.

Ex°AMPLE: Consider a node that waits till it has received four integers and then outputs the sum of
these four integers. The behaviour of such a node can be described by a function cp that maps
streams to streams. Let £ denote the empty trace. Let 0 = < 1111, 1111, · · · > and
0'=<11£11£ ···>be two streams Wehave""0)=<44 · · · > and""°'')=<££4££4 · ·· > '' '' • 'I'\ ' ' 'I"\'=" ' ' ''' ' •

Now we are able to solve the anomalies: we can observe in our model things like "before we input
some tokens there must be some output". For example </>(_ <£,34,£,£, · · · >) = < 12,45,£,£, · · · >
can be translated as: first there was no input and the node produced the tokens 12, then the input
was extended by 34 and this caused 45 to appear on the output line.

Now we have introduced the general idea, we give an overview of the rest of our paper. In section 2
we introduce some mathematical preliminaries about metric spaces. Section 3 describes our domains.
We have a domain of tuples of streams and a domain of functions. Both are turned into metric
spaces. Section 4 deals with the syntax of nets, and in section 5 we construct a mapping from these
nets into our domains. In this section we prove a lemma about the order of connection of lines in
our nets. Section 6 is about the generalization of functions and section 7 discusses the delay function.
The next section indicates why the anomalies discussed before do not occur in our framework, and
section 9 looks at what happens if we allow nodes with unbounded nondeterminism.

2. MATHEMATICAL PRELIMINARIES
In this section we collect some basic definitions and properties concerning metric spaces. Let X be
any set. '8>(X) denotes the powerset of X, i.e., the set of all subsets of X. <8> ..• (X) denote the set of all
subsets of X which have property · · ·. A sequence x 0 ,x 1, • • • of elements of X is usually denoted
by <x;>f=o or, briefly, <x1>;. For limit, supremum (sup), etc. of a sequence <x;>1• We use the
notations _lim x;, or, briefly, lim; x1, sup; x1, etc.

1-+00

DEFINITION 2.1. A metric space is a pair (M,d) with M a set and d (for distance) a mapping
d: MXM~[O,l] which satisfies the following properties: (a) d(x,y)=O iff x =y, (b) d(x,y)=d(y,x),
(c) d(x,y):;;;;;,d(x,z)+d(z,y)

DEFINITION 2.2. Let (M,d) be a metric space.
a. Let <x;>; be a sequence in M. We say that <x;>; converges to an element x in M called its

limit, whenever we have: 'ff £ > 0 3 N 'ff n > N [d (x,xn) < £]. A sequence <x; >; in M is a
convergent sequence if it converges to x for some x E X

b.A sequence <x1> 1 is called a Cauchy sequence whenever we have 'ff£> 0 3 N 'ff n,m > N
[d(xn,Xm) < £]

c. The space (M,d) is called complete whenever each Cauchy sequence converges to an element in M.
d. A subset X of M is called closed whenever each Cauchy sequence in X converges to an element of

x.

DEFINITION 2.3.
a. Let (Mi.d1) and (M2,d2) be two metric spaces. We call the function f: M 1 ~ M 2 continuous,

whenever, for each sequence <x1 >; with limit x in M 1, we have that lim; f (x;) = f (x).
b. Let (M,d) be a metric space and f: M ~ M. We call f contracting if there exists a constant c,

O:;;;;;,c<l, such that, for all x,y EM, d(f(x), f(y)):;;;;;;, c. d(x, y).

5

c. Let (M,d) be a metric space and f: M ~ M. We call f non distance increasing if for all x,y EM,
d(f(x), f(y)) ~ d(x ,y).

PROPOSITION 2.4. Each contracting function is continuous.

A

For each metric space (M,d) we can define a metric don the collection of its nonempty closed sub-
sets, denoted by '3>nc(M), as follows:

DEFINITION 2.5 (Hausdorff distance). Let (k!_,d) be a metric space, and let X, Y be nonempty subsets
of M. We put d'(x, Y) = inJ; EY d(x,y), and d(X, Y) = max(supx EX d'(x, Y) , supy EY d'(y,X)).

A

PROPOSITiqN 2.6. Let (M,d) be a metric space and d as in def. 2.5.
a. ('3>nc(M),d) is a metric space. A

b.If (M,d))s complete then ('3>nc(M),d) is complete. Moreover, for <X;>; a Cauchy sequence in
('3>nc(M),d) we have lim; X; = { lim; X; : X; E X;, <x;>; a Cauchy sequence in M }.

