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INTRODUCTION 
In this paper, we analyse communication protocols. A communication protocol is a set of rules and 
prescriptions, that is given in order to achieve reliable, efficient communication between two (or more) 
processors, connected by communication channels. In BERGSTRA & KLoP [7], a simple version of the 
Alternating Bit protocol was verified within the framework of process algebra. In this paper we study 
two communication protocols, which were described in TANENBAUM [12): a Positive Acknowledge
ment with Retransmission (PAR) protocol, and a One Bit Sliding Window (OBSW) protocol. Among 
the existing communication protocols, PAR and OBSW are rather simple ones, and the only reason 
for studying them lies in the fact that they allow us to develop the theory of process algebra. 

Although this is not an introductory paper about process algebra, we think that, in principle, some
one who is not acquainted with process algebra can read it. In the first section we give a short review 
of the theory of process algebra. A more comprehensive introduction is presented in, for example, 
BERGSTRA & KLOP [8). 

In §2, we discuss Koomen's Fair Abstraction Rule (KFAR), a proof rule which is vital in algebraic 
computations for system verification. KF AR says that a process 'does not get stuck' in a cycle of 
internal actions. KFAR is parametrized by k;;a. l, indicating the length of the internal cycle. We for
mulate a generalization of KFAR, the Cluster Fair Abstraction Rule (CFAR), which says that a pro
cess does not get stuck in certain graph structures, which we call 'conservative clusters'. We prove that 
CF AR can be derived from KF AR1• As a consequence of this, axioms KF AR,,; are redundant for 
k;;a.2 (in any practical case, to be more precise). In §3 and §4 we specify and verify the PAR-protocol. 
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In these sections our main goal is to show how a verification can be accomplished within the frame
work of process algebra; we do not describe in a detailed way how the process algebra specification of 
the PAR-protocol is related to Tanenbaum's description. 

However, this is done for the OBSW-protocol in §5. In this section we use the state operator A':,' to 
translate Tanenbaum's computer program into process algebra. 

In §6 we introduce the notion of 'redundancy in a context'. With the help of this notion, which is 
of a trace theoretic nature, a specification can sometimes be simplified. 

In §7 we verify the OBSW-protocol. For this verification we use the technique of local replacement. 
In this technique the complexity of a concurrent system is reduced by repeated replacement of com
ponents, replacements which leave (after abstraction) the behaviour of the system invariant. 

TABLE OF CONTENTS 
1. Process algebra 
2. Fairness 
3. Architecture of the PAR-protocol 
4. Verification of the PAR-protocol 
5. Specification of the OBSW-protocol, preliminary calculations 
6. Redundancy in a context 
7. Verification of the OBSW-protocol 

§ 1 PROCESS ALGEBRA 
In this section, we give a brief review of a number of topics in the theory of process algebra. First we 
discus the axiom system ACP.,., the algebra of communicating processes with silent steps (see BERGS
TRA & Kl.OP [6]. Often we expand the system ACP.,. with a number of operators and axioms. These 
are reviewed in section 1.2 - 1.12, except for Koomen's Fair Abstraction Rule (KFAR), which will be 
discussed in more detail in section 2. 

In the analysis of both protocols make use of the axiom system ACP6, the algebra of communicat
ing processes with priorities, as described in BAETEN, BERGSTRA & Kl.OP [3]. We review this axiom 
system in section 1.13. · 

1.1 ACP.,. 

1.1.1 Signature. 

§(Sorts): A 
p 

IF (Functions): + :P xp_,,p 
·:Pxp_,,p 
ll:Pxp_,,p 
lL:Pxp_,,p 
l:Pxp_,,p 

'On:P_,,P 
TJ;p_,,p 

C (Constants): BeP-A 
TEP-A 

(a finite set of atomic actions) 
(the set of processes; A c;;;,P) 
(alternative composition or sum) 
(sequential composition or product) 
(parallel composition or merge) 
(left-merge) 
(communication merge; 
l:A XA_,,A U{B} is given) 
(encapsulation ; H c;;;,A) 
(abstraction ; I c;;;,A) 
(deadlock) 
(silent or internal action) 



1.1.2 Note. We will use the abbreviations A 6 =AU {8}, A,. =AU {T} and A,.,6 =AU {T,8}. 

1.1.3 Axioms. These are presented in table I. 
Here a,beA 6 ;x,y,zeP;Hf;;;,A and lf;;,A. 

ACP,. 

x+y=y+x Al XT = X 
x +(y +z) = (x +y)+z A2 Tx+x = TX 
x+x = x A3 a(TX +y) = a(TX +y)+ax 
(x +y)z = xz +yz A4 
(xy)z = x(yz) AS 
x+B = x A6 
8x = 8 A7 

alb = bla Cl 
(alb)lc = al(blc) C2 
Bia= 8 C3 

xl[y = xlly +yllx +x[y CMI 
a[Lx = ax CM2 T[LX = TX 
(ax)ll,y = a(xl[y) CM3 (Tx)lly = T(xl[y) 
(x +y)llz = xllz +yllz CM4 TIX= 8 
(ax)jb = (alb)x CMS XIT = 8 
al(bx) = (ajb)x CM6 (Tx)!Y = x!Y 
(ax)l(by) = (alb)(xl[y) CM7 xl(ry) = x!Y 
(x +y)lz = xlz +ylz CMS 
xl(Y +z) = x!Y +xlz CM9 

On(T) = T 
TJ(T) = T 

on(a) = a if a££.H DI T1(a) =a if a££./ 
on(a) = 8 if aeH D2 T1(a) = T if ael 
On(X +y) = On(x)+on(y) D3 TJ(X +y) = T1(x)+T1(Y) 
on(xy) = on(x)-on(y) D4 T1(xy) = TJ(X) •T1(y) 

TABLE 1. 

1.1.4 DEFINITION: The set of Basic Terms, BT, is defined inductively as follows: 
(i) T,8eBT 
(ii) x eBT=>TX eBT 
(iii) aeA & xeBT=>axeBT 
(iv) x,yeBT=>x + yeBT 

T1 
T2 
T3 

TMI 
TM2 
TCI 
TC2 
TC3 
TC4 

DT 
Tll 
TI2 
TI3 
TI4 
TIS 

3 

We call a ACP,.-term closed if it contains no process variables. Such a term may contain atomic steps 
though (variables ranging over A). The set BT, together with the following theorem, allow us to use 
induction in proofs. 
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1.1.5 Elimination Theorem. 
Let t be a closed term in the signature of ACP,,.. Then 3t' eBT:ACP ,,.1-t = t'. 

PROOF: See BERGSTRA & Kl.OP [6). 

1.2 Standard Concurrency. (SC) 
Often we expand the system ACP,,. with the following axioms of Standard Concurrency (see table 2). 

(xlLy)lLz = xlL(yllz) SCI 
(xlay)lLz = xl(ayllz) SC2 
x[y = ylx SC3 
xl[y = yllx SC4 
xl(ylz) = (x[y)lz SC5 
xll(yllz) = (xl[y)llz SC6 

TABLE 2. 

1.3 Handshaking Axiom. (HA) 
HA says that all communications are binary 

I (HA) x[ylz =B j 

If we adopt HA + SC, the:Q. it is easy to prove the following Expansion Theqi:em. Let x 1, ••• , Xn be 
given processes, and let '"i be the merge of all xi. .. . ,xn except x;, '"i'1 be the merge of all 
xi, .. . ,xn except x; and xj, then the Expansion Theorem (ET) is 

(ET) X1 llx2ll ... llxn = ~ x;lL"i + ~ (x;lxj)lL"i'j 
l<i<n l<i<j<n 

in words: if you merge a number of processes, you can start with an action from one of them or with 
a communication between two of them. 

1.4 Projection. (PR) 
Reasoning about processes often uses a projection operator 

'ITn:P~P (n;;a.l), 

which "cuts of" processes at depth n (after doing n steps), but with the understanding that T-steps are 
"transparent", i.e. a T-step does not raise the depth. Axioms for 'ITn are given in table 3. 



1.5 Specifications. 

'11n(a) =a 
'1T1(ax) =a 
'11n +1(ax) = a'1Tn(X) 
'11n(X +y) = '11n(X) + '11n(y) 

PRl '1Tn(T) = T 
PR2 '11n(TX) = T'1Tn(X) 
PR3 
PR4 

TABLE 3. 

PRTI 
PRT2 

5 

1.5.1 DEFINITION: A (recursive) specification E = {E/}EJ} is a set of equations in the language of 
ACP1' with variables {K.i:JeJ}, such that equation Ej has the form 

K.i=TJ 

where 1j is a finite ACP1'-term (with finitely many variables), and the index set J contains a desig
nated element Jo· 

1.5.2 DEFINITION: Let J be a set, E a recursive specification indexed by J, and let {x/}EJ} be 
processes. Putx =xj.• X = {xj:}eJ-Uo}}. 
1. x is a solution of E with parameters X, notation E(x,X), if substituting the xj for variables K.i in 

E gives only true statements about processes { xj :j eJ}. , 
2. x is a solution of E, notation E(x, - ), if there are processes X = { xj :j eJ - U 0 }} such that 

E(x,X). 

1.5.3 DEFINITION: Let T be an open ACP1'-term without an abstraction operator T1• An occurrence of 
a variable X in T is guarded if T has a subterm of the form aM, with a eA 8 (so a=FT), and this X 
occurs in M. Otherwise, the occurrence is unguarded. 
Let E = {Ej:}eJ} be a specification without an abstraction operator Tf> and let i,jeJ. We define 

X; ~K.i ~K.i occurs unguarded in T;, 

and we call E guarded if relation ~ is well-founded (i.e. there is no infinite sequence 
u u u 

K.i. ~K.i. ~K.i. ~· .. ). 
(For these definitions, also see BAETEN, BERGSTRA & KLoP [4]). 

1.5.4 DEFINITION: Let E = {Ej:}eJ} be a specification, and letjeJ. An expansion of K.i is an open 
ACP1'-term obtained by a series of substitutions of T; for occurrences of X; in Ej. For a more precise 
definition, see BAETEN, BERGSTRA & KLOP (2), 2.7. 

1.5.5 LEMMA. Let Ebe a guarded recursive specification in which no abstraction operator ,,.1 occurs, 
and let j eJ (the index set of E). Then K.i has an expansion in which all occurrences of variables are 
guarded. 

PROOF: Essentially, this is lemma 2.14 in BAETEN, BERGSTRA & KLOP (2). We build up such an 
expansion in the following way. If in Tj. all occurrences of variables are guarded, we are done. Other
wise, substitute T; for all unguarded X; in 1j, and repeat this process. This must stop after finitely 

many steps, for otherwise we obtain by Konig's lemma an infinite sequence K.i ~X; ~···,which 
contradicts the well-foundedness of ~ 
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1.5.6 THEOREM. Let E = {Ej:}EJ} be a guarded recursive specification, in which no abstraction 
operator T1 occurs; let j EJ and let n ;;a. I. Then '1Tn(J0) can be expanded to a closed finite ACP .. -term. 

PROOF: By iterated application of lemma 1.5.5. 

1.6 Recursive Definition Principle. (RDP) 
RDP states that each guarded specification, in which no abstraction operator T1 occurs, has a solution. 

E guarded, no abstraction 
(RDP) 

3x E(x, -) 

1. 7 Recursive Specification Principle. (RSP) 
RSP says that a guarded specification, in which no T1 occurs, has at most one solution. 

E(x, -) E(y, -) 
(RSP) E guarded, no abstraction 

x=y 

RDP and RSP together say that each guarded specification, with no T[, has a unique solution. 

1.8 Approximation Induction Principle. (AIP) 
AIP is a proof rule which is vital if we want to prove things about processes, which can be specified 
by a guarded specification with no T1• The rule expresses the idea that if two processes are equal to 
any depth, then they are equal. 

'v'n;;;;a.l '1Tn(x)='1Tn(Y) E(x, -) 
(AIP) E guarded, no abstraction 

x=y 

Notice that, as a corollary of theorem 1.5.6, AIP => RSP 

1.9 Alphabets. Define l!e= Pow(A), the set of all subsets of A. First we define the alphabet function 
for finite processes. According to the elimination theorem it is enough to give the definition for 
processes that can be represented by a basic term (see table 4). 



1.9.1 Note. We have to check that 

x = y ~a(x) = a(y) 

1. 

2. 

3. 

4. 

5. 

a(8) = 0 

a(T)= 0 

a(Tx) = a(x) 

a(ax)= {a}Ua(x) (a EA) 

a(x + y) = a(x)Ua(Y) 

TABLE 4. 

otherwise this definition is not correct. This is not hard to do. 

1.9.2 Infinite processes. Next we define a on infinite processes: 

6. E (~ - ) E guarded, no abstraction 

a(x) = LJ a(wn(x)) 
n=I 

7. E (x, - ) E guarded, no abstraction 
a(T1(x)) = a(x)- I 

7 

1.9.3 Notes. Essential in definition 1.9.2 is the result of theorem 1.5.6, which says that '7'n;;a.I: wn(x) is 
finite. In definition 1.9.2, the partial unions UN_ a(wn(x)) form an increasing sequence (with 
respect to the partial order k on~ as N-HXJ, in the""""'furite set~ so the sequence must be eventually 
constant, and the limit will always exist. More information about alphabets can be found in BAETEN, 
BERGSTRA & KLoP [2]. In this paper too, the following Conditional Axioms were first formulated: 
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1.10 Conditional Axioms. (CA) 

a(x}l!a(!:}nH}kH CAI 
()H(X l[y)=()H(xil()H(y)) 

a{x}nH=0 CA3 
()H(x)=x 

H=H1UH2 
CA5 

()H(x)=()H, o()H2(X) 

Hn/=0 
T1°aH(x)=()H0 T1(x) 

1.11 Renamings. (RN) For every function 

f:A,,.,8~A,,.,8 

TABLE 5. 

a(x}l{a{!:}nl)= 0 
T1(X l[y)=T1(Xi1T1(y)) 

a{x}nl= 0 
T1(x)=x 

!=Ii UJi 
T1(x)=T1, 0 T12(x) 

CA7 

with the property thatf(T) = T and/(8) = 8, we define an operator 

PfP~P 

Axioms for Pf are given in table 6. (/is the identity) 

pfa) = f(a) (aEA,,.,8) 

PfX +y) = PfX) + P/Y) 

Pfxy) = PfX) ·pfY) 

P1(x) = x 

Pf°Pg{X) = Pfog(X) 

TABLE 6. 

For tEA,,.,8, and HkA we define 

rt,H: A,,.,8~A,,.,8 

to be the following function (a EA,,.): 

{
a if af/.H 

r,,H(a) = t else 

RNl 

RN2 

RN3 

RRl 

RR2 

CA2 

CA4 

CA6 

We use tH as a notation for the operator Pr,,n· The encapsulation operator aH = 8H, and the 
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abstraction operator T1> are examples of tH operators. The Conditional Axioms CA5, CA6 and CA7 
are special cases of axiom RR2. 

The following rules for tH operators also follow immediately from axiom RR2 

(1) tH0 tH(x) = tH(x) 

(2) t{s} 0 sH(x) = tHu{s}(x) 

t{u} 0 v1(x) = vJ(x) 
(3) 

uEI; u=t=v 

The next theorem shows that the Pf operator is more powerful than the tH operator. 

1.11.1 THEOREM. The operator Pf can be written as a sequence of tH operators~ 

/E/U{gl ig(A.,.,s)l<IA.,.,sl} 

PROOF: Easy. 

In this paper we will only use the tH operator; we don't need the extra power of the Pf operator. The 
only reason to introduce the Pf operator was that it gives an elegant axiomization of renamings. 

1.12 In BAETEN, BERGSTRA & KLoP [4], a graph model, called the standard model, is constructed for 
ACP.,.. All the axioms and rules we have presented thus far, hold in this model, and also Koomen's 
Fair Abstraction Rule which will be presented in section 2. 

1.13 ACPo. 
The axiom system ACP consists of the axioms Al-7, Cl-3, CMl-9, Dl-4, i.e. the left column of table 
I. In ACP8 we extend ACP with an operator IJ and give some defining equations for it, to model 
priorities. Suppose we have a partial order < on A 8 so that 8 is minima], i.e. we have for all 
a,b,cEAs 

I. ..,(a<a) 
2. a <b =>..,(b<a) 
3. a<b&b<c=>a<c 
4. lJ<a (if a=t=lJ) 

Let a,b,c be (atomic) actions and suppose 

b<a and c<a 

Relative to this partial order, we want to define an operator IJ that models this priority 
(i) IJ(a + b) =a ; IJ(a + c) =a; 
(ii) IJ(b + c) = b + c 
This is done in the axiom system ACP8 (see table 7). The operator <J:P XP~P is an auxilary opera
tor which is needed in order to define IJ. ACP8 was introduced in BAETEN, BERGSTRA & KLoP [3]. 
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1.13.1. ExAMPLES (b <a and c <a): 
(i) fJ(a + b) = fJ(a)<Jb + fJ(b)<Ja = a<Jb + b<]a =a+ 6 =a 
(ii) fJ(b + c) = fJ(b)<]c + fJ(c)<Jb = b<Jc + c<]b = b + c 
(iii) fJ(b(a + c)) = fJ(b)"fJ(a + c) = b(fJ(a)<Jc + fJ(c)<Ja) = b(a<]c + c<]a) = b(a + 6) = ba 

ACPu 

x+y = y+x 
x+(y +z) = (x +y)+z 
x+x = x 
(x +y)z = xz +yz 
(xy)z = x(yz) 
x+8 = x 
6x = 6 

Al 
A2 
A3 
A4 
AS 
A6 
A7 

alb = bla Cl 
(alb)lc = al(blc) C2 
6la = 6 C3 

xl[y = xlly +yllx +x IY 
a[Lx = ax 
axlly = a(xl[y) 
(x +y)llz = xllz +yllz 
(ax)lb = (alb)x 
al(bx) = (alb)x 
(ax)l(by) =(a lb)(xl[y) 
(x +y)lz = x iz+y lz 
x I (y + z) = x IY + x I z 

CMI 
CM2 
CM3 
CM4 
CMS 
CM6 
CM7 
CM8 
CM9 

ClH(a) = a if af/.H DI 
aH(a) = 6 if a EH D2 
ClH(x +y) = aH(x)+ClH(y) D3 
aH(xy) = ClH(x)"ClH(y) D4 

a<Jb =a if not (a<b) 
a<Jb = 6 if a<b 
x~z =x~ 

x<J(y +z) = (x~)<Jz 
xy<Jz = (x<Jz)y 
(x +y)<Jz = x<Jz +y<]z 

fJ(a) = a 
fJ(xy) = fJ(x)·fJ(y) 
fJ(x +y) = fJ(x)~ +fJ(y)<]x 

TABLE 7. 

In BAETEN, BERGSTRA & KLOP [3] the following theorem is proved 

1.13.2 THEOREM. 

PI 
P2 
P3 
P4 
PS 
P6 

THI 
TH2 
TH3 

i) for each ACP9-term s there is a term t not containing <J,8,ll,ll,l,ClH such that ACP91-s = t 
ii) ACP9 is a conservative extension of ACP, i.e. for all ACP-terms s,t we have: 

ACPul-s = t~ACP 1-s = t 
At present it is not clear whether or not ACP9 and ACP.r can be combined into ACP...u. However, 

due to theorem 1.13.2 a term like T1(s), with s an ACP,-term, makes sense: we eliminate all fJ and <J 
from s, so that it becomes an ACP-term. And when ACP9 1-s = t, then ACP .. i-T1(s) = T1(t) for all 

ACP-terms s and t. 
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§2 FAIRNESS 

2.1 ExAMPLE: A statistician performs a simple experiment: he tosses a coin until tail comes up. Let 
p(tail) be the probability that, if he tosses the coin, tail comes up. We assume 0 < p(tail) < 1. The 
behaviour of the statistician is specified by 

S = toss ·(head ·S +tail) 

The experiment is performed in a room. We are outside of this room and cannot observe what is 
going on inside, except for the fact that if tail comes up, we can hear a joyful shout of the statistician: 
'tail !!'. This means that if we define 

I = {toss, head} 

the actions from I are hidden. Now the process we are interested in is specified by 

T1(S) 

Since 0 < p(tail) < 1, the process will perform a finite number of head-actions, followed by a tail
action. Therefore, according to our intuition 

T1(S) = T ·tail 

What we need is an algebraic framework in which we can prove this equation. 

2.2 Koomen's Fair Abstraction Rule (KFAR), introduced in BERGSTRA & KLoP [7], expresses the idea 
that the noncieterministic choices made by a process are fair: a certain option is not discarded 
infinitely often. The following algebraic formulation is parametrized by k ;;;;i. 1, indicating the length of 
an internal cycle . 

(KFAll,c) 
T1(Xn)=T·T1( ~ Ym) 

mez. 

2.3 In our example we can apply KF AR to get the desired result: because the specification of S is 
guarded, RDP gives that there are processes sand t such that 

s =toss ·t + 8 

t = head ·s + tail 

Now we can apply K.FAR2 

T1(s) = T"T1(tail + 8) = T·tail 

and since s and t form an arbitrarily chosen solution 

T1(S) = T ·tail 
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2.4 Question. How to handle the case in which we know nothing about p(tail) (so p(tail) can be zero 
(poor statistician))? In this case the old result for T1(S) is certainly wrong. 

Answer 1: The question shows that fairness rules are very dangerous. They yield wrong results. There
fore one should not include a fairness rule in the axiom system. KF AR is false. 

Comment: Although this view can be defended, it is a bit impractical. It amounts to an admission of 
the proposition that process algebra (and with it any other theory of concurrency known to us) is not 
even able to handle in a satisfactory way the simple case of a statistician tossing a coin. Without a 
fairness rule protocol verification (in which the fairness of the communication channels plays an 
essential role) becomes impossible. 

Answer 2: From a process point of view, the cases p(tail)=O, O<p(tail)<l, and p(tail)=I are 
totally different. Therefore it is necessary to include the information we have about p (tail) in the 
specification. If we adopt KFAR, the specification of S corresponds to the case O<p(tail)<l. If we 
want to model the situation in which we know nothing about p(tail), we have to come up with 
another specification, for example the following. 

Before the statistician starts his experiment, there are three 'possible worlds'. In the first world 
p(tail)=O, in the second one O<p(tail)<l, and in the third one p(tail)= 1. As soon as the statistician 
starts the experiment, a choice is made between the three possible worlds (compare this with the 'col
lapse of the wave function' which plays a role in quantum physics). The idea yields the following 
specification: 

S* =ST+SF+SH 

ST= tail 

SF = head ·SF + tail 

SH=head ·SH 

Application of KF AR2 gives 

'l'[(SF) = T ·tail 

and KF AR1 gives 

Hence 

T1(SH) = T·6 

T1(S*) = T1(ST) + T1(SF) + T1(SH) = 

=tail+ T·tail + T·6 =(axiom T2) 

= T·taif + T·6 

This is a solution which is in accordance with our intuition. 

Comment: This approach works for example 2.1, and it might work in a lot of other cases. However, 
it is not clear if it is always possible to model a situation in which an unfair choice occurs, by means 
of a fair choice. The approach of answer 2 is already problematic in the following example (due to A. 
Mazurkiewicz): a boy sits at the waterside and throws stones in the water. Every time before he 
throws he makes a choice between throwing one or two stones. We know absolutely nothing about the 
way this choice is made (maybe the choice is made by means of a probabilistic mechanism, but it is 
also possible that this is not the case). The following specification is, in presence of KF AR, certainly 
wrong: 



B =one ·B + two ·B 

With I = {one}, KF AR1, yields 

T1(B) = T ·two ·T1(B) = T ·two"' 
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This excludes the possibility that, after throwing 15 times two stones, the boy decides at every 
moment of choice thereafter, to throw one stone. The 'possible worlds' approach however, seems to 
lead unavoidably to an infinite sum 

B* = B 1 + B 2 + · · · + Be.> 

Infinite sums are problematic since in their presence the Approximation Induction Principle does not 
hold. 

Answer 3: In reality certain choices are fair, other choices are unfair. A good theory must be able to 
deal with fair as well as unfair choices. 

Comment: We can think of a lot of of possible ways to extend the theory of process algebra in such a 
way that we can deal with unfairness. A characteristic of all approaches is that things get more com
plicated. Since in the problems we will consider in this paper, the assumption that all choices are fair 
is reasonable, we have decided to postpone the introduction of unfairness. 

2.5 EXAMPLE: The statistician of example 2.1 now throws a die (which is fair) until six comes up. The 
behaviour of the statistician is specified by 

S2=toss ·((one+ two+ three+ four+ five)·S2 +six) 

The experiment is again performed in a room, and this time the only thing that can be obs~rved by us 
is the joyful shout 'six !!!'. If we define ' 

J = {toss, one, two, three, four, five} 

the process we are interested in is specified by 

TJ(S2) 

We want to prove: 

TJ(S2) = T·six 

However this is not so easy. The problem is that we have to do with a structure which is not a simple 
cycle (the normal input of KFAR). 

In order to solve this problem, we will formulate the Cluster Fair Abstraction Rule (CFAR}, which 
is a generalization of K.F AR We will prove 

ACP.,. + RSP + RDP + KFAR 1 +RN1- CFAR 

CF AR deals with every graph structure which is a 'conservative cluster'. It will tum out that applica
tion of CF AR yields 

TJ(S2) = T·six 
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2.6 DEFINITIONS: Let E = {Ej:jEJ} be a recursive specification, and let I<;:A. A subset C of J is 
called a cluster from I in E~j 0 EC and Vj EC : 

3m;;;a.:I 

3i 1' ... , im El U { 'T} 

3/1' ... ,fmEC 

3n;;;a.:O 

3g1, ... ,gnEJ -C such that ( ~ x/=.8 by definition): 
je0 

m n 

1j = ~ ik·X1. + ~Xg, 
k=l l=l 

Variables ~ with j EC are called cluster variables. For i EC we say 

X;~~ ~~ occurs inT; 

We define 

e(C) = LJEJ-C I 3iEC:X;~~} 

Variables~ withjEe(C) are called exits. ---;..> is the transitive and reflexive. closure of~. A clus
ter C from I in E is conservative ~ 

'r/iEC'rljEe(C): X; ~ ~ 

2.7 DEFINITION: The Cluster Fair Abstraction Rule (CFAR) is the following rule: 

(CFAR) 

T1(X) = 'T. ~ T1(Xj) 
jee(C) 

E guarded, no abstraction; IIl;;;a.:2; C finite 
conservative cluster from I in E 

2.8 THEOREM. ACP,. + RDP + RSP + RN + K.FAR1 f- CFAR 

PRooF: Let E = {Ej:jEJ} be a guarded specification in which no abstraction operator occurs; let 
E(x, {xj:j EJ -U0 } }); let I <;:A and {i,i'} <;:I (i=Fi'); let C be a finite conservative cluster from I in 
E. We have to prove 

T1(X) = 'T • ~ T1(Xj) 
jee(C) 

CLAIM 1. We can assume that for j 1 EJ - C and j 2 EJ : 

~2 E1j1 ~jifl:C 

PROOF: Let C' = U'l/EC} be a copy of C. We define the specification E' = {E'/jEJUC'} as fol
lows: 
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1. for }EC T'j=Tj 
2. for j'EC' T'j' can be obtained from 1j by replacing all occurrences of variables Xk (kEC) by 

xk' 
3. for jEJ-C T'j can be obtained from 1j by replacing all occurrences of variables Xk (kEC) by 

xk' . 
Because E is guarded, E' is guarded too. According to RDP E' has a solution, let us say 

E'(x',{x'j:}EJUC'-Uo}}) 

Substitution in · E' of xj for variables ~ (j EJ), and xj for variables ~· (j' EC'), yields true state
ments. Hence 

E'(x, {x/}EJ-LJ0 }} U{xj:}EC}) 

Now RSP gives us 

x'j = Xj (jELJo} Ue(C)) 

This means that it is enough to prove 

T1(x') = T· ~ T1(x'j) 
jee(C) 

because 

T1(x) = T1(x') = T· ~ T1(X'j) = T· ~ T1(Xj) 
jee(C) jee(C) 

The observation that C is a conservative cluster from I in E', that has the desired property, finishes 
the proof of the claim. 

CLAIM 2. In addition we can assume that 
1. if, for j EC, 

m n 

1j = ~ ik ·XJ. + ~ Xg, , 
k=l l=l 

then ik = i or ik = T (I:s;;;k:s;;;m), and 
2. V}Ee(C) 3hjEJ -C such that 1j = h(Xh). 

PROOF: Let ce(C) = U"IJEe(C)} be a copy of e(C). Define the specification 
E" = { E"j :j EJ U ce ( C)} as follows 
1. if, for j EC, 

m n 

1j = ~ ik ·XJ. + ~Xg, , 
k=l /=I 

then T"j is defined by 
m n 

T"j = ~ i" k ·XJ. + ~ Xg", 
k=l /=I 

with for 1 :s;;;k =s;;;m 

{

i if ik::j=.T 
i" -k - T if ik=T 

2. for j" Ece( C) 

T"r = h(~) 
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3. for jEJ-C 

T"j = 1j 

E" is guarded, so it has a solution 

E"(x",{x"j :jEJUce(C) - Uo} }) 

But if we substitute in E": h(xj) for variables }{_; (j EC), h(xj) for variables x_;,, (j" Ece(C)), and xj 
for variables}{_; (}EJ-C), we get true statements (to see this, apply RN-axioms and use claim 1). 
RSP gives us 

x" = i1(x ), and 

x"r = i1(xj) (j"Ece(C)) 

Now it is enough to show that 

T1(x") = 'T · ~ T1(x"r) 
j"ece(C) 

because 

T1(x) = T1°i1(x) = T1(x") = T· ~ T1(x"r) = 
j"ece(C) 

= T· ~ 'T1°i1(Xj) = T· ~ 'T1(xj) 
jee(C) jee(C) 

C is a conservative cluster from I in E", which has the desired properties (ce(C) is the set of exits of 
C in E"). This finishes the proof of claim 2. 

CLAIM 3. We can even assume that for }EC, 1j has the form 
m n 

1j = ~ i ·X.r. + ~ Xg, 
k=l /=I 

PR.ooF: Let E 1 = {E) :jEJ} be the following specification: for jEJ-C: T) = Tj. and if, for }EC, 
m n 

1j = ~ ik·X.r. + ~Xg, 
k=I l=I 

then 
m n 

T) = ~ ik ·Xt. + ~Xg, 
k=I l=I 

with for 1 :r;;;.k :r;;;.m 

{

i if 
·I 
lk = i' if 

ik-::l=-'T (hence ik = i according to claim 2) 

E 1 is guarded, so there is a solution 

E 1(x 1 ,{x):JEJ-U0 }}) 

Substitution in E of Tcn(x)) for variables}{_; (}EC), and x) for variables}{_; (}EJ-C), yields true 
statements (use claims 1 + 2, and RN-axioms, especially '1'(i'} 0 i1(x) = h(x)). 
RSP gives 

Tcn(x 1) = x , and 

x)=xj (}Ee(C)) 



Hence it is enough to show 

T1(x 1
) = T" ~ T1(x)) 

jee(C) 

because 

T1(x) = T1°T(i'}(x 1
) = T1(x 1

) = T" ~ T1(x)) = 
jee(C) 

=T· ~ T1(Xj) 
jee(C) 

We define again a new specification, E 2 = {E}:jeJ}: for jeJ-C: T} = Tj, and if, for jeC, 

then 

m n 
T = ~ ik ·Xr + ~ X 

} ~ µ -~ & 
k=l /=l 

m n 

T} = ~i·X.r. + ~Xg, 
k=l /=I 

E 2 is guarded, so there is a solution 

E 2(x 2 ,{x} :jeJ-lj0 }}) 
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Substitution in E 2 of i{i'}(x)) for variables~ (jeC), and x) for variables ~ (jeJ -C) gives us 

also a solution (use claims I + 2, and the RN-axioms, especially i{i'} 0 i1(x) = h(x)). 
According to RSP the two solutions are equal 

i{i'}(xl) = x2 

x) =x} (jee(C)) 

Now it is enough to show 

because 

T1(x 2) = T· ~ T1(xj) 
jee(C) 

T1(X I) = T1°i {i'} (x I) = T1(x2) = T. ~ T1(xj) = 
jee(C) 

=T· ~ T1(x)) 
jee(C) 

Observe that C is a conservative cluster from I in E 2, and that E 2 has the desired properties. This 

finishes the proof of claim 3. 

CLAIM 4. We can even assume that for j e C, 1j has the form 

m 

1j = ~ i ·XJ. + ~ ~ 
k =I jee(C) 

PROOF: Suppose 3i eC3jee(C): X; --TJ>~. Then there is an r with Ioi;;;;r<ICI · je(C)I such that 

l{(i,j) I ieC, jee(C) anci X;~~ in E}I = r 

We will construct a specification Ee, which is exactly the same as specification E, except for the fact 

that one variable has got one more exit. Hence 

l{(i,J)lieC, jee(C) and X;~~ in Ee}I = r + 1 
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Specification Ee has a unique solution 

Ee(xe,{xj:jEJ-Uo} }) 

Claim 1, together with RSP yields 

xj = xj (jEe(C)) 

We will show that 

T1(xe) = T1(x) 

After that is done, it is enough to prove 

T1(xe) = 'T • ~ T1(xj) 
jee(C) 

since 
' 

T1(x) = T1(xe) = 'T" ~ T1(xj) = 'T" ~ T1(Xj) 
jee(C) jee(C) 

Notice that, because we can iterate this construction, all we have to do in order to prove cU,.UU 4, is to 
define specification Ee, and show that 

T1(xe) = T1(x) 

Because cluster C is conservative 

3k, /EC3mEe(C): Xk"°'Xi ;Xk ftXm and X1"°'Xm 

(suppose not, then 

'Vk, lEC'VmEe(C):(Xk"°'Xt and Xi"°'Xm)=>(Xk"°'Xm) 

Choose i EC and j Ee ( C) such that X; ftX; (this is possible). Because C is conservative 

3n 3i 1' ... , in EC: X;"°'X;, "°' · · · ""'X;. "°'X; 

but now we can derive X;""'X;• which is a contradiction) 
So we can choose k, I and m such that equations Ek and E1 are of the form 

Xk = i·X1 + T1 

Xi = T2 +Xm 

and term T 1 does not contain Xm. 
The specifications E 0 = {Ej:jEJ}, Eb = {EJ:jEJ}, Ee= {EJ:jEJ}, Ed= {Ej:jEJ} and 
Ee = { Ej :j EJ} are defined as follows: the equations of the specifications are the same as the equa
tions of E, except for the equations for variable Xk. These are resp. given by 

Tic= i'·X1 + T1 

It= T·X1 + T1 

n = T·X1 + T1 + Xm 

Tf = i' ·Xi + T1 + Xm 

Tk = i ·X1 + T1 + Xm 

Let E 0 (x 0
, -), Eb(xb, -), Ec(xc, -), Ed(xd, -) and Ee(xe, -). Using the same arguments as in the 

proof of claim 2 we can prove 

T1(x) = T1°i{i'}(x 0
) = T1(x 0

) = T1°T{i'}(x 0
) = T1(xb) 



The equations Ei and Ef are 

xk =T·Xi + T1 

X1= T2 +Xm 

Hence 
T2 

xk = T 0 X1 + T1 = T"Xi + X1 + T1 = T0 X1 + T2 + Xm + T1 ~ 
T2 

= T"J4 + X1 + Xm + T1 = T·J(i + T1 + Xm 

But since EJc is 

Xk=T·X1+T1 +Xm 

and all the other equations of Eb and Ee are the same, we can apply RSP and conclude 

xb =xc 

Again using the same arguments, we continue the derivation: 

T1(xb) = T1(xc) = T1°T{i'}(xd) = T1(xd) = T1°i{i'}(xd) = T1(xe) 

Summarizing 

T1(x) = T1(xe) 

This finishes the proof of claim 4. 

CLAIM 5. We can even assume that ICI = 1. 

PRooF: Define specification £ 00 = {Ej:je(J-C)Ulj0 }} as follows: for jeJ-C: Tj = Tj, and 

T'!l =i·X. + ~ X. Jo Jo "'-i J 
jee(C) 

E 00 is guarded, so there is a unique solution 

E 00 (x 00 ,{xj :jeJ-C}) 
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Substitution in E of x 00 for variables~ (jeC), and xj for variables~ .. (jeJ-C) gives us a solu
tion of E (use claim 4). Hence 

x 00 = x, and xj = xj (jee(C)) 

and it is enough to prove 

T1(x 00
) = T" ~ T1(xj) 

jee(C) 

This finishes the proof of claim 5. 

Now we are able to prove theorem 2.8. Because of claim 5 we have the equation: 

X = i·x + ~ Xj 
jee(C) 

Application of KF AR1 now gives the desired result: 

T1(X) = T" ~ T1(Xj) 
jee(C) 

This finishes the proof of theorem 2.8. 
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2.9 REMARK. Consider KFA~ (k;;;i.I). It will be clear that if the "exit" processes Yn (nEZk) are 

specifiable by guarded specifications without abstraction operator, and if IJl;;;i.2, KFA~ is a special 
case of CF AR. 

Because in any practical case these two premisses are ful1filled, and because the rules KF A~ 

(k> 1) were not used in the proof of CFAR, these rules can be omitted out of our axiom system. 
The only fairness rule needed is KF AR1 : 

X = i ·x + y (i E/) 

2.10 REMARK. One of the constraints in CFAR is that C is finite. This constraint is not essential. 
Let CF AR 00 be the following rule 

(CFAR00
) 

It is possible to prove 

TJ = T" l: T1(Xj) 
jee(C) 

E guarded, no abstraction; III ;;;i.2; C conserva
tive cluster from I in E; e ( C) finite 

ACP,. + RDP + RSP +RN+ KFAR1 +PR+ AIP1-CFAR00 

Because we only need CF AR in this paper, and because the proof of CF AR 00 is more complicated 
than the proof of CF AR, we confined ourselves to the proof of CF AR. 

2.11 REMARK: Formally CF AR can only be applied if we have to do with a conservative cluster. In 
practice however, most of the specifications do not contain conservative clusters. In these cases, what 
we mean when we say that a result is obtained by application of CF AR is that there exists a 
specification that is equivalent to the specification we are dealing with (because of RSP), that this 
specification contains a conservative cluster, and that application of CF AR on this cluster gives the 

result. The specification of S2 in example 2.5 does not contain a conservative cluster. The following 
system however, which is equivalent to this specification, contains a conservative cluster. 

S2 = toss ·X + Y 

X=one·S2+ 

Y=B 

Z =six 

Application of CF AR now gives 

TJ(S2) = T·six 

+ five·S2 + Z 
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§3 ARcmTECTURE OF THE PAR-PROTOCOL 
In this section we describe, in terms of process algebra, a Positive Acknowledgement with Retransmis
sion (PAR) protocol. This communication protocol is described in TANENBAUM [12]. In the protocol, 
in which data are transmitted only in one direction, the sender awaits a positive acknowledgement 
before advancing to the next data item. 

3.1 The protocol can be visualised as follows: 

There are four components: 
S: Sender 
K: Data transmission channel 
R: Receiver 
L: Acknowledgement transmission channel 

2 

Fig. 8 

The interaction of the components with their environment takes place at locations called ports, nwn
bered 1 up to 6. 

3.2 Let D be a finite set of data. Elements of Dare to be transmitted by the PAR-protocol from port 
1 to port 2. For dED and nE{O,l}, dn is a new datwn, obtained by appending n to d. We write: 
DB= {dnldED, nE{0,1}}. Elements of DB, called frames, are communicated by channel K. The 
extra bit is needed for the receiver to be able to distinguish a frame that it is seeing for the first time 
from a retransmission. 
Define D::D =DUDBU{ac,ce} (ac = 'acknowledgement', ce = 'checkswn error'). D::D is the set of 
data that occur as parameter of atomic actions. 

3.3 We have the following atomic actions 
communication-actions 

st(f): send f ED::D at port t 

rt(/): read f ED::D at port t 

for t E { 1,2, ... , 6} there are send-, read-, and 

ct(f): communication of /ED::D at port t 

The other atomic actions are 

to: time out 
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i, j : internal actions of channel K resp. L by which a frame gets lost 

3.4 If a message is sent into channel Kor L, three things can happen: 
(i) the message is communicated correctly 
(ii) the message is damaged 
(iii) the message is lost completely 
We assume that if a message is damaged in transit, the receiver hardware will detect this when it com
putes the checksum (a plausible assumption we have to make). 

3.5 The specification of the channels. 
The channels K and L are described by the following equations. We also give the corresponding 
state-transition diagrams: · 

K= ~ r3(f)·Kf 
feDB 

Kf=(s5(f)+s5(ce)+i)·K feDB 

s5(f) 

r3{f) 

s5(ce) 

Fig. 9 

L =r6(ac)·Lac 

Lac =(s4(ac)+s4(ce)+ j) ·L 

s4(ac) 

s4(ce) 

Fig. 10 
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3.6 REMARK. Because, as we will see later on, in the PAR-protocol it is never tried to send a message 
into a channel while another message is still in this channel, it is correct to model the channels as 
one-datum buffers. 

3.7 REMARK. In BERGSTRA & KLoP [7] an "internal choice" action was used to express that a chan
nel, after receiving input, has nondeterminate choice. With an internal choice action the specification 
of channel L would become 

L =r6(ac)-Lac 

Lac=(j ·s4(ac)+ j ·s4(ce)+ j) ·L 

In this way one avoids the unrealistic situation (for example) that the atomic action s4(ce) never 
occurs, because the receiver never "wants" to read a damaged message. With the internal choice 
action one models the fact that the channel (and not the receiver ) decides whether a message is com
municated correctly, is damaged, or gets lost. 

In the PAR-protocol however, as we will see, the receivers are never in a state in which they can 
read some, but not all messages. This means that we can omit the internal choice actions, and thus 
keep the calculation simple. 

3.8 The specification of the sender S. 
WeusevariablesS, RHn, spdn, WSdn (dED, nE{O,l}): 

RH: Read a message from the Host at port I (the Host process, which is not specified here, furnishes 
the sender with data) 

SF: Send a Frame at port 3 
WS: Wait for Something to happen 

S=RH0 

RHn = ~ r l(d) ·SFdn 
deD 

spdn=s3(dn)·WSdn dED, nE{O,l} 

WSdn =r4(ac) ·RH1-n +(r4(ce)+to)-SFdn 
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r4(ce) 
to 

dO 
SF r1 (d) 

s3{d0) 

WffIO r4(ac) 

r4(ac) 

~1 

r1 (d) 

Fig. 11 

\f\1Sd1 

s3{d1) r4(ce) 
to 

After transmitting a frame, the sender waits for something to happen. There are three possibilities : 
an acknowledgement frame arrives undamaged, something damaged comes in, or the timer goes off. If 
a valid acknowledgement comes in, the sender fetches the next message, and advances the sequence 
number, otherwise a duplicate of the old frame is sent. 

3.9 The specification of the receiver R 
WeusevariablesR, WFn, SAn, SHtin (dED,nE{O,l}): 

WF:Wait for the arrival of a Frame at port 5 
SA: Send an Acknowledgement at port 6 
SH: Send a message to the Host at port 2 (in general the host of the receiver will be different from 

the host of the sender). 

R=WF° 

WP=r5(ce)-WFn+ ~r5(d, 1-n)-SAn+ ~r5(d,n)-SHdn 

SAn=s6(ac)-WFn 

SHtin=s2(d)·SA l-n 

deD deD 

dED, nE{O,l} 



SHdO r5(dO) 

s2(d} 

1 
SA 

s6(ac) 

r5(d1} 

r5(dO} 

r5(d1) 

Fig. 12 

s6(ac} 

SAO 

s2(d) 

d1 
SI-I 
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When a valid frame arrives at the receiver, its sequence number is checked to see if it is duplicate. If 
not, it is accepted, written at port 2, and an acknowledgement is generated. Duplicates and damaged 
frames are not written at port 2. 

3.10 Now we define the communication function by 

st(j) I rt(j) = ct(j) for te{3,4,5,6},/e[) 

and all other communications give 8. 
We are interested in 

SllKllRllL 

but we want to hide unsuccesful communications. 
Therefore we define 

H = {st(j), rt(j) lte{3,4,5,6},/e0} 

and look at 

on(SllKllRllL) 
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3.11 Priority. Each time after a frame is sent, the sender S starts a timer. Because we abstract in 

proces algebra from the real-time behaviour of a system, we have omitted this action in our model

ling. An unpleasant property of the PAR-protocol is that it requires the timeout interval to be long 

enough to prevent premature timeouts. If the sender times out too early, while the acknowledgement 

is still on the way, it will send a duplicate. When the previous acknowledgement finally does arrive, 

the sender will mistakenly think that the just sent frame is the one being acknowledged and will not 

realize that there is potentially another acknowledgement somewhere in the channel. If the next frame 

sent is lost completely, but the extra acknowledgement arrives correctly, the sender will not.attempt to 

retransmit the lost frame, and the protocol will fail. 
An important observation is that in our modelling "too early" corresponds exactly to the availabil

ity of. an alternative action. Thus we can express the desired behaviour of the timer by giving the 

atomic action 'to' lower priority than every other atomic action. 
So we define fJ with respect to the following partial order < on A 8 

(1) 8<a for a EA 
(2) to<a foraeA -{to} 
and consider 

fJ0 an(SllKllRllL) 

3.12 Abstraction. We want to focus on the read-actions at port 1, and the send-actions at port 2. 

Therefore we define 

I= { ct(f)I te{3,4,5,6}, f EID} U {to,i,j} 

Now the PAR-protocol is described by 

This is a good description because the specifications of S, K, R and L are guarded. Hence, according 

to RSP and RDP, these specifications have unique solutions, let's says, k, rand I respectively. This 

means that there is a unique process par (par = T1°8°an(sllkllrlll)), which is determined by the equa
tions for variable PAR. 

§4 VERIFICATION OF THE PAR-PROTOCOL 
Verification of the PAR-protocol amounts to a proof that 
(1) the protocol will eventually send at port 2 all and only data it has read at port 1, 
(2) the protocol will send the data at port 2 in the same order as it has read them at port 1. 
This means that, in order to verify the protocol, it is enough to prove the following theorem 

4.1 THEOREM. ACP.1 + ACP9 + SC + HA + RDP + RSP + CA + CF AR 1-

PAR= ~rl(d)·s2(d)·PAR 
deD 

PROOF: We define 

11 = {ct(f)ltE{4,5},/EID}U{to,i,j} 

I 1 <;;,!, so according to axiom CA6: 

PAR= TJoT1, 0 fJ0 an(SllKllRllL) 
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In the first part of the proof we will derive a guarded system of recursion equation for 

T1
1 
o{/ol}n(SllKllRllL) 

in which all terms are Basic Terms. Thereafter, in the second part, we will abstract from the other 
internal actions using CFAR. Throughout the following proof d ranges over D, and n ranges over 
{0,1}. 

Fig. 13 depicts the state transition diagram that corresponds to the system of recursion equations 
we will derive for T1. o{Jol}n(SllKllRllL). 

de/ ET 
X'l ='1'1

1 
°fJo<}n(RHnllKllWPllL) = 

= '1'1. o{Jo(} n(RHn IL(Kll wpn llL) + . . . + L IL(RHn llKll WP) + 

+ (RHnlK)IL(WPllL)+ ... +(WPIL)IL(RHnllK)) = 

= T1, 08°3n((~ rl(d) ·SFdn)IL(Kll wpn llL) + ... + 
deD 

+ (r6(ac)·L 0 c)IL(RHnllKllWFn) + 

+ ((~rl(d)·SFdn)I( ~ r3(j)·Kf))IL(WPllL) + · · · + 
deD feDB 

= ((r5(ce)·WFn + · · · + ~ r5(d,n)·SHdn)I (r6(ac)·L0c)IL(RHnllK)) = 
deD 

= T1, 0 8°3n( ~ rl(d) ·(SFdn llKll WFn llL) + · · · + 
deD 

+ r6(ac)·(RHnllKllWPllLac) +8 + · · · + 8 = 

=T1, 08(~rl(d)·3n(SFdnllKllWPllL)+ · • · +8)= 
deD 

= ~ r l(d) ·T1, 0 8°3 n(SFdn llKll WP llL) 
deD 

X1_n =T1, o8o3n(SFdnllKllWPllL) = 

= c 3(dn) 'T1, 0 0°aH(Wsdn llKdn II WFn llL) 

xf =T1
1 
°8°3H(WSdnllKdnllWPllL) = 

= T1, 0 8(to ·3H(SFdnllKdnllWPJIL) + 
+ i ·3H(WSdnllKllWFnllL) + 
+ c5(ce)·3H(WSdnllKllWPllL) + 
+ c5(dn)·3H(WSdnllKllSHdnllL)) = 

(to-action has lower priority than other actions) 

= T1
1
(i ·8°3n(WSdnllKllWPllL) + 

+ c5(ce)·8°3H(WSdnllKllWPllL) + 
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+ c5(dn)·0°a9 (WSdnllKllSHdnllL)) = 

(if the message is damaged the resulting state is the same as in the case in which the message gets 
lost) 

= T"T1, 0 0°au(WSdnllKllWPllL) + T"TJ, 0 0°au(WSdnllKllSHdnllL) = 

= T"TJ, 0 0(to ·au(SFdnllKllWFnllL) + T"TJ, 0 0°au(WSdnllKllSHdnllL) = 

= T 0 T"T1, 0 0°au(SFdnllKllWPllL) + T"TJ, 0 0°au(WsdnllKllSHdnllL) = 

= T·~n + T·T1, 0 0°au(WSdnllKllSHdnllL) 

xt' =T1, 0 0°au(WSdnllKllSHdnllL) = 

= s2(d)·T1, 0 0°au(WSdnllKllSA l-nllL) 

KT =T1, 0 0°au(WSdnllKllSA l-nllL) = 

= c6(ac)·T1, 0 0°au(WSdnllKllWF1-nllL0 c) 

}(f,n =T1, 0 0°au(WSdnllKllWF1-nllL0 c) = 

= T1,(c4(ac)·0°a9 (RH 1-nllKllWF1-nllL) + 
+ c4(ce)·0°a9 (SFdnllKllWF1-nllL) + 
+ j ·0°au(WSdnllKllWF1-nllL)) = 

= T1,(c4(ac)·0°au(RH1-nllKllWF1-nllL) + 
+ c4(ce)·0°()9 (SFdnllKllWF1-nllL) + 
+ j·to·0°au(SFdnllKllWF1-nllL)) = 

= T·xi-n + T"T1, 0 0°au(SFdnllKllWF1-nllL) 

X4n =T1, 0 0°au(SFdnllKllWF1-nllL) = 

= c3(dn)·T1, 0 0°au(WSdnllKdnllWF1-nllL) 

xf' =T1, 0 0°au(WSdnllKdnllWF1-nllL) = 

= T1,(i ·0°a9 (WSdnllKllWF1-nllL) + 
+ c5(ce)·0°a9 (WSdnllKllWF1-nllL) + 
+ c5(dn)·0°a9 (WSdnllKllSA l-nllL)) = 

= T"TJ, 0 0°au(WSdnllKllWF1-nllL) + T·xf' = 

= T"TJ, (to ·0°()9 (SFdn llKll WF1-nllL) + T·xf' = 
= T"xf + T·xf' 

Summarizing, we have found that xY (= T1, 0 0°a9 (SllKllRllL)) satisfies the following guarded system 

of recursion equations: 



30 

X'l = ~rl(d)·xf 
deD 

xr = c 3(dn) ·X'f 

xf = T·xf + 'T"xf 

xf =s2(d)·~n 

~n = c6(ac) ·X!f' 

xf = c3(dn)·xf' 

TABLE 14 

This finishes the first part of the proof. In the second part we will abstract from the communication 
actions at ports 3 and 6. Because PAR = T1(x<f>, it is enough to show 

T1(x</) = ~ rl(d) ·s2(d) "'T1(x</) 
deD 

For fixed d and n, variables xf and xf form a guarded conservative cluster from I (in the sense of 
remark 2.11 ). Hence we can apply CF AR : 

T1(xf) = T"T1(.x1n) 

Variables xf, X'/,n, ~n and X'/,n (d and n fixed) also form a guarded conservative cluster from I. 

CFARgives: 

T1(xf) = 'l .. T1(Xl-n} 

We use these two results in the following derivation: 

'T1(X'f) = ~ rl(d) "T1(rin) = 
deD 

= ~rl(d)·-r·-r1(xf) = 
deD 

= ~rl(d)·s2(d)·-r1(rsn> = 
deD 

= ~rl(d)·s2(d)·T1(Xl-n) 
deD 

Substituting this equation in itself gives: 

-r1(x</) = ~rl(d)·s2(d)· ~r1(e)·s2(e)--r1(x</) and 
deD eeD 

-r1(XI) = ~ rl(d)·s2(d)· ~rl(e)·s2(e)--r1(XI) 
deD eeD 

Because of the Recursive Specification Principle 
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Hence 

T1(x<f) = ~ r l(d) ·s 2(d) ·71(Xf) 
deD 

which is the desired result. 

§5 SPECIFICATION OF THE OBSW-PROTOCOL, PRELIMINARY CALCULATIONS 

In this section we will give a description, in terms of process algebra, of a One Bit Sliding Window 

(OBSW) protocol. This protocol is described in TANENBAUM [12]. We will use the state operator A': 
to translate a computer program, which occurs in the description of the OBSW-protocol by Tanen

baum, into process algebra (In the section about the PAR-protocol we paid no attention to the rela

tion between Tanenbaum's description of the protocol and our algebraic specification, because in that 

section our main goal was to show how a verification can be accomplished within the formalism of 

process algebra). 

5.1 The essence of all sliding window protocols is that at any instant of time, the sender maintains a list 

of consecutive sequence numbers corresponding to frames it is permitted to send. These frames are 

said to fall within the sending window. Similarly, the receiver also maintains a receiving window 

corresponding to frames it is permitted to accept. The protocol we will analyse is a very simple slid

ing window protocol: the maximum window size is 1, and the only possible sequence numbers are 0 

and 1 (One Bit). 

5.2 The protocol is full duplex. This means that data are to be transmitted in both directions. There 

are two systems, A and B, both containing a sender as well as a receiver. A and B communicate by 

means of channels Kand L (see Fig. 15). Elements of a finite data set Dare to be transmitted by the 

protocol from port 1 to port 8, and from port 5 to port 4. 

Fig. 15 

5.3 The most important component of A as well as Bis the Interface Message Processor (IMP). The 

IMP of system A (IMP A) executes the program which is depicted in Fig. 16. The program for the IMP 

of system B (IMPB) is slightly different, and will be presented later. 

The first step we take is that we discuss the semantics of the various statements which occur in the 

program. Abbreviations will be introduced for the names of variables and procedures. Furthermore 

we reformulate a number of statements in order to reduce the number of variables. 
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const MaxSeq = l; 

type EvType = (FrameArrival, CksumErr, TimeOut); 

procedure protoco/4; 
var NextFrameToSend: SequenceNr; {O or l only} 

FrameExpected: SequenceNr; {O or l only} 
r ,s: frame; {scratch variables} 
btifjer: message; {current message being sent} 
event: EvType; 

begin 
NextFrameToSend: = O; 
FrameExpected: = O; 
FromHost (buffer); 
s .info : = buffer; 
s.seq := NextFrameToSend; 
s.ack := l - FrameExpected; 
sendf(s); 
Start Timer (s. seq); 

repeat 
wait(event); 
if event = FrameArrival then 

begin 
getf(r); 

{initialize outbound stream} 
{initialize inbound stream} 
{fetch message from host) 
{prepare to send initial frame} 
(frame sequence number} 
{piggybacked ack} 
{transmit the frame} 
{start the timer running) 

{possibilities: FrameArrival, CksumErr, TimeOun 

{an inbound frame made it without error} 
{go get itl 

if r .seq = FrameExpected then 
begin {handle inbound frame stream} 

ToHost(r.info); (pass the message to the host} 
inc (FrameExpected) {invert the receiver seq number} 

end; 

if r .ack = NextFrameToSend then 
begin {handle outbound frame stream} 

FromHost(bujfer); {fetch a new message from host} 
inc (NextFrameToSend) {invert sender seq number} 

end 

end; 

s.info := buffer; 
s .seq : = NextFrameToSend; 
s.ack := l - FrameExpected; 
sendf(s); 
StartTimer (s .seq) 

until doomsday 

end; {protoco/4} 

{construct outbound frame} 
{insert sequence number into it} 
{this is seq number of last received frame} 
{transmit a frame} 
{start the timer running} 

Fig. 16 

5.3.1 The meaning of assignments, if-statements, repeat-statements and block-statement will be clear 

and needs no further attention. We introduce the following abbreviations: 
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NextFrameToSend ~ n 
FrameExpected ~ e 
buffer ~ b 
r.seq ~ n 
r.ack ~ e 
r.info ~ b 

5.3.2. procedure FromHost ( var m : message). 
The procedure FromHost(m) fetches a message (element of D) from the host and copies it to m. 
Abbreviation: Fh (m ). 

5.3.3. procedure ToHost (m: message). 
The procedures ToHost(m) delivers the value of variable m to the host. Abbreviation: Th(m). 

5.3.4. procedure getf ( var r: frame). 
The procedure getf(r) gets an inbound frame and copies it to r. A frame is a packed record of the 
fields r.info, r.seq and r.ack (ranging over resp. D, Band B). Because we want to reduce the number 
of variables as much as possible before starting the calculations, we replace getf by a procedure 

Gf(var m : message; var p, q : SequenceNr). 

This procedure gets an inbound frame, unpacks it, and copies the fields to resp. variables m, p and q. 

5.3.5. procedure sendf (s : frame). 
We replace the statements 

by the single statement 

Sf(b,n, I -e) 

s.info : = buffer; 
s.seq : = NextFrameToSend; 
s.ack : = 1 - FrameExpected; 
sendf (s) 

The procedure Sf (m : message; p, q: SequenceNr) packs the values of variables m, p and q together 
in a frame, and transmits this frame. 

5.3.6. procedure StartTimer (k: SequenceNr). 
This procedure starts the clock running and enables the TimeOut event. Tanenbaum does not make 
demands concerning the behaviour of the timers (see TANENBAUM (12], p.153): 

'No combination of lost frames or premature timeouts can cause the protocol to deliver duplicate 
messages to either host, or to skip a message, or to get into a deadlock' 

Because in process algebra we abstract from the real time behaviour of a system, the only relevant 
information concerning the timers is whether or not the TimeOut event is enabled. Since right before 
the wait(event) statement a StartTimer command can be found, and the wait(event) statement is the 
only place in the program where the timers can influence the process, the StartTimer command can be 
omitted out of the program if we assume that the TimeOut event is always enabled. 
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5.3.7. procedure wait ( var event: EvType). 
This procedure embodies the classical way to model a nondeterministic choice in a language in which 

nondeterministic choice is not a primitive. After the procedure call wait(event) the IMP sits in a tight 

loop waiting for something to happen. The procedure only returns when something has happened, 

(e.g., a frame has arrived ). Upon return, the variable event will tell what happened; the value of event 

determines the place where the extention of the program is resumed. 
We replace this construction by the statement 

ev 1: stat 1 + ev2: stat2 + · · · +evn: statn 

As in process algebra'+' expresses nondeterministic choice. ev l,ev2, ... , evn are of type EvType. In 
our case there are three possible values for EvType: 

ce (= checksum error) 
fa ( = frame arrival) 
to ( = time out) 

5.4 IMPB. The program for IMPB is essentially the same as the one for IMPA. However, to avoid a 

synchronization difficulty, the program for IMPB has to be slightly different. As pointed out by 

Tanenbaum, a synchronization difficulty arises if A and B both simultaneously send an initial mes

sage. Fig. 17, taken from TANENBAUM [12], illustrates the problem. In part (a), normal operation of 

the protocol is shown. In (b), a peculiarity is illustrated. In (a) each frame arrival brings a new mes

sage for the host. In (b) half of the frames contain duplicates, even though there are no transmission 

errors. 
A sends (0, 1, AOI 

.............. B gets (0, 1, AO)• 
~ B sends (0, 0, BO) 

A gets (0, 0, BO)* 
A sends (1, 0, All ............. 

B gets (1, 0, All* 
~ B sends (1, 1, Bll 

A gets (1, 1, Bll* 
A sends (0, 1, A2) .............. 

B gets (0, 1, A21* 
- · ~ B sends (0, 0, B2l 

A gets (0, 0, B2) • 
A sends 11. 0, A3) .............. 

(al 

B gets 11, 0, A3)* 
B sends (1, 1, B3) 

- Asends(0, 1,AOl

7
Bsends(0,1,BO) 

· B gets (0, 1, AO)• 
B sends (0, 0, BO) 

A sends (0, 0, AO) 
A gets (0, 1, BOI"/ 

A sends ( 1. 0, A 1 l 
A gets !O. 0, BO) I 
A gets (1, 0, Bll* 
Asends(l, l,All............._ 

Time 

(bi 

B gets {0, 0, AOl 
B sends {1, 0, 81) 

B gets 11. 0, Al)* 
B sends (1, 1, 81) 

B gets (1, 1, All 
B sends 10. 1, B2l 

Two scenarios for protocol 4. The notation is (seq, ack, 
message number). An as"terisk indicates where a host accepts a mes
sage. 

Fig. 17 

The solution Tanenbaum gives for this problem ('only one of the IMP programs should contain the 

'sendf' and 'StartTimer' procedure calls outside the main loop') is incomplete. It does not cope with 

the situation in which the first datum sent by A is mangled in the communication channel, and also 

the timer at A times out too early. In this case situation (b) still can be reached. What we want is that 

IMPB does not undertake any action until the first message from A is received undamaged. 
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5.5 Now the flowchart of Fig. 18 represents the rewritten version of Tanenbaum's original program. 
The open circle corresponds to a nondeterministic choice. The intuitive meaning of the various labels 
is the following 

PA start of program for IMP A 

SF send frame 
WS wait for something to happen 
GF get frame 
TI first test 
T2 second test 
PB start of program for IMPB 
WF wait for frame arrival 

5.6 We translate this into process algebra as follows : all simple statements will become atomic 
actions, and program constructs become process algebra constructs. The recursive specification 
corresponding to the programs for processes A and B becomes: 



PA Pl3 

Fh(b) Fh(b) 

WF H-----.. 

ce 

Gf(b,n~e) 

TI 

no 

T2 

e:n 

no 

Fig. 18 



PA= [n := O]·[e := O]·[Fh(b)]·SF 

SF= [Sf(b,n, I-e)]·WS 

WS = to·SF + ce ·SF+ fa ·GF 

GF = [Gf(b,n,e)] ·TI 

TI =[Ii= e] flh(b)] ·[e: = 1-e] ·T2 + [1i=t6=e] ·T2 

T2 =Le= n]·[Fh(b)]·[n := I-n]·SF + [e=t6=n]·SF 

PB= [n := O]·[e := O]·[Fh(b)]·WF 

WF = ce · WF +fa ·GF 
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Of course, writing down this specification does not finish the specification of the IMP's : performing 

an atomic action changes the value of variables, and the value of the variables determine whether or 

not certain actions (for example [Ii = e] ) can take place. The mechanisms used to model this is the so 
called state operator, which is described below. 

5.7 State operator (SO). In BAETEN & BERGSTRA [l], the state operator A': is introduced. The formal 

definition of this operator looks horrifying, but the idea behind it is quite simple. First we have a cer

tain object m (think of a computer). We are interested in the process which describes the behaviour 

of m. The object m contains a part which can be in different states o (the memory of the computer). 

Inside the object there is also a process x going on (the program which is executed). 
Now the principal idea is that: 
(1) executing a step of the process inside object m can (from the point of view of an observer of 

object m) result in several possible actions. The set of possibilities depends on the state o. 

Example I: If IMPA performs the action [Fh(b)] , this results, from an external point of view, in 
one of the following possible actions : { rl(d) I d ED}. 
Example 2: If IMPA can perform the action [Ii= e], but the value of n is not the same as the 
value of e, then this action is forbidden by the environment. 

(2) executing a step of the internal process x, can, depending on the alternative chosen out of the set 
of possible external actions, result in a certain effect on the state a. 
Example 3: If IMPA performs the action [Fh(b)] , and the chosen external action is r l(d0), then 
the value of variable bis changed to d0 • 

Now we give the formal definition of operator A': : 

5.8 Definition. Let Mand~ be two given finite sets, so that sets A, M, ~ are pairwise disjoint. Sup
pose two functions act, eff are given: 

act:A XMX~~Pow(AT) 

eff:A XATXMX~~~ 

Now we extend the signature with operators 

A': : P-">P (for m eM,oe~) 

and extend the set of axioms by ( ~ xj = 8) : 
je0 
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A:;'(T) =.,. 

A:;'(ax)= ~ b·A:}(a,b,m,a}(x) (aEA) 
b eact(a,m, a) 

A:;'(x + y) = A:;'(x) + A:;'(Y) 

TABLE 19 

5.9 Before we define the state operators for IMPA and IMPB, we first take a more detailed look at the 
environment in which the IMP's operate. Fig. 20 is a refined version of Fig. 15. 

A 

K 

L 

Fig. 20 

B [ ........................ .._ ................................ -. ................................ l 
~ 7 ! 
• I 
~ I 
~ i 

I al 
!6 IM~B ! 
~ 5 I . . . . . . . ' .............................................................................................................. .J 

In 5.3.6 we showed that we can assume that at every moment one of the timers is enabled. Because a 
TimeOut from the first timer cannot be distinguished from a TimeOut from the second one, the fol
lowing process describes the behaviour of the timers in system A 

Analogously the timers of system B are described by 



TB = s ll(to) ·TB 

The behaviour of the receivers RA and RB is specified by (with DBB = { dpq Id ED, p eB}) : 

RA= ~ r3(f)·R~ + r3(ce)·R'i 
feDBB 

R~ = s9(fa) ·s IO(f) ·RA (feDBB) 

R'i =s9(ce)·RA 

and 

RB= ~ r1(f)·R~ + r1(ce)·Rj 
feDBB 

Rf, = s ll(fa) ·s 12({) ·RB (f eDBB) 

Rj = s ll(ce)·RB 
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We cannot model the communication channels Kand Las one-datum-buffers because, as we will see, 

in the OBSW protocol it is possible for K and L to contain more than one frame at a time. A reason

able specification seems to be a FIFO-queue with unbounded capacity. Further the behaviour of the 

communication channels is the same as in the PAR-protocol: if a frame is sent into a channel it can 

be communicated correctly, damaged, or lost completely. We give an infinite specification of the chan

nels. It is possible to give a finite specification (see BAETEN, BERGSTRA & KLoP [4]), but that does not 

simplify the calculations. 

K = K( = ~ r2(f)·Kf 
feDBB 

K 0 *f = (s7(f) + s1(ce) + i)·K0 + ~ r2(g)·Kg•o•f 
geDBB 

f EDBB; oe(DBB)* 
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L =L' = ~ r6(j)·V 
feDBB 

L 0 *! = (s3(j) + s3(ce) + j)·L 0 + ~ r6(g)·Lg*a*f 
geDBB 

f EDBB; oE(DBB)* 

5.10 State operators for IMPA and IMPB 
There are two objects 

M= {A,B} 

Let Var be the set of storage elements 

Var = { n,e,b,ii,e,b} 

For xEVar: Dom(x) denotes the set of possible values of x 

Dom(n) = Dom(e) = Dom(ii) = Dom(e) = {0,1} 

Dom(b) = Dom(b) = D 

Let DOM be the set of all possible values of all variables 

DOM = LJ Dom(x) 
xeVar 

Now the state space l: consists of all functions from Var to DOM, with the property that every vari
able has a value in its domain 

l: = {o: Var~DOMl'7'xEVar:o(x)EDom(x)} 

For each oEl:, xEVar and aEDom(x) we write o{a /x} for the element of l: which satisfies, for 
eachyEVar 

o{a / x}(y) =a, ify = x 

o{ a/ x }(y) = o(y), if y *x 
In words, o{ a / x} is like o, but for its delivering a when applied to x (this definition is adopted from 
DE BAKKER [5]). 1 

The following equations define the state operator for IMPA and IMPB (xEP} : 
1. 't/m EM V'oEl:: 

A:Z([n: = O] ·x) = T·A:Zto /n}(x) 

A:Z([e: = O] ·x) = T·A:(o /e}(x) 

A;'([n: = 1-n] ·x) = T·A:f:1-a(n) /n}(x) 

A;'([e := 1-e]·x) = T·A:{1-a(e)/e}(x) 



2. V'oE~: 

A:([Fh(b)]·x) = ~rl(d)·A:{d /b}(x) 
deD 

A:([Fh(b)]·x) = ~r5(d)·A:{d/b}(x) 
deD 

3. V'oE~: 

A:([Th(b)]·x) = s4(o(b))-A:(x) 

A:([Th(b)]·x) = s8(o(b))-A:(x) 

4. V'oE~: 

A:([Gf(b,n,e)]·x) = ~ ~ rlO(d,p,q)-A:{d /b}{p /ii}{q /e}(x) 
deD p,qeB 

A:([Gf(b,n,e)]·x) = ~ ~ rl2(d,p,q)-A:{d /b}{p /ii}{q /e}(x) 
deD p,qeB 

5. V'oE~ V'eeEvType: 

A:(e ·x) = r9(e)-A:(x) 

A:(e ·x) = r ll(e)-A:(x) 

6. V'oE~ V'm EM: 

m _ _ • _ {T·A:(x) if o(li) = o(e) 
Aa ([n - e] x)- 8 otherwise 

m _ • _ {T·A:(x) if o(li):i=o(e) 
Aa ([n =i=e] x) - 8 otherwise 

m _ • _ {T·A:(x) if o(e) = o(n) 
Aa ([e - n] x) - 8 otherwise 

{

T·A:(x) if o(e):i=o(n) 
A:([e:i=n]·x) = 8 otherwise 

7. V'oE~ : 

A:([Sf (b,n, 1-e)] ·x) = s2(o(b),o(n), 1-o(e)) ·A:(x) 

A:([Sf(b,n, 1-e)]·x) = s6(o(b),o(n), 1-o(e))-A:(x) 
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This finishes the definition of the state operator. Let o0 be an arbitrary element of~. Now the process 
IMP A is defined by 

IMPA = A:
0
(PA) 

and IMPB is defined by 

IMPB = A:.(PB) 

5.11 LEMMA. The following specifications of IMPA and IMPB are equivalent to the specifications 
presented above (deD ;p,qeB): 
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IMP A = T • ~ r l(d) ·SF!./XJ 
dED 

SF!fq =s2(d,p, 1-q)·WSfq 

WSfq = (r9(to + r9(ce)) ·SF!fq + r9(ja) ·GF!fq 

GF!fq = ~rlO(e, 1-q, 1-p)·SF!fq + 
eED 

+ ~rlO(e,q, l-p)·s4(e)·SF!f<1-q> + 
eED 

+ ~rlO(e, 1-q,p)· ~rl(j)·SF~(l-p)q + 
eED fED 

+ ~r 10(e,q,p)·s4(e)· ~rl(j)·SF~(t-p)(t-q) 
eED fED 

IMPB = T· ~r5(d)·WF},00 
dED 

WF},00 = rll(ce)·WF},00 + rll(ja)·GF},00 

SF'iq = s6(d,p, 1-q)·WS'/fq 

WS'/fq = (rll(to) + rll(ce)·SF'iq + rll(ja)·GF'iq 

GF'iq = ~r12(e, 1-q, 1-p)·SF'iq + 
eED 

+ ~r12(e,q, 1-p)·s8(e)·SF'i(l-q) + 
eED 

+ ~r12(e, 1-q,p)· ~r5(j)·SFfp-p)q + 
eED fED 

+ ~r 12(e,q,p) ·s8(e) · ~r5(j)·SF~(t-p)(t-q) 
eED fED 

PRooF: Straightforward. Use axioms ACP,. + RDP + RSP + SO. 

5.12 We define the communication function by 

st(j) lrt(j) = ct(j) for tE{2,3,6,7,9, 10, 11, 12}, jEDBB U {ce, to, fa} 

and all other communications give 8. 
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5.13 Priority. Suppose RA has received a frame from channel L. Now RA gives a signal to IMP.A. that 
a frame has arrived. IMP A however is very busy doing other things, and doesn't notice the signal. 
And because the IMP doesn't fetch the frame from the receiver before the signal is noticed, and 

because the receiver does not read a frame from the channel before the old message is passed to the 

IMP, the receiver RA does not read a new frame from the channel as long as IMP.A. is busy doing 

other things. The frames in the channel however, are not as patient as the receiver: if no one wants 

to read them they just dissappear (of course the same holds the frames in channel K). 

This message passing mechanism is called 'Put and Get'. In BERGSTRA [6a] it is shown that this 

mechanism can be modelled easily by means of the priority operator: at ports 3 and 7 send- as well as 

communication-actions can take place; however, if a communication-action is possible, it will occur 

(communication-actions have a higher priority). So we define a 8 operator with respect to the follow

ing partial order < on A 8 

(1) 8<a for a EA 
(2) s 3(j)<c 3(/) for f eDBB U { ce} 
(3) s7(j)<c7(j) forfeDBBU{ce} 

We define 

HI= {r3if)lfeDBBU{ce}}, and 

H2 = {r7(j) I/ eDBB U { ce} }. 

Now the system consisting of components RA and L is described by 

0°aH1(LllRA) 

and the system RB, K by 

8°a92(KllRB) 

5.14 Specification OBSW-protoco/. 
We define 

and 

H = {st(j),rtif)lte{2,6,9,10,ll,12}, JeDBBU{ce,to,fa}} 

I= {ctif)lte{2,3,6,7,9, 10, 11, 12},feDBB U {ce,to,fa}} U 

U {stif)lte{3, 1},feDBB U {ce}} U {i,j} 

Now the One Bit Sliding Window protocol is described by: 

OBSW = -r1°an(IMPA llTA ll0°an2(KllRB)llIMPBllTBll0°aH1(LllR.A.)) 

5.15 LEMMA. Let 

I1 = {s3(j)lfeDBBU{ce}}ULJ}, and 

H3 = {r3(j),s3(j)lfeDBBU{ce}} 

Let L 1 be defined as follows 
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L1 = L1 = ~ r6(j)·L{ 
feDBB 

Ly*f = (s3(j) + s3(ce) + T)"LY + ~ r6(g)-L(0 *f 
geDBB 

f EDBB; OE(DBB)* 

Then 

PROOF: Straightforward. In words : After abstraction it is not possible to see if a frame was lost 
because of a j-action by the channel, or because the receiver could not read it. 

5.16 COROLLARY. Let 

12 = {ct(j) I tE{2,3,6,7,9, 10, 11, 12},/EDBB U {ce,to,fa}} 

H 4 = {st(j),rt(j) I tE{2,3,6,7,9, 10, 11, 12},/EDBB U {ce,to,fa}} 

Let K 1 be defined by 

K1 = K\ = ~ r2(j)·Kf' 
feDBB 

Ky*f = (s1(j) + s1(ce) + T)·KY + ~ r2(g)·K!(0 *f 
geDBB 

f EDBB; OE(DBB)* 

Then 

PROOF: For reasons of symmetry an analogon of lemma 5.15 holds for Kand RB. Now apply the con
ditional axioms from section 1.10. 

§6 REDUNDANCY IN A CONTEXT 

As soon as the specification of a concurrent system is written down, one faces the question how to 
verify statements about this system. And if the number of components exceeds one this is not a trivial 
issue (as the number of publications about the subject shows). 

A lot of insight into the behaviour of a system can be obtained by looking at its trace set. A trace 
set is the set which consists of all the sequences of actions that can be performed by a system. In this 
section we will give the definition of trace sets. Furthermore we will show how observations of the 
form 'process p never performs an action a in context ()H(pllq)'(which are essentially of a trace
theoretic nature), can be used to simplify a specification by removing redundancies. In particular we 
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will show that the specification of the OBSW-protocol is redundant and can be simplified. (for more 
information about trace sets, see BAETEN & BERGSTRA [l], and REM [11]). 

6.1 ExAMPLE: Consider the case of a theoretical computer scientist, who first drinks a cup of coffee or 
a cup of tea, then thinks for a while, next drinks again a cup of coffee or a cup of tea, etc. The 
behaviour of this scientist can be specified as follows ( 0 = coffee, CP = tea, i = to think) 

TCS = ( Q+CP)·i·TCS 

There is also an automaton 

A=l!!f·A 

Now we define the communication function by 

0 I !!t= •and CPl-.=w. 
and all other communications give 8. We are interested in the merge of processes TCS and A, 
shielded off from the outside by encapsulation. Therefore we define 

and look at 

on(TCSllA) 

A simple calculation gives us that 

on(TCSllA) = •·i·on(TCSllA) 
....... 

So in a certain sense, the specification of TCS is redundant in the given context: it is useless to keep 
open the option of drinking tea, if there is no tea. So the following specification would do as well: 

TCS'= D·i·TCS' 

6.2 REMARK. A specification can also be intrinsically redundant, i.e. if you look at the specification 
itself (you know nothing about the context), you can come to the conclusion that some parts of it can 
be omitted. The following specification for example is redundant in this sense: 

A' =~!A'+ ~·A' 

the second summand can be omitted, but the solution remains the same. 
However, we are not interested in this kind of redundancy here. What we want to study in this 

section are redundancies in a context: situations in which a process cannot perform a certain action 
when it is placed in a specific context. In this view the specification A' is not redundant in context 
o9 (TCSllA'). The specification X = o9 (TCSllA') however is redundant: first of all because TCS is 
redundant in context X, and in the second place because A' is redundant. 

6.3 Trace sets. Before we formally introduce the notion of trace set, we first give some definitions. 

6.3. l DEFINITION: An alphabet is a finite set of symbols. A word over an alphabet ~ is a finite list of 
elements from~. We use A as a notation for the empty word. If o1 and o2 are words over an alpha
bet ~. o1 * o2 (also denoted by o1 o2) denotes the concatenation of o1 and o2 • If o is a word over an 
alphabet ~. and B is a set of words over the same alphabet, we define o*B = {o*blbEB} and 
B*o = {b*olbEB}. lol denotes the length of o. 

6.3.2 DEFINITION: Now, we will define the trace set of processes which can be specified by a guarded 
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specification with no T1• A trace set is a set of words from A, so we will have a partial function 

tr: P~Pow(A *) 

On BT, we define tr inductively (see table 21). 

1. tr(8) ={A} 

2. tr(T) ={A} 

3. tr(Tx) = tr(x) 

4. tr(ax) ={A} Ua*tr(x) (a EA) 

5. tr(x + y) = tr(x)Utr(y) 

TABLE 21. 

and we extend this definition to processes which can be specified by a guarded specification with no 

'f'J by: 

6. E(x, -) E guarded, no abstraction 
00 

tr(x) = U tr('1Tn(x)) 
n=l 

6.3.3 Note. Definition 6.3.2.6 is correct because trace sets are prefix closed, i.e. if o* p is in some trace 
set (o,pEA *), then o is too. 

6.3.4 DEFINITIONS: The following functions from A• ~A•, are defined inductively. 

6.3.4. l For I kA 
1. A1(A) =A 
2. A1(a*o) = A1(o) if a El 
3. A1(a*o) = a*A1(o) if a fl/ 

6.3.4.2 For t EA and H kA 
1. tn(A) =A 
2. tn(a*o) = t*tn(o) if a EH 
3. tn(a*o) = a*tn(o) if a flH 

6.3.4.3 These definitions are extended to functions from Pow(A ·)~Pow(A *) as follows. Let 
B EPow(A *). Then we define 
1. A1(B) = {A1( o)lo EB} (/ kA) 
2. tn(B)={tn(o)loEB} (tEA,HkA) 

6.3.4.4 Now we can define the interrelation between the operators A1 and T1• 



7. E(x, -) E guarded, no abstraction 
tr(T1(x)) = >..1(tr(x)) 

6.3.4.5 For n ;;a. I we define the function 

'Un : Pow(A *)~Pow(A *) 

by 

'rrn(B) = {al lal~n} 

The following theorem follows directly from the definitions and theorem 1.5.6. 

6.3.5 THEOREM. Let x EP be specifiable by a guarded specifications in which no T1 occurs. Then 

Vn;;a.I: 'rrn(tr(x)) = tr('rrn(x)) 
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6.4 In this section we are interested in the behaviour of a process p EP, when placed in a context. 

The types of contexts we will consider, are of the form o8 (p) or o8 (pllq) (qEP, H<;;;,A). 

We use o8 (pllt:) as a notation for o8 (p). So we will speak about a context o8 (pllq) 

(q EP U { t: }, H <;;,A). In order to make the analysis easier, we demand that p is observable in context 

o8 (pllq): it must be possible to tell whether a certain action of o8 (pllq) is originated by p, and if so, 

by which action of p. 
If, for example, we place the theoretical computer scientist of section 6.1 in a context with a 

number of other people and a lot of automata, and we analyze this system in order to answer the 

question: 'Is there a possible action sequence in which our scientist drinks a cup of tea ?', observa

tions like 'someone is drinking something ' are very non-informative. Is our scientist drinking tea ? Or 

coffee ? Or is someone else drinking something ? In order to avoid these difficulties we give the fol

lowing definitions. 

6.4.2 DEFINITION. Let p EP,q EP U { t:} and H <;;,A. We will use the notation a(t:) = 0. p is observable 

in context on(pllq) if: 
1. a(p)- H, a(q)-H and (a(p)la(q))-H are mutually disjoint. 

2. Vai.a2Ea(p) Vbi.b2Ea(q) [ y(a1>b1) = y(a2,b2)E(a(p)la(q))-H] ~ a1 = a2 

6.4.3 Note. Without the Handshaking Axiom the condition (a(p)-H) n (a(p)la(q)-H) = 0 would 

be against our intuition. Consider, for example, the case p =a, q = b, with a -=f=b and alb =a. Our 

intuition says p is observable in context o8 (pllq), but according to the definition it isn't. 

If the second requirement is satisfied, then y has an 'inverse' on (a(p )la(q))-H, i.e. if 

cE(a(p)la(q))-H, then there is exactly one aEa(p) so that a bEa(q) exists with y(a,b) =c. In this 

case, we put a= y- 1(c). 

6.5 DEFINITIONS: Let pEP,qEPU{t:},H<;;;,A, with p observable in context oa(pllq). Suppose 

(a(p)la(q))-H ={cl> ... ,en}· We define the trace set 11'j,•
8 (tr(o8 (pllq) localized top) by 
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What we do in fact is that we rename actions in the trace set of process Cln(pllq): 
(i) Elements of a(p ). These are the actions of p we are focusing on. So we do not rename them. 
(ii) Elements of a(q). We are not interested in actions from q. Therefore we omit them out of the 

traces by means of renaming into >... 
(iii) Elements of a(p )la(q) These actions are renamed into their inverses, which are actions from p. 
The idea of localization was, in a somewhat different form, introduced in BAETEN & BERGSTRA [l]. It 
is a very useful concept, which allows us to 'view' a process while it is interacting with an environ
ment. 

6.6 THEOREM. Let p EP be specifiable by a guarded specification without T1• Let q be £, or specifiable 
by a guarded specification without T1• Let H<;;;,A and let p be observable in context Cln(pllq). Then 

v'J'H <;;;, tr(p) 

PROOF. In case p is finite and q is finite or£, the proof is easy. Using simultaneous induction on the 
structure of the terms (elements of BTU { £}) representing p and q, we can prove theorem 6.6 in a 
straightforward way. This part of the proof is left to the reader. 

Now we use theorem 1.5.6 to reduce the general case of our theorem to the finite case. It is 
sufficient to prove 

Vn ;;a. I 'TT n(P'j,'H) <;;;, 'TTn(tr(p )) 

Choose an arbitrary n. Suppose (a(p)la(q))-H = {ci. ... ,ck}. 
We have to prove 

'TTn°'Y- 1(ci)(c,} 0 
• • • 

0 y- 1
(ck){c.} 0 A.,(q)-H(tr(Cln(pllq))) <;;;, 'TTn((tr(p)) 

For tEA and H<;;;,A, the "'m operator (m;;a.I) and the tn operator are clearly commutative. So this is 
equivalent to 

y- 1 (ci)(c,) o • • • oy- 1(ck){c.} o'TTnoA.,cq)-H(tr(Cln(p llq))) <;;;, 'TTn(tr(p )) 

We cannot simply change the order of the operators 'TTn and A.,cq)-H• because in general the A.,cq)-H 
operator doesn't preserve the length of the elements of its argument. But we claim that there exists 
an m ;;;;;. n such that 

'TTn°A.,cq)-n(tr(on(pllq))) = 'TTn°Aa(q)-H 0'TTm(tr(Cln(pllq))) 

First observe that, because the alphabet A is finite, the set 'TTn°Aa(q)-n(tr(Cln(pllq))) is finite. For each 
aEAa(q)-n(tr(on(pllq))) there is a a'Etr(Cln(pllq)) such that A.,(q)-n(a') =a (an 'inverse' of a). Now 
choose for each element of 'TTn°Aa(q)-n(tr(on(pllq))) an inverse, and let M be the set of these inverses. 
So 

A.,(q)-n(M) = 'TTn°A..(q)-n(tr(un(pllq))) 

Because M is finite there exists an m ;;a.n such that 

this means 

'TTn°Aa(q)-n(tr(un(pllq))) = 'TTn°A..(q)-H°"'m(tr(on(pllq))) 

Choose an m;;a.n with this property. It is enough to show 



y-1(c1){c.} 0 
• • • oY- 1(ck){c.}°'1Tn°hacq>-H°'1Tm(tr(on(pllq))) C 'ITn(tr(p)) 

According to theorem 6.3.5 this is equivalent to 

y-1(c1){ct) 0 
• • • oY- 1(ck){c,) 0 '1Tn°hacq)-H(tr('1Tm 0 0n(pllq))) k 'ITn(tr(p)) 

A theorem proved by v AN GLABBEEK [9] yields that the LHS can be rewritten as 

y-1(c1){c.} 0 • • • 0 Y- 1(ck){c,} °'11'n°Aa(q)-H(tr('1Tm0 0n('11'm(p )11'1Tm(q)))) k 

(use theorem 6.3.5 and the fact that 'ITn(B)C,B) 

kY-l(CJ){c.} o • • • 0 (Ck)(c,} °'11'n°Aa(q)-H(tr(oH('1Tm(p )11'1Tm(q)))) = 

= '1Tn°Y- 1(c1){c,} 0 
• • • oY- 1(ck){c,} 0 Aa(q)-H(tr(on('1Tm(p)11'1Tm(q)))) = 

= 'IT (P'll.,(q),H) c (finite case!) 
n '11.,(p) -

k,'1Tn(tr('11'm(p)) = (theorem 6.3.5) 

= 'ITn°'ITm(tr(p) = (n~m) 

= 'ITn(tr(p)) = RHS 

because n was chosen arbitrarily, this finishes the proof of theorem 6.6. 
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In order to keep things simple, we will only give the definition of redundancy for a special class of 

specifications: 

6.7 DEFINITIONS: A specification E = {E/}EJ} is called strictly linear, if 'VjEJ: 

1j = T or 

1j = 8 or 

3m~l 

m 

1j = ~ak ·J0. 
k=l 

In the last case we say ak ·J0. is a summand of Tj, and also of E. Furthermore we say J0, ETj. It is 

perfectly legal to think of strictly linear specifications as graphs. 

The equations Xj = T are introduced to keep notation and proofs simple. In practical cases the vari

able J0 and equations Ej for which 1j = T can be omitted. 

6.8 DEFINITIONS: For a EA,. we define 

{
a if a EA 

a'= ' if I\ a= T 

a' 
If a ·J0 is a summand of term T;, then we say: X; ~J0. __,,.> is the transitive and refie:icive closure 

al a2 a. a 
of ~ : if J0

0 
~J0, ~ · · · ~J0. and o = a 1*a2* ···*an, then we say that J0

0 
~ J0 .. The 

reflexivity is expressed by saying that X; ~ X;. 
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6.9 THEOREM. Let E = {Ej:}eJ} be a guarded, strictly linear specification with solutionp. Then 

a 
tr(p) = {oj3jeJ:X;

0 
~ X;} 

In order to prove this theorