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Abstract 

We consider explicit methods for initial-value problems for special second-order ordinary differential equations where 
the right-hand side does not contain the derivative of y and where the solution components are known to be periodic with 
frequencies w1 lying in a given nonnegative interval [f!!, w]. The aim of the paper is to exploit this extra information 
and to modify a given integration method in such a way that the method parameters are "tuned" to the interval [£Q, w]. 
Such an approach has already been proposed by Gautschi in 1961 for linear multistep methods for first-order differential 
equations in which the dominant frequencies w1 are a priori known. In this paper, we only assume that the interval [QI., W] 
is known. Two "tuning" techniques, respectively based on a least squares and a minimax approximation, are considered 
and applied to the classical explicit Stormer-Cowell methods and the recently developed parallel explicit Stormer-Cowell 
methods. © 2000 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

We consider explicit methods for nonstiff initial-value problems (IVPs) for the special second-order 
ordinary differential equation (ODE) 

d2y 
dt2 =J(y), y, f E !Rd, lo~t~tend, 
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where the right-hand side does not contain the de1ivative of y. On a set of subintervals, the solution 
of this IVP can be piecewise approximated by a sum of complex exponential functions like 

( 1.2) 

where the vectors !'J and the frequencies w1 are such that the approximation eITor is small in some 
sense. These frequencies w1 will be refeITed to as dominant frequencies. For a given subinterval and 
tolerance, many trigonometric approximations like ( 1.2) are possible, and for a given s the approx
imation error can be made smaller as the length of the subinterval decreases. We are particularly 
interested in the case where the solution of ( 1.1) can be approximated such that in all subinter
vals ( i) the values of I \';1111 00 are of modest magnitude and (ii) the frequencies co; are located in a 
given, relatively small, nonnegative interval [w,w] (in Section 2.3.1, we shall show that this is not 
an exceptional situation). The aim of the paper is to exploit this extra information on the solution 
by modifying a given integration method for ( 1.1) in such a way that the method parameters are 
"tuned" to the interval [ w, w]. A related approach has already been proposed by Gautschi in 1961 

[2]. He considered linear multistep methods for first-order ODEs whose solutions are known to have 
a priori given, dominant frequencies w1, and he "tuned" the linear multistep coefficients to these 
dominant frequencies. However, instead of assuming that the location of the dominant frequencies 
is given, we only assume that the interval [co, co] is available. By using a minimax technique, we 
will "tune" the coefficients of the integration method to this interval. The tuning will of course be 
more effective as co - w is smaller. 

In [5] we applied the minimax approach to linear multistep methods for first-order ODEs. In this 
paper, we analyse this approach for two families of second-oder ODE methods, viz. the classical 
explicit Sti:>tmer-Cowell methods (see e.g. [3, p. 422]) and the parallel explicit Stormer-Cowell 
methods developed in [ 4]. In addition, we show that in general the minimax approach is superior to 
a tuning technique based on least squares minimization. The minimax and least-squares versions of 
the Starmer-Cowell methods will be called oscillatory Starmer-Cowell methods. 

2. The numerical schemes 

The methods studied in this paper are of the explicit general linear method (GLM) form 

Yn+l = (R ® l)Yn + h2(S ®I)F(Yn), 11=0, 1, .... (2.1) 

Here R and S are k-by-k matrices with k ~ 2, 0 the Kronecker product, h denotes the stepsize 
t11+1 - tn, and each of the k components Yn+I,J of the kd-dimensional solution vector Y11+ 1 represents 
a numerical approximation to y(t" + aJh). The vector a:= (a;) is called the abscissa vector, the 
quantities Y11 the stage vectors and their components YnJ the stage values. Furthe1more, for any 
vector Yn =(y,,1), F(Yn) contains the righthand side values (f(y111 )). The abscissae a1 are assumed 
to be distinct with ak = l. 

The GLM (2.1) is completely detem1ined by the matrices {R, S} and the starting vector Y0 ~ 

(y(t0+(a1-I)h)). Thus, given {Yo,R,S}, (2.1) defines the sequence of vectors Yi, Y2, ••.. Evidently, 
each step requires the evaluation of the k right-hand side functions f(YnJ ), but they can be evaluated 
in parallel, so that effectively the GLM requires only one right-hand side function per step. 
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}._I local 

The local error is defined by the residue upon subslltulion of the exact solution into the GUvt 
The rate hy which the residue tends to zero as 0 detennines the . \Ve shall 

the GUv1 (and the \et:lor r,.~;) 011.1is!e/ll 1/ if thi>! residue upon substitution of 
the exact solution values .rUn + into ( 2.1 ) is of order h'1• 2. The vah.1e of t/ is often called the 
stow· . Given the vector a. the 1.~onsistency condition kaJs to a set of order conditions to be 
satisfied the matrices R and S. In addition. m order 10 han~ convergence. the GLM has to satisfy 
the n1n's,\arr condition of . that is. the matrix R should have its eigenvalues on the 
unit disk and the eigenvalues of moduius one should have multiplicity not greater than two. 

From the consistency defimtitin ahl)Vt\ the orJer c ... mditions follov, immediately. for sim-
plit:ity of notation. we assume that the ODE is a scalar equation. Here. and in the sequel of this 
paper. we will use the 1.·omponentwise definition M. functions of vectors. that is. for any function 11 
and vector t\ we define q( l'): "" i 1.1( r ) ). Then. substituting the exai.:t solution into ( 2.1 ). we define 
the local error 

1:(1. h ) : " R }' U -t· 

f 

SF(Y(l)l-

·-· I 
-- \ , cF ·) 

t fr· dt" S. exp 

Yu -r h l 

... j)) 'd) 
exp( ah ~t. y(t) = 1f1(h dt. J(f). ( 2.2) 

where h: :=a - e. e bemg the vector with unit emries. l'( t) denotes the vector containing the exact 
stage values. and 

::: ) : ::= l R -r :::2 S )exp( h:::) - exp( a::). ( 2.3) 

Let us expand 4» in the Taylor series 

<'-~ : =..cc Re t' c 1 :=Rb-· a. c ·= I Rh'~" - a 1 ~1 ) -t- ~1 Sh 1 , j~O. 
1· (j+2)~ J. 