Proofs of proposition 2.6. can be found e.g. in [Dugundji 1966] or [Engelking 1977]. The proposition
is due to Hahn [Hahn 1948]. Useful information on topologies on spaces of subsets can be found in
[Michael 1951].

DEFINITION 2. 7. Let A be an alphabet. We use A* to denote the collection of all finite words over A
and A"' to denote the collection of all infinite words over A. We put Ast =df A* U A"'. We use E:

for the empty word, a* for the set of all finite sequences of a's, and a"' for the infinite sequence of a's.
Analogously we use notations such as (ab)* or (ab)"', etc. We shall use u,v,w, · · · to range over A 81

and X, Y, · · · for subsets of Ast.

DEFINITION 2.8.
a. For u EA*, I u I denotes the length of u.
b. For u, v EA st we put u ~v if there exists w such that u. w = v. We call u a prefix of v.
c. For u,v E As', u(n) denotes the prefix of u of length n, in case I u I ~n. Otherwise, u(n)=u.

We turn Ast into a metric space by defining a distance d : Ast XA st ~[O, 1] as follows:
DEFINITION 2.9. For u,v EA 31 we put d(u,v)=2-sup{n lu(n)=v(n)} with the understanding that 2- 00 =O.

PROPOSITION 2.10. (Ast ,d) and (A"' ,d) are complete metric spaces.
The proof can be found, for example, in [Nivat 1979].

3. DOMAINS
Let N be the set of integers. Take as alphabet A =Nst. Define DOM=A"'. Members of DOM will
be surrounded by < and > to avoid confusion with members of Ns'. In the sequel we will call
members of DOM streams and members of Ns' traces. The empty trace will be denoted by£. If we
give DOM the metric d of definition 2.9 we get by proposition 2.10 a complete metric space. For
example d(<l23,456,7,l,l, · · · >,<123,457,6,2,2, · · · >)=*· Nodes in general have more than
one input line, so we consider tuples of streams. To~ more formal let 0ED0Mn, where DOMn is
the set of n-tuples of streams. Let d:DOMn XDOMn~[O, 1] be defined by
d(0,S)=dfmax; E{I, ... ,n}d(0;,B;). Usually we omit the bar of d.

PROPOSITION 3.1. (DOMn,d) is a complete metric space for each n.

By proposition 2.6 we have A

CoROLLARY 3.2. ('3>nc(DOMn),d) is a complete metric space for each n.

6

Let q, E DOMn~'{fnc(DOMm). Now define DOMn:m as follows:
DO Mn :m = { q, I q, is non distance increasing } Non distance increasing is the generalization of mono­
tonicity in order-theoretic frameworks. It says something like: if two inputs differ after n timesteps,
the outputs will differ after n timesteps or later. If q,EDOMn~'{f(DOMn) we can define the set of
fixpoints: FP(q,)={010E</>(0)}. In topology this is a standard way of defining fixed points of mul­
tivalued functions, see [Nadler 1970]. It is different from certain approaches in semantics: for exam­
ple [de Bakker & Kok 1985] first generalize a function q,EDOMn~'{fnc(DOMn) to a function
q,E'{fnc(DOMn)~'{fnc(DOMn) and then solve the equation </>(X)=X. Define
DJ= U DOMn U U DOMn:m. DJ will be our semantic domain. We have the following facts:

n ~m

THEOREM 3.3. Let q,EDOMn~'{fnc(DOMn) be a continuous function. Then we have
i. FP(q,)E'{fc(DOMn)
ii.FP(q,)={lim;E>; 10° arbitrary ,ai+l E</>(0i),<0;>; a Cauchy sequence}
PROOF: i. Let <0;>; be a Cauchy sequence in FP(q,). Let 0=/im;E>i. We have by 2.3.a
</>(0)=lim;</>(0i). For each i 0; EFP(q,), so E>i E</>(0i), so by 2.6.b we have lim;E>; E</>(0), so 0E</>(0)
thus 0EFP(q,).
ii. Let <0;>; be a Cauchy sequence such that for each i 9i+l E</>(0;). We have </>(lim;E>;)=lim;

.. </>(0;) 3 /im;E)i+l =lim;E>; so lim;E>; EFP(q,).
The other way is easy: if E>EFP(q,), then we have 0E</>(0), so <0,0, · · · > is the desired Cauchy
sequence.O

THEOREM 3.4. Let q,EDOMn~'{fnc(DOMn) be a contracting function. Then we have that FP(q,) is
non empty.
PROOF Cauchy sequences of theorem 3.3 are easy to CO!lstruct: take a 0° arbitrary, choose 0 1 E</>(0°).
Let d(0°,01)=a. By the contractivity of q, we have d(cJ>(0°),cJ>(01))o;;;;c.a, Oo;;;;c<l, so there exists a
0 2 E</>(01) such that d(01,02)o;;;;c.a. Continuing this way, we get members of FP(q,). D.

The proof of theorem 3.4 is given, in a more general setting in [Nadler 1970].

4. SYNTAX OF NETS

A net is described by a term, which has an arity, and this arity corresponds to the numbers of the
input- and the output lines. First we define the class of standard nodes: (for example merge E
Node 2:1) dn:m E Noden:m, d E Node = U Noden:m. Let net expressions be defined by:

n,m
t E NetExp = U NetExpn:m where NetExpn:m can be build up in the following way:

n,m

(standard node)

tn+k:m {i1:ji, · · · ,ik:}k} (feedback, i1 input is connected to}r output,
lo;;;;i1 < · · · <ik.;;;;n +k,V l, Io;;;;/o;;;;k, Io;;;;Jro;;;;m)

tn:m+k / Ui. · · · ,jk} (abstraction: we are not interested in the
j 1 · · · }k output lines, I o;;;;j 1 < · · · <}k .;;;;m + k)

In pictures we have:

7

d

m

Example: the following pictures are represented in our syntax as
(< merge , plus_ l > { 2:2 , 3: I }) / { 2 }

merge

8

Compare with example I.

5. SEMANTICS

in

1

merge

I

out

3----

plus_l
2

First we need some definitions. Let 0ED0Mn and XE'?Y(DOMn).
(Projection) X <i., ... ,i.> = LJ 0<;,, ... ,i.> and 0<;., ... ,;.> = <0;,, · · · ,0;. >.

0EX

(Slicing) X(i,, ... ,;,> = LJ 0(i., ... ,;,> and 0(i., ... ,;,) = "0 without 0;, , · · · ,0;."
0EX

< 0i. ... '8;,-1 ,0;,+J ' ... ' 0;.-1 ,e;.+1 ' ... ' en >

(Concatenation) <x 1' ••. , Xn > 0 X = LJ <x J, ••• , Xn > 0 f>
El'EX

(Combination of two functions
<c/>i ,c/>7. > EDOMn' +n2 :m1 +m2

) Let

<c/>1>'1>1.>(0)={SED0Mm,+m2 I 0<1, ... ,m,> E</>(0<1, ... ,n,»

and

(Combination of two tuples) For each k,l EN we define a Joink,I function:

Joink,I: {<i1>···•ik>IO.;;;;i1< · · · <ik.;;;;k+l}XDOMkXDOM1-'>D0Mk+I

Joink,1(<ii. .. . , ik>,0,S)=0' where 0' <i, ... ;.> =0,0'(i, ... ;.) =S

Usually we omit the subscripts k,l of the Join function.

Examples: let 0 E DOM3 be defined by 0=<<1,1, · · · >,<2,2, · · · >,<3,3, · · · >> Then
0<1,2>=<<1,l, · · · >,<2,2, · · · >> and 0(1,2)=<<3,3, · · · >>. We also have
<12,34,56> 0 0= <<12,l,l, · · · >,<34,2,2, · · · >,<56,3,3, · · · >>. Let 0' E DOM2 be
defined by 0'= <<4,4, · · · >,<5,5, · · · >>. Then Join(<l,3,5>,0,0')= Join(<2,4>,0',0)=
<<1,1, ... >,<4,4, ... >,<2,2, ... >,<5,5, ... >,<3,3, ... >>.

Let Env be the set of environments, yEEnv, Env =Node-'>DOM. Each environment has to be type
preserving, i.e. if d E Noden:m then we must have y(d) E DOMn:m. Now we are sufficiently
prepared to give the semantics of net expressions. Let U : N etExp -'> Env -'> I!) be defined as fol­
lows:

9

[dn:m] 'Y = y(dn:m)

[< li':m, ,l~2:m, >] 'Y = < [1n,:m1] 'Y, [1n,:m2] 'Y >

[In :m +k / { j 1' ... ,A }] 'Y = A.0.(([ln :m +k]y)(0))(i, ... j,)

[1n+k:m{i1:ji. ... ,ik:A}b=A.0.FP(A.0.<f>(Join(<ii. ... ,ik>,<E, ... ,E>0 0<j., .. .,J,>•0)))

where 'f> = [In +k:m] y. Observe, that if 'f>EDOMn +k:m, then for all 0,
A.0.'i>(Join (<ii. ... , ik >, <E, ... , E>0 0<j,, ... ,J.>, 0))) is contractive, so we can apply 3.3.ii. The
theorem and generalizations of it say that it does not matter in which order we connect the input and
output lines.

THEOREM 5.1.For all yEEnv, for all 12
=
2 ENe1Exp2

=
2

[12
=
2 {I: l,2:2}]"(=[(12:2 {I: 1 }){1 :2}]y

PROOF. Let q>=[12
=
2]y. We have '/>EDOM2

:2 • [12:2{1:1,2:2}]y= {0EDOM21 0Eq,(E0 0i. £0 02)}.
Recall that 0 1 denotes projection on the first co0rdinate. [12:2{1:l}]y= A.0'. {0"EDOM2: 0"E
q,{E0 0"i.0')} =dfql. We have q>'EDOM1:2. [(12

=
2{1:1}){1:2}]"(= {0111 EDOM2: 0 111 E q>'(Eo0111

2)}
= '/>". We have: '/>"= {0111 EDOM2: 0 111 E{0"EDOM2 I 0"E '/>"Eq,(£0 0"1 £0 0 1112)}}=
{0111 EDOM2: 0 111 E q,(<£0 0 111

., Eo01112>)}. 0

6. GENERALIZATION OF FUNCTIONS
Usually functions in networks are not an element of DO Mn ~m. Let there be given a functio.r:i
'f>: (N8')n~~ (N8'r), We extend this function '1> to a function '1> E DOMn:m. Take a certain input
0= <<011,012, · · · >, ... , <0ni.0n2• · · · >>. We define

:(,{ 0) = { 0 1(<011, • · · ,0m1>E #._<011, • · · ,0n1>)

V(<0u, ... ,0m1>=<E, ... ,E>A#._<011, ... ,0n1>)=0))

/\

(<011812, · • • ,0m10m2>Eq,(<011012, • • • ,0n10n2>)

V(q,{011012• · · · ,0m10m2)= 0/\<012, · • • ,0n2>=<E, ... ,E>))

/\ . . . }

We give an example. The generalized (fair) merge function behaves as follows:
merge(<<l2,E,E, ... >,<34,E,E, ... >>)= {<1234,E,E, ... >, <1324,E,E, ... >,
<1342,E,E, · · · >, <3124,E,E, • • • >, <3412,E,E, • • • >, <3142,E,E, · · · >} and
merge(<<l,2,E,E, ... >, <3,4,E,E, ... >>)= {<13,24,E,E, ... >, <31,24,E,E, ... >,
<13,42,E,E, • • • >, <31,42,E,E, • • · >}
Remark: it is possible that this construction does not give the desired results if we generalize func­
tions with unbounded nondeterminism. For a discussion see section 9.

7. DELAY FUNCTION

Our model can also be used to model delay along lines, by the introduction of delay functions. On
each line of the network we place a delay node. For example the network of example I is replaced
by:

10

plus_l

O delay node

delay = PREF where PREF: 1\181 ~ <3'(1\181
) is defined by PREF(x) = { x' I x' E;;; x } so the delay

function is the generalization of the prefix function.

8. THE ABSENCE OF THE BROCK-ACKERMAN AND KELLER ANOMALIBS

We show why these anomalies do not occur in our framework. Keller anomaly: we use the idea of
extension [de Bakker et al 1985]. It is somewhat hidden in the definition of the generalization func­
tion ""'' of section 5. In modeling a feed back loop we insist that if we accept a new tuple as output,
it must extend previous outputs. Therefore it is not possible for new tokens to pass old ones. Brock­
Ackerman anomaly: with our extended streams it is possible to use some abstract time, although not
so explicit as was suggested by Wadge as in [Wadge 1981], where T's are introduced to represent ticks
of a clock. Our semantics gives a different meaning to the networks "A" and "B" of section 1. For
example with input < 1,£,2,£,£, · · · > output <£, 1,2,£, 12,£, · · · > is possible for "A" but not for
"B".

9. NODES WITH UNBOUNDED NONDETERMINISM

In the previous sections we used as domains for functions DOMn~<3'closed(DOMm). We furthermore
required that these functions are non distance increasing. In this section we look what happens if we
allow non closed sets, i.e. take as domains DOMn~<3'(DOMm). Functions that are not an element of
a DOMn~<3'c1osed(DOMm) but are element of a DOMn~<3'(DOMm) for certain n,m, are said to be
functions with unbounded nondeterminism.

First of all, we can not use the Hausdorff metric for <3'(DOMm), because it is only a metric on
<3'closed(DOMm). As a consequence, we do not have our iteration theorem 3.3 at hand. We must refor­
mulate the 'non distance increasing' property. But we can still define FP(cf>)={E>:E>Eq,(0)}, but this
fixed point can (in general) not be obtained by iteration.

We can define our map [.D: NetExp~Env'~ID' as in section 5, where Env'=Node~ID' and ID'=

LJ nDOMn U LJ n,m {cf>EDOMn~<3'(DOMm):'10,0'\fk.0[k]=0'[k] implies q,(0)[k]=q,(0')[k]}

where · · · [k] denotes truncation of length k. Now we consider the generalization function " A " of
section 5. A: ((1\181t~<3'((1\181r)~DoMn:m. If we have a function member of ((1\181)n~<3'((1\181r), but
not a member of ((1\18't~<3'c10sed((l\l81r), this construction does not always yield the right result. The
operationally desired function is then not a member of DO Mn :m, but is a member of
DOMn~<3'(DOMm). We have to use another generalization function. We therefore must be able to
record which output lines depend on which input lines. We can do this with coloring of the input
lines. [de Bakker et al 1985] use a coloring of bottom elements, but for a different purpose.

11

10. COMPARISON WITH OTHER FRAMEWORKS

Broy [Broy 1984] and Park [Park 1983] work with oracles. With oracles, a merge node can be made
deterministic and fair if we use only fair oracles. Indeed, the Brock-Ackerman anomaly can be solved
this way, but in our opinion the use of oracles is not the most elegant solution. An algebraic
approach is also possible, see for example [Back & Mannila 1982] or [Bergstra & Klop 1982].
Dataflow is modeled by processes, which can communicate by sending each other tokens. Delay is
modeled by buffers. There are, however, some restrictions on the functions that can be used in these
frameworks. Order theoretic approaches used up to now have either difficulties with defining an ord­
ering on sets (see for example the discussion in [Abramsky 1983]), or there are no real fixed points,
for example in [de Bakker et al 1985] or [Staples & Nguyen 1985]. We do not need all the informa­
tion that is available in the scenarios of Brock and Ackerman [Brock & Ackerman 1981]. The same
applies to a lot of category theoretic models, in which all information is available. Most of the topo­
logical frameworks work in a metric setting with closed or compact sets. Our closedness is less "seri­
ous". For example 1 * is not closed (it does not contain l''», but
{<1,£, · · · >,<11,£, · · · >,<111,£, · · · >, ... } is closed, although it does not contain
<1 .. ,£, · · · >. With unbounded nondeterminism we can still apply our definitions, but we do not
have our nice metric topological framework at hand. Future work will try to integrate our framework
with that of Keller and Panangaden [Keller & Panangaden 1985], combining our fixed point technique
with their categorical approach via event structures.

11. REFERENCES

[Abramsk:y 1983], A. Abramsk:y, On Semantic Foundations for Applicative Multiprogramming, Proc.
lOth ICALP, (J.Diaz ed.), Barcelona, LNCS 154, Springer, 1983, pp. 1-14.
[Arnold 1981], A. Arnold, Semantique des Processus Communicants, RAIRO 15 (2), 1981, pp.103-109.
[Back & Mannila 1982], R.J.Back, N. Mannila, A Refinement of Kahn's Semantics to Handle Nondeter­
minism and Communication, Proc. ACM Symp. on Distributed Comp., Ottawa, 1982, pp. 111-120.
[de Bakker et al 1985], J.W. de Bakker, J.-J.Ch. Meyer, J. Zucker, Bringing Color in the Semantics of
Nondeterministic Dataflow, Preprint, Centre fo Mathematics and Computer Science, 1985.
[de Bakker & Kok 1985], J.W. de Bakker, J.N. Kok, Towards a Topological Treatment of Streams and
Functions on Streams, Proc. 12th ICALP, (W. Brauer ed.), Nafplion, LNCS 194, 1985, pp. 140-149.
[Bergstra & Klop 1983], J. Bergstra, J.W. Klop, Process Algebra for the Operational Semantics of Static
Data.flow Networks, Techn. Report Mathematical Centre IW 222/83, Amsterdam, 1983.
[Boussinot 1982], Boussinot, Proposition de semantique denotatione/le pour des reseaux de processus avec
operateur de melange equitable, TCS 18, 1982, pp. 173-206.
[Brock & Ackerman 1981], J.D. Brock, W.B. Ackerman, Scenarios: A Model of Non-determinate Com­
putation, in Proc. Formalization of Language Concepts, (J. Diaz, J. Ramos eds.), LNCS 107, Springer,
1981, pp. 252-259.
[Broy 1983], M. Broy, Fixed Point Theory for Communication and Concurrency, in: Formal Description
of Programming Concepts-II, (Bjomer ed.), North-Holland, Amsterdam, 1983, pp. 125-148.
[Broy 1984], M. Broy, Nondeterministic Data Flow Programs: How to avoid the Merge Anomaly, pre­
print, Fakultat fur Mathematik und Informatik, Universitat Passau, 1984.
[Dugundji 1966], J. Dugundji, Topology, Allen and Bacon Rockleigh, N.J. 1966.
[Engelking 1977], R. Engelking, General topology, Polish Scientific Publishers 1977.
[Faustini 1982], A.A. Faustini, An Operational Semantics for Pure Data.flow, in: Proc. 9th ICALP, (M.
Nielsen, E.M. Schmidt, eds.), LNCS 140, Springer, 1982, pp. 212-224.
[Hahn 1948], H. Hahn, Ree/le Funktionen, Chelsea, New York, 1948.
[Kahn 1974] G. Kahn, The Semantics of a Simple Ltlnguage for Parallel Programming, in: Proc.
IFIP74, North-Holland, Amsterdam, 1977, pp. 993-998.
[Kahn & MacQueen 1977], G. Kahn, D.B. MacQueen, Coroutines and Networks of Parallel Processes,
in Proc. IFIP 1977, North-Holland, Amsterdam, 1977, pp. 993-998.
[Keller 1978], R.M. Keller, Denotational Models for Parallel Programs with Indeterminate Operators, in:

12

Formal Description of Programming Concepts, (E.J. Neuhold ed.), North-Holland, Amsterdam, 1977,
pp. 337-366.
[Keller & Panangaden 1985], RM. Keller, P. Panangaden, Semantics of Networks Containing Indeter­
minate Operators, in: Seminar on Concurrency, Carnegie-Mellon University, (S.D. Brookes, AW. Ros­
coe, G. Winskel eds.), Lecture Notes in Computer Science 197, pp. 479-496, 1985.
[Kosinski 1978], P.R. Kosinski, A Straightforward Denotational Semantics for Nondeterminate Data
Flow Programs, in: 5th ACM POPL, 1978, pp. 214-221.
[Michael 1951], E. Michael, Topologies on spaces of subsets, Trans. AMS 71 (1951), ppl2-182.
[Nadler 1970], Nadler, S.B., Some Results on Multi-Valued Contraction Mappings, in Set-Valued Map­
pings, Selections and Topological Properties of 2x, (W.M. Fleischman ed), Lecture Notes in
Mathematics, pp. 64-69, 1970.
[Nivat 1979], M. Nivat, Infinite words, infinite trees, infinite computations, Foundations of Computer
Science III. 2, Mathematical Centre Tracts 109 (1979) 3-52.
[Park 1983], D. Park, The Fairness Problem and Nondeterministic Computing Networks, in: Founda­
tions of Computer Science IV.2, (J.W. de Bakker, J. van Leeuwen eds), Mathematical Centre Tracts
159, Amsterdam, 1983, pp. 133-161.
[Staples & Nguyen 1985], J. Staples, V.L. Nguyen, A Fixpoint Semantics for Nondeterministic Data.flow,
Journal of the ACM, april 1985, 32(2), 1985, pp. 411-445.
[Wadge 1981], W.W. Wadge, An extensional Treatment of Data.flow Deadlock, in Theoretical Computer
Science 13 (1981), pp. 3-15, 1981.

,.