(2.4) 

Furthem10re. let us ch•Jose the matrix R such that f _ ~ = c_, = 0. By defining the matrices 

C : = ( ('o •...• C;;- ! ). 

I ' h. -h-..... 
2! (k 

(2.5a) 

we find that the matrix S and the error matrix (' are related by the formula 

SX-·C=l,,- (2.5b) 

The comentional \vay of constructing IVP solvers chooses distinct abscissae a1 (so that X is non
singular) and defines S by (2.5b) with C=O yielding methods with stage order q=k. By a judicious 
choice of a one may increase the order of accuracy at the step points t,, to obtain step point order 
p > q ( superconvergence at the step points J. 
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2.2. Stormer-Cowell methods 

The definition of the classical explicit k-step Stormer-Cowell (SC) methods with (step point) 
order p = k can be found in e.g. [3, p. 422]. These methods fit into the GLM format (2.1) with 

Q = ( 2 - k, 3 - k, ... , -1, 0, l) T, s = (~)' Y =(0, ... ,0,-1,2)T, 

(2.6a) 

where the vector s is determined by substituting (2.6a) into (2.5b) and setting C = 0. Because the 
(shifted) abscissae bj are distinct, X is invertible, and since s1 = eIS, it follows from (2.5b) that 

(2.6b) 

Note that YnJ = Yn-1,j+l for j = 1, ... , k - 1, so that the first k - 1 components f(YnJ) of F( Yn) are 
available from the preceding step. Hence, (2.6) defines a classical linear multistep-type method with 
only one new right-hand side evaluation per step. 

In [4] we derived parallel Sformer-Cowell (PSC) methods by allowing S to be a full matrix 
satisfying (2.5b) with C = 0, and by defining R according to the (zero-stable) matrix 

R = (0, .. . ,0,e - r,r), 
a 

r=e---
ak-1 - 1 

(2.7a) 

(note that the consistency conditions c_2=c1 =0 are now automatically satisfied). Since the (shifted) 
abscissae bj are distinct, S can be defined by 

(2. 7b) 

to obtain PSC methods with stage order q=k. However, in [4] it was shown that the abscissa vector 
a can be chosen such that the step-point order p > k. In addition, in a few cases it is possible to 
choose a such that instead of k computational stages only k - 1 computational stages are involved, 
that is, only k- 1 distinct right-hand side functions, and hence only k- 1 processors, are needed per 
step. For future reference, Table 1 lists the abscissa vector a, the number of computational stages 
k* and the order p. 

Table 1 
Abscissa vector a, computational stages k*, and step-point order p for PSC methods 

k k* p a 

4 4 5 57+./229 57-./229 3 

146::iv'i63 
20 2 

5 4 6 146+V163 I 3 _6_6_ -66- 2 2 
6 6 8 1.220473884991749550773176295 1.785748179438222426650898115 

2.082801901339905567884428919 2.357404605658693883262925242 3 
2 

7 6 9 1.223660672730360134033723070 1.783141526651761362293102021 
2.085502432861554845592192032 2.359849808362845524482247436 I 3 

2 2 
8 7 10 1.225168248342102287044467884 1.786086152017853260021754689 

2.072080312447516818672381998 2.347691904907298754183065141 59 I 3 
20 2 2 
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2.3. Oscillatory Stiirmer-Cowelf 1nethodY 

Suppose that the components of the exact solution y(t) are expanded piecewise on subintervals 
with respect to the eigenfunctions {exp(J.t): A EC} of the operator d/dt. Then, it follows from (2.2) 
that the local error e(t,h) can be expanded in the functions {</>(h).)exp(At): ), EC}, i.e. 

e(t,h)::::: }' 1 </>(h).1 )e;11 + /'2<f>(h).2)eA21 + · · · + ~'s<f>(h).)e1' 1 , )i E Co, (2.2') 

where the t'.i are the coefficient vectors and C0 denotes the set in the complex plane containing the 
s parameters ),1 needed in the expansion of the components of y(t ). Expansion (2.2') shows that 
the magnitude of the local error can be minimized by minimizing the function cj>(z) in the domain 
hC0 . In this paper, we consider the case where C0 = [iQ2,iw], that is y(t) can be approximated 
piecewise by trigonometric formulas of form ( 1.2 ). The oscillatory Starmer-Cowell methods (briefly 
OSC methods) and the parallel OSC methods ( POSC methods) constructed in this section use 
the same matrix R and the same abscissa vector a as defined in (2.6a) and in {(2.7a), Table 
1} , respectively. However, the matrix S will be chosen such that in some sense the function 
<f>(z) is minimized on [ihw, ihw]. Before discussing this minimization, we consider the piecewise 
trigonometric approximation of functions in more detail. 

2.3.1. TrifJOIZOmetric approximations 
We start with the more general approximation problem, where we are given a function y and an 

approximation f!s to y satisfying s + l distinct collocation conditions y(Tm) = gs( Tm), m = 1, ... , s + 1, 
with t* ~Tm~ t* +h. Since the (s+ l )-point polynomial interpolation formula interpolating the function 
c\(t) := y(t) - gs(t) at the (distinct) points Tm is identically zero, we obtain the approximation error 

~(·)·- () (·)- I (.)( (s+ll(fJ()) (s+l)(r'(.))) t*~t~t*+h, (2.8) Us f .- y t - 9s l - (s + l )! 1Is+l l y . t - qs fl t. , _ _ 

where ns+iU) := (t - T1 )(t - T2 ) · · · (t - Ts+l ), e = fJ(t) assumes values in [t*,t* + h]. By observing 
that choosing the points Tm equal to the zeros of the first-kind Chebyshev polynomial shifted to the 
subinterval [t*, t* + h], that is, 

Tm:= t + -h I +cos . n ' * 1 ( ( 2m - I )) 
2 2(s-+ 1) 

m = l, ... ,s+ 1 (2.9) 

minimizes the maximum of the polynomial 7!5 + 1 ( t) in the interval [t*, t* + h ], it follows from formula 
(2.8) that we may expect that this choice reduces the magnitude of 6s(t). It is easily verified that in the 
case (2.9) we obtain ns+ 1(t)=2-2·1 - 1hs+ 1TH1(2h- 1(t-t*)-1). Thus, we have the following result: 

Theorem 2.1. Let Tm be qiven by (2.9) and let YsU) be a function satisfying the collocation con
ditions y( Tm) = gs( Tm), m = l, ... , s + 1. If y - Ys is s + 1 times differentiable in [t*, t* + h], then 

hs+I 
I;; ( )! s:. I (s+l )<8 ) (s+l)<e )! 1* ~.t ~1· + h, s t_ "'22s+1(s+ l)! y I -gs 2 ' 

y(t) = gs(t) + 1\(t), 

where 01 and 02 are in [t*, t* + h]. 

By means of this theorem we can obtain insight into the trigonometric approximation ( 1.2 ). Let 
y(t) denote a component of the ODE solution y(t) and let us assume that in (1.2) the vectors 
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Table 2 
Maximal approximation errors for y( t) = t cos( t2 ) on [O, 1] 

s a [fil, Qi] h=l h-l -2 h=l 
4 h=i h = .l. 

16 p 

2 3 [2.0, 3.0] 1.5 2.1 2.9 3.8 4.7 3.0 
4 3 [2.0, 3.3] 3.1 4.8 6.2 7.5 9.0 5.0 
6 5 [2.0, 3.6] 4.5 6.2 8.2 10.3 7.0 

y0, yi, y3,. .• are real and the vectors }12, y4, ")'6, •.. are purely imaginary. Then, we can write ( 1.2) for 
the component y( t) in the form 

y(t) ~ gs(t), gs(t) := O:o + C£ 1 cos(w1t) + 0:2 sin(w2t) + · · · + ::!s-1 cos(ws-1t) +as sin(wst), 

( 1.2') 

where all coefficients aj are real. In each subinterval [tn, tn + h] we require that the coefficients a1 
are such that y(rm) = g5 (Tm) for the s + 1 points Tm defined by (2.9) with t* = tn. In this way, we 
obtain a piecewise trigonometric approximation of the solution component y(t ). In each subinterval, 
the accuracy of this approximation is determined by Theorem 2.1. This theorem implies that for any 
given set of frequencies cv1 for which the linear system for the coefficients aj is nonsingular, the 
approximation error b(t)=O(hs+I) in each subinterval. However, large values of g~s+ 1 l(e2 ) may result 
in large-order constants. From (1.2') we see that given the frequency interval [m,cv], the frequencies 
Wj should be such that the magnitude of the coefficients o:j is as small as possible. In order to 
see whether it is possible to combine coefficients of modest magnitude with frequencies in a given 
interval, we determined for a number of given functions, piecewise trigonomet1ic approximations 
by minimizing the maximal value of Jbs(t)j over the w1 with the constraints max1 Jia1 Ji 00 ~ii and 
w ~ w1 ~ w. A typical situation is shown by the piecewise trigonometric approximation of the function 
y(t )=t cos(t2 ) on the interval [O, 1 ]. This function oscillates with increasing frequency and amplitude. 
Table 2 lists the number of correct digits L1 (i.e. the maximal absolute error is written as 10-Ll ), 
the constraint on o:, a suitable frequency interval, and the observed order of accuracy p. Note that 
the order of accuracy p is in agreement with Theorem 2.1. 

This example illustrates that the representation of oscillatory functions by means of formulas of 
the form ( 1.2) with relatively small frequency bands and modest coefficients is quite accurate. 

Next, we consider the minimization of ef>(z) in the interval [ihw, ihw]. In the case of the SC 
methods only the last component of </>(z) is relevant, so that only this component needs to be 
considered. In the case of the PSC methods, all components </>j(z) play a role and could be minimized 
separately on intervals [ihcv, ihcv] depending on j. However, for simplicity, we shall only consider 
the case where all components are minimized on the same interval [ihw,ihw]. 

If the location of the frequencies oJ1 is known in advance and if there are sufficiently many 
free parameters available, then we obtain a perfect tuning of the method by choosing S such that 
the quantities </>j(ihwi), ... , </>1(ihw5 ) vanish. This is precisely the approach of Gautschi [2] in his 
oscillatory linear multistep methods for first-order ODEs with a priori given frequencies. 

In this paper, our starting point is that only the interval [@, w] is known. Then, the most natural 
option seems to be the minimization of the L2-norm of </>1(z) on the interval [ihw, ihw]. However, 
we will show that the system of equations defining the matrix S becomes highly ill-conditioned if 
the length of the interval [ihw, ihw] is small. Another option (already applied in [5] in the case 
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of linear multistep methods for first-order OD Es) chooses as many zeros of <PA=) as possible in 
the interval [ihw,ihw] in such a way that the maximum nonn of </J;(=) on the interval [ihw,ihw] is 
minimized. For a given interval [ihw, ihw] this minimax approach yields a system for S that is much 
better conditioned than in the case of the least-squares approach. However, again we are faced with 
ill-conditioning if h( w - w) is small. In such cases, one may decide to use a Taylor expansion of 
<f>(z) at the centre of the interval [ihw,ihw] (see Section 2.3.4). 

Evidently, for h --+ 0, the matrix S resulting from the least squares and minimax options con
verges to the matrix S defining the St0rmer-Cowell-type methods discussed in the preceding section. 
Likewise, the error matrix C defined in (2.5a) converges to 0. 

The least squares and minimax approach applied to Stormer-Cowell-type methods will be discussed 
in more detail in the next subsections. 

2.3.2. The /east-squares approach 
The least-squares approach minimizes the Lrnorm of c/>;(z) on the interval [ihw, ihw], i.e. it 

minimizes the components of 

x(x) :=R cos( bx) - cos(ax), o-(x):=Rsin(bx)- sin(ax). 

Minimization of the components of the integral expression (2.10) yields for S the condition 

SW= V, V=(1li, ... ,1lk), W = (W1, ... , »'k), 

hw 
vj := r x2(cos(b/r)x(x) + sin(b;x)o-(x))dx, 

},,!!!. 

(2.10) 

(2.11) 

(2.12) 

Note that W is symmetric, so that its computation requires the evaluation of only k(k + 1 )/2 entries. 
For the OSC methods we only have to minimize the last component of (2.10), so that we find for s 
the equation s1 W = eJ V. On substituting bJ = j - k it follows that the values eJ vJ can be written as 

ef VJ = {hw x2{2 COS(bp;) - COS((bj - n<) - COS((bj + 1 )x)} dx. 
}hi!}_ 

For the POSC methods we obtain by substituting bk-1 = ~. bk= 0 that w; is again given by (2.12) 

and that 

v1 = 1:;;, x2 {(e - r)cos( (bj - ~) x) + rcos(b1x) - cos((b;e - a)x)} dx. 

In order to evaluate the expressions for v1 and »'; analytically we use the integration formulae 

Im:= l1 xm cos(cx)dx = c-m-l(Fm(cX) -F,n(q)), m = 2,4 (2.13) 
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with 

F2(u) = (u2 - 2)sin(u) + 2u cos(u ), F4(u) = (u4 - 12u2 + 24 )sin(u) + ( 4u3 - 24u )cos(u ). 

If c(x - ,r) is small, then these fonnulas may be inaccurate and it is preferable to use the following 
expansions that are valid for lcxl < 1: 

- -3 ( 1 1 - 2 1 - 4 1 - 6 1 - 8 ) 
fz-x 383 - S.2!8s(cx) + ?.4!81(cx) - 9_6!89(cx) + ll.S!81J(cx) - · · · , 

- -5 ( 1 1 - 2 1 - 4 1 - 6 1 - 8 ) 
f4-X 58s - 1_2 !81(cx) + 9.4!89(cx) - ll.6!811(cx) + 13_8!813(cx) - ··· , 

(2.13') 

where 8j := 1 -J!x-J. 
In order to comeare the behaviour of the function ef>(z) associated with the least-squares appr~ach 

and the function </>(z) associated with the conventional approach (where the components of ef>(z) 
have all their zeros at the origin), we have plotted the quotients 

I </>k(i"<) I 
8osc(x) := ~k(u) , 8Posdx):= ---.-11 </J(ix)11 

</J(tx) 00 

(2.14) 

as a function of x, respectively for the OSC and POSC methods. The least-squares approach is more 
effective than the conventional approach if 8(x) < 1. Figs. la and b, respectively, present plots for 
the OSC and POSC methods of order p = 6 on the interval hw ~x ~ hw with hw = 0.8 and hw = 1 
(dashed line). This behaviour of 8(x) is typical for a whole range of hw and hw values, and shows 
that the least-squares approach yields in the interval hw ~x ~ hw a substantially smaller local error 
than the conventional approach. Note that the {}(x) values are smaller in the SC case than in the 
PSC case. This is due to the fact that in the PSC case all components of </J( i"< )/ ~( ir) are taken 
into account. Furthermore, Figs. 2a and b show on the whole interval 0 ~x ~ hw the behaviour of 
the functions {l</Jk(ir)I, l~k(u)I} and {llef>(ix)lloo, ll~(ir)lloo}, respectively, for the OSC and POSC 
methods (dashed and dashed-dotted lines). From these figures it follows that an underestimation of 
the interval of dominant frequencies is always (albeit slightly) better than the conventional approach, 
whereas overestimation may easily be worse than the conventional approach. 

A computational drawback of the least-squares approach is the poor condition of the system 
defining S because W converges to a singular matrix as hw becomes smaller. In fact, it follows 
from the definition of W and (2.13') that W = !<hw)5{}5(e, ... ,e) + O((hw)7). 

2.3.3. The minimax approach 
The condition of the system defining Scan be improved by requiring that the components l</Jj(u)I 

possess zeros in the interval hw~x ~hw. If l<P;(z)I would be a polynomial of degree 2r in z, then 
its maximum norm on the interval [ihw,ihw] would be minimized if we identify the zeros of l</Jj(z)I 
with the zeros of the corresponding minimax polynomial on [ihw, ihw]. Such minimax polynomials 
have r double zeros given by ( cf. [5]) 

m= I, ... ,r. (2.15a) 

This leads us to require 

</>(um)= (R-x~S)exp(ibxm) - exp(iaxm) = 0, m = 1, ... ,r, (2.15b) 
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O.Q1 

0.008 

0.006 
\ 

\ 

0.004 \ 

,,. 

(a) 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 

0.07 

0.06 

' 
0.05 ' ' ' 0.04 

0.03 

0.02 
------- - -O.Q1 

0 
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 

(b) 

Fig. 1. (a) Plots of the quotients (2.14) on [0.8,l] for OSC methods. (b) Plots of the quotients (2.14) on [0.8,1] for 
POSC methods. 

where r is determined by the number of free parameters available in the function </>. Thus, we have 
to solve the equations 

x~S cos( bx111 ) = R cos( bx111 ) - cos( axm), 

x;1s sin(bx111 ) = R sin(hx111 ) - sin(a.\'m ), 
m=I, ... ,r. (2.16a) 

If k is even, we may set r = k/2, so that the matrix S is completely determined by (2.16a). If k is 
odd, we set r = (k - 1 )/2 and we add the consistency condition c0 = 0, i.e. 

2Se = a2 - Rb2, k odd. 

Let us introduce the k-by-k matrices v. and W: 

V. := (-x;- 2 cos(vx 1 ), ••• , -x;2 cos(vxr), -x;-3 sin(vx1 ), ... , -x;3 sin(vx,)), k even, 

v. := ( v2, -x;-2 cos(vx1 ), ••• , -x;2 cos(vx, ), -x;-3 sin( vx1 ),. •• , -x;3 sin(vx, )), k odd, 

W := ( cos(bx1 ), ••• , cos( bx,), x;- 1 sin(bx1 ),. • .,x; 1 sin( bx,)), k even, 

W := (2e, cos(bx1 ),. • .,cos( bx,), x;- 1 sin(bx1 ), •• .,x; 1 sin( bx,)), k odd. 

(2.16b) 

(2.17a) 
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Then conditions (2.16) can be expressed as SW = V := V,, - RV,,, leading to a family of OSC and 
POSC methods by defining 

S= vw- 1, V:=V,,-Rf-j,. (2.17b) 

Again the condition of the matrix W becomes worse if h(J) and hco are both small. However, the 
condition is much better than in the case of the least squares approach. For example, for k even we 
have that W = (e, ... , e, b, ... , h) + O(h2 ), so that only k/2 columns of W are approximately equal, 
whereas in the least-squares approach k columns of W are approximately equal. 

The solid lines in Figs. 1 and 2 represent the minimax analogues of the least-squares plots. 

2.3.4. Small frequency intervals 
If the zeros Xm in the minimax approach are close together, then it seems equally effective to 

concentrate as many zeros as possible of <P at z0 = it0 = ihw0 with (J)o = (w + w )/2. Let us expand 
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</>( z) around z0 (compare ( 2.4)) 

</>(z) = </>(zo) + (z - Zu )</>' (zo) + ~(z - Zo )2 </>" (zo) + · · · + -1 (z - Zo r </>(m)(zo) + · · ·, 
2 m! (2.18) 

cp(Jl(z) =S(z2bj + pjzbi-I +q1bi-2 )exp(bz) +Rbjexp(bz)- ajexp(az), j;:::.O, 

where P1+1 = p1 + 2 and q1+1 = p1 + q1 with p 0 = q0 = 0. If k is even, then we find 

Re </>(Jl{zo) = S((q1b1- 2 -xtbi)cos(bxo )- P/'ob1- 1 sin(hxo)) +Rh1 cos(hx0 )- a1 cos(ax0 ), 

Im </>(Jl(zu) = S(p/rob1- 1cos(bx0 )-(xtbi - q;hJ-2 )sin(bx0 )) + Rbi sin(hx0)- ai sin(ax0 ), 
. (2.19) 

where j = 0, 1, ... , (k - 2 )/2. Setting Re </>(J\z0 ) = Im <f>lil(z0 ) = 0 yields the required system of 
equations for S. If k is odd, then we add the consistency condition c0 = 0 given by (2. l 6b) and 
proceeding as in Section 2.3.3 we can again define appropriate matrices V and W such that SW= V. 
The resulting matrix W is less 'singular' than in the minimax approach. In fact, if k is even, then 
W = (-e, -3b,qJbi-2 , -h,2e, (p; + q1)bi- 1) + O(h2 ) where j = 2, 3, ... ,(k - 2)/2, showing that for 
k > 6 it is better conditioned than in the case (2.l 7a). In our numerical experiments, we define the 
matrix S in this way as soon as h( w - w) < 0.001. 

2.3.5. Oscillatory methods for arbitrary fi"equency intervals 
Evidently, the oscillatory methods constructed above should be more accurate than the underlying 

conventional methods provided that the frequency interval [ w, w] is small. This raises the question 
what happens if this interval in not small. In other words, How robust are the oscillatory methods in 
nonmodel situations. To answer this question, we look at the local error of the oscillatory methods 
which is determined by the error matrix C defined in (2.5a). This matrix depends on hand is related 
to the matrix S by the equation C( h) = S( h )X - Ua + R Uh. We restrict our considerations to the 
matrix C(h) associated with the minimax method. It follows from the minimax equations (2.16a) 
that S(h) can be expanded in powers of h2 , so that C(h) can also be expanded in powers of h2• Since 
C(O) = S(O)X - Ua +RUb vanishes, we have that C(h) = ~h2 C"(O) + f4h4C""(O) +O(h6 ). Evidently, 
the derivatives of C(h) equal those of S(h)X, e.g. C"(O) = S"(O)X. It is tempting to compute the 
derivatives of S(h) from the formula SW = V :=Va - RVb by substituting Taylor expansions of 
S(h), V(h), and W(h). However, the resulting systems appear to be singular. For example, S"(O) 
satisfies the equation W"(O)+ S"(O)W(O) = V"(O) in which W(O) is a singular matrix. The reason 
is that a number of entries of S"(O) are zero. Only if we know in advance which entries vanish, 
we can solve this singular system. An alternative is to look at the function ll</>(ix)JJ 00 in the interval 
hw~x~hw. From (2.2') it follows that 

I le(t, h )I loo ~ J l1'1Iloo11 </>(ihwi)l loo + I 1'1•2IIoo11 </>(ihw2 )I loo + · · · + I IYs I loo 11 </>(ihws )I loo 

(2.20) 

where ')' is a sort of averaged weighted coefficient. Evidently, 1' is at most maxj I h•jl 100 , but usually 
much smaller. Thus, the size of Jle(t,h)Jloo is largely detennined by 11</>(h:)lloo, hw~x~hw. In 
the following, we write </>( h:) as </>( h::, hw, hw ), because both in the least squares and the minimax 
case, the function </>(ix) is completely defined by hw and hw. It is now of interest to know how 
</>(ix, hw, hw) depends on hw and hw. We shall confine our considerations to the minimax case. 
Furthermore, since for an arbitrary problem the dominant frequencies may be located anywhere, we 
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Table 3 
Values of </Jmax and </!aver 

k=4 k=5 k=6 k=7 k=8 k=9 k = 10 

osc </>max 1.810-2 1.610-2 5.210-J 4.710-3 1.510-l 1.410-J 4.710-4 
<'/>aver 2.3lll-·' 1.710-J 6.710-4 5.010-• 1.810-• 1.410-4 5.110-5 

POSC <Pmax 6.310-J 2.210-J 9.711)-5 3.510-5 1.410-5 
</>aver 6.610-4 2.210-• l.2[()-5 3.510-6 l.510-6 

shall assume them in an interval [O, w] where w is a guess for the actual upperbound of the dominant 
frequencies. We expect that the quotient Q(x, hw) := 11</>(i.x, 0, hw)l loo/I I </>(i"X"/hw, 0, I >I I= behaves like 
some power of hw as hw tends to zero, independently of x. Therefore, we considered for a number 
of hw-values the function log Q(x, h(J) )/log(hw ). For hw::::;; I, we found for each OSC and each POSC 
method an almost constant value k + 2. Hence, 

~ ._ ll4>Ci"X",o,hwmJO ~ . _ k+2 

Q(x,hw).-11</>(ix/hw,O, l)lloo ~ (hw) ' 

On substitution into (2.20 ), we obtain 

I le(t, h )I loo::::;; /(hw )k+2( I I 4>(im1 co- 1, 0, 1 )I I= + 11</>(iw2w- 1,0, 1m'° + · · · 

+I l</>(iOJsOJ- 1, 0, 1 ll loo). 

(2.21) 

(2.22) 

This error estimate shows that irrespective the value of w the oscillatory methods possess stage order 
at least q = k (just as the underlying conventional methods). The high power of w in ( 2.22) looks 
alarming if OJ is large. However, if expansion ( 1.2) of the solution contains dominant terms of high 
frequency, then we need anyhow small stepsizes to represent the solution, so that it is reasonable to 
assume that hw::::;; l. In fact, the factor o/+2 will also appear in the first nonzero term of the Taylor 
expansion of the local error (see Section 2.1 ). 

Furthermore, the error estimate (2.22) shows that the function 11</>(ix-,O, 1)11 00 , O:::;;x:::;; l, plays a 
central role. This function assumes a maximum at x = l, so that 

</>max := 11</>{i,O, 1 )lloo· (2.23a) 

However, this estimate is too pessimistic, because it assumes that all dominant frequencies are located 
near w. A more realistic estimate is obtained by replacing the sum in (2.22) bys times the averaged 
value of 11</>(ix-,0, 1JI1 00 in the interval 0 :::;;.x::::;; I, i.e. we use the 'approximation' 

i·I 

</1aver := 11</J(i.x,O, l)llcxodX. 
• 0 

(2.23b) 

Table 3 lists the values of <Pmax and </>aver for the OSC and POSC methods. The values of <Paver are 
smaller than <Pmax by a factor of about 10. 

2.4. Stability 

One may wonder how the oscillatory modes affect the stability of the method. We restrict our 
considerations to the linear stability of (2.1 ). The linear stability is determined by the matrix 
M(z) := R + zS with z = h2 ),, A. running through the eigenvalues of the Jacobian matrix of the 
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Table 4a 
Stability boundaries for the case ill = w 

h!!J.=hw 0 0.5 1.0 1.5 2.0 2.2 2.3 3.0 3.9 4.0 

POSC (6) 0.85 0.87 0.89 0.97 1.18 1.29 0 
POSC (10) 0.78 0.78 0.78 0.81 0.87 0.89 0.90 1.11 1.45 1.40 

Table 4b 
Stability boundaries for the case !!2. = 0 

hill 0 0.5 1.0 2.0 4.0 6.0 8.0 10.0 11.0 12.0 

POSC (6) 0.85 0.86 0.87 0.90 0.98 1.05 1.03 1.10 1.12 0 
POSC (10) 0.78 0.78 0.78 0.81 0.85 0.91 0.93 0.55 

righthand side function f of the ODE (I. I). Assuming that (I. I) is linearly stable itself, we only 
consider negative values of z. Here, the stability interval is defined by the interval -/32 ~z~O, 
where M(z) has its eigenvalues on the unit disk. The value of f3 is called the stability boundary. 
As an illustration, we have computed the stability boundaries of the POSC methods with w = w 
and with w = 0. Tables 4a, 4b present values of fJ for the 6-th order (k = 5) and the lOth-order 
(k = 8) POSC methods (these methods are also used in the numerical experiments in Section 3 ). In 
all cases, the oscillatory approach slightly stabilizes the PSC method until some maximal value of 
hw is reached. 

3. Numerical experiments 

In this section we compare the perfonnance of the OSC and POSC methods in least squares and 
minimax mode with the nonoscillatory Stormer-Cowell methods. In the tables of results, we use the 
following abbreviations: 

SC(p) Classical Stormer-Cowell method (2.6) of order p = k, 
OSC(p) Oscillatory version of the SC(p) method, 
PSC(p) Parallel Stormer-Cowell method {(2.7), Table 1} of order p, 
POSC( p) Oscillatory version of the PSC( p) method. 

If in the examples the exact solutions are known, the starting vector Y0 was taken from the 
solution values (y(t0 + bjh)), otherwise it was computed numerically by a one-step method. We 
used a few well-known test problems from the literature. The accuracy is defined by the number 
of correct digits L1 at the end point (the maximal absolute end point error is written as 1 o-LI ). The 
number of steps taken in the integration interval is denoted by N which is at the same time for all 
methods the total number of sequential right-hand sides needed to perform the integration. 

3.1. Problems with one dominant frequency 

We start with Bessel's equation [ 5] 

d2y ( 1 ) 
dt2 = - IOO + 4t2 y, y( 1) = Jo(IO), y'(l) = ~Jo(IO) - IOJ1(IO) (3.I) 
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on the interval [ l, l O] with exact solution y(t) = jt J0( l Ot ). This equation shows that there is just one 
frequency w= JlOO + (4t2 )- 1 ~ 10. The oscillatory methods were applied with [ill, w] = [9.9, 10.l]. 

The second test problem is the Orbit problem from the Toronto test set [6] on the interval [0,20] 
with eccentricity r; = 0.01. The solution is known to have one dominant frequency co ~ I. The 
oscillatory methods were applied with [ w, w] = [0.9, 1.1]. The results in Tables 5a, 5b and 6a, 6b 
indicate that 

(i) The least-squares approach is unreliable, even for relatively large stepsizes, which is due to the 
bad condition of the W matrix. 

(ii) The minimax approach can be used until the 20 decimals accuracy range. 
(iii) The minimax approach produces higher accuracies than the conventional approach. 
The fact that the minimax method is less effective in the case of the Orbit problem, particularly 
in the high-accuracy range, can be explained by the fact that for high accuracies, frequencies other 
than w ~ l staii to come into play. 

From now on, we do not apply the least-squares strategy because of its erratic perfonnance. 

Table 5a 
(N,Ll)-values for the Bessel problem on [I,10]; 6th-order methods with [!Q,W] = [9.9, 10.1] 

Method Version 100 200 400 800 

SC(6) Conventional * 2.3 4.0 5.8 
OSC(6) Least squares 4.7 6.6 8.7 10.6 

Minimax 4.7 6.6 8.7 10.6 
PSC(6) Conventional 1.4 5.9 8.6 9.5 
POSC(6) Least squares 6.4 8.8 10.9 13.2 

Minimax 6.0 8.9 11.0 13.7 

Table Sb 
(N,Ll)-values for the Bessel problem on [l,10]; lOth-order methods with [22,w] = [9.9, 10.1] 

Method Version 100 200 400 800 

SC(lO) Conventional * * 6.7 9.7 
OSC(IO) Least squares * * 8.8 11.1 

Minimax * * 12.0 14.7 
PSC(lO) Conventional * 8.3 11.6 15.0 
POSC( 10) Least squares * 10.9 11.2 12.1 

Minimax * 13.3 16.5 19.8 

Table 6a 
(N,Ll)-values for the Orbit problem on [0,20]; 6th-order methods with [!Q,W] = [0.9, 1.1] 

Method Version 40 80 160 320 640 

SC(6) Conventional 0.4 2.4 5.0 6.8 8.3 
OSC(6) Least squares 1.8 3.6 5.1 6.8 8.6 

Minimax 1.8 3.6 5.1 6.8 8.6 
PSC(6) Conventional 2.5 4.7 6.7 8.8 10.9 
POSC(6) Least squares 3.4 6.1 8.2 10.2 11.5 

Minimax 3.4 6.2 8.1 10. l 12.2 
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Table 6b 
(N,Ll)-values for the Orbit problem on [0,20]; lOth-order methods with [.fQ,w] = [0.9, 1.1] 

Method Version 40 80 160 320 640 

SC(IO) Conventional * 4.1 7.6 10.1 13.0 
OSC(lO) Least squares * 4.7 3.0 * * 

Minimax * 4.7 8.2 10.6 13.5 
PSC(IO) Conventional 4.5 9.8 13.0 15.9 18.4 
POSC(IO) Least squares 5.4 10.3 * * * 

Minimax 5.4 10.8 13.6 16.4 18.8 

Table 7a 
Problem (3.2 ): (N, Ll )-values of for 6th-order methods, [fil, w] = [1.5, 3.5] 

e=O e = J.. 
10 e= i e=! 

Method Version 100 200 100 200 100 200 100 200 

SC(6) Conventional 3.4 5.1 3.4 5.2 3.4 5.3 3.4 5.5 
OSC(6) Minimax 4.8 6.5 4.3 6.0 4.0 5.8 3.8 5.7 
PSC(6) Conventional 6.2 8.3 6.1 8.2 6.0 8.1 6.0 8.0 
POSC(6) Minimax 7.1 9.3 7.1 9.2 7.0 9.2 7.2 9.4 

Table 7b 
Problem (3.2 ): (N, LI )-values of lOth-order methods, [fil, w] = [1.5, 3.5] 

e=O e = .!. 
10 e=i e = t 

Method Version 100 200 100 200 100 200 100 200 

SC(IO) Conventional 5.3 8.6 0.7 6.6 0.5 6.3 0.4 6.1 
OSC(lO) Minimax 9.8 11.3 1.6 6.7 1.4 6.4 1.4 6.1 
PSC(lO) Conventional 10.4 13.8 10.3 13.6 10.6 13.5 8.6 13.8 
POSC(lO) Minimax 12.5 15.8 10.7 13.9 10.4 13.7 8.6 14.0 

3.2. Effect of perturbing a periodic problem 

In order to see how the performance of the minimax method changes if an ODE with a fully 
periodic solution is perturbed, we integrated the IVP 

d2y =-7y+3z+esin3(v-z) y(O)= dy(O) =0 
dt2 • . ' dt ' 

0:::;t:::;10. (3.2) 

diz ..... 6 3 ) ·o) dz(O) 1 dt1 = .L. y - z + e cos ( y - z , z( = dt = , 

If e = 0, then the problem is fully periodic with frequencies w1 = 2 and w2 = 3. However, if e # 0, 
then additional frequencies are introduced. We now want to know whether the solution is still 
approximated piecewise by formulas of the form ( 1.2) with a relatively small frequency band, say 
[ w, w] = [1.5, 3.5]. Tables 7a and 7b present results for a few values of e. These figures show that 
the two OSC methods and the POSC( 10) method 'feel' the introduction of additional frequencies 
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Table 8 
Orbit Problem on [0,20]: (N, .1 )-values for various frequency intervals 

Method Version 40 80 160 320 640 

PSC(6) Conventional 2.5 4.7 6.7 8.8 10.9 
POSC(6) Minimax [0.7,0.9] 3.8 5.7 7.7 9.8 11.9 

Minimax [0.9,1.1] 3.4 6.2 8.1 10.1 12.2 
Minimax [1.5,1. 7] 2.1 4.3 6.3 8.4 10.5 

as e increases (the POSC(6) method seems to be insensitive). Apparently, frequencies outside the 
interval [1.5, 3.5] play a role. Futhermore, like the Orbit problem, these 'outside' frequencies play 
a more dominant role in the high-accuracy range. 

(iv) The minimax approach is more effective in the lower-accuracy range. 

3.3. Influence of wrong frequency estimates 

Suppose that we apply the oscillatory methods with a wrong estimate of the frequency interval 
for the dominating frequencies. For example, let us compare the results for the orbit problem when 
integrated with the correct, an underestimated and an overestimated frequency interval. Table 8 
confirms our earlier conclusion (see Section 2.3.2): 

(v) Underestimation of the interval of dominant frequencies is always better than the conventional 
approach, whereas overestimation may be worse. 

3.4. Problems with changing frequency 

Next, we consider problems with a changing dominant frequency. One option is to estimate the 
dominant frequency in each step and to recompute the matrix S. However, this is only justified if 
the right-hand side function is relatively expensive. If we want to integrate with a fixed S, then we 
should choose a sufficiently large frequency interval. We illustrate this by means of the nonlinear 
orbit equation of Fehlberg (cf. [1]): 

(
-412 _2_) 

J ·- r(t) .- 2 , 
- -412 

r(I) 

r(t):=llYU)lb Fz~t~lO, (3.3) 

with exact solution y( I) = ( cos(t2 ), sin( t2) l. This problem has a constant period with respect to the 
variable t2, but with respect to t the period is decreasing with t. The decreasing behaviour of the 
period is also clear from the equation itself. Since r(t) :::::: 1, it follows from (3.3) that for large 
values of t the matrix J behaves as a diagonal matrix with diagonal entries -412 • This indicates 
that for large t, the frequency behaves as 2t. Therefore, we applied the oscillatory methods with 
[w,w] = [2.J1t/2,20]. The results are presented in the Tables 9a and 9b from which we conclude: 

( vi) Even for larger frequency bands the minimax approach outperforms the conventional approach. 
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Table 9a 
(N, LI )-values for the Fehlberg problem on [ ./1Cfi,, 1 O]; 6th-order methods with [ fil, w] = [2 ./1Cfi,, 20] 

Method Version 160 320 640 1280 2560 5120 

SC(6) Conventional * 1.7 3.5 5.3 7.2 9.0 
OSC(6) Minimax 1.1 3.0 4.7 6.5 8.3 10.1 
PSC(6) Conventional 2.3 4.2 6.1 8.2 10.3 12.4 
POSC(6) Minimax 3.6 5.5 7.2 9.2 11.3 13.4 

Table 9b 
(N,Ll)-values for the Fehlberg problem on [./1Cfi,, 10]; IOth-order methods with [s;Q,W] = [2./1Cfi,,20] 

Method Version 160 320 640 1280 

SC(lO) Conventional * 3.0 6.0 9.0 
OSC(IO) Minimax * 4.8 7.9 10.7 
PSC(IO) Conventional 4.5 7.6 10.9 14.3 
POSC(lO) Minimax 5.9 9.0 12.3 15.7 

3.5. Problems with widely spread dominant frequencies 

Finally, we consider the Stormer problem in polar coordinates on the interval [0,0.5] with u=Tt as 
given in [3, p. 420 (10. lla)]. Piecewise approximation of the solution by formulas of the form (1.2) 
leads to quite different intervals of dominant frequencies. Hence, the overall frequency band [ w., w] 
will be quite large, so that we should not expect a better performance of the oscillatory methods. 
Surprisingly, the results in Tables 1 Oa and 1 Ob show that for quite arbitrary intervals [ OJ, w] the 
POSC methods are at least competitive with the PSC methods. Thus, 

(vii) Even for problems whose solutions possess widely spread frequencies, the oscillatory methods 
do not perform worse than the conventional methods. 

Table lOa 
(N,Ll)-values for the Stormer problem on [0,0.5]; 6th-order methods with various intervals [s;Q,w] 

Method Version 40 80 160 320 640 

PSC(6) Conventional 0.9 4.6 6.5 8.5 10.5 
POSC(6) Minimax [0,50] 0.9 4.7 6.6 8.5 10.6 

Minimax [O, 100] 1.0 5.2 7.1 9.0 11.0 
Minimax [0,200] 1.6 4.4 6.3 8.3 10.3 

Table lOb 
(N, LI )-values for the Stermer problem on [O, 0.5]; IOth-order methods with various intervals [ Qb W] 

Method Version 40 80 160 

PSC(IO) Conventional 0.9 7.0 10.3 
POSC(IO) Minimax [0,50] 1.0 7.1 10.4 

Minimax [0,100] 1.0 7.2 10.6 
Minimax [0,200] 0.8 7.5 10.8 
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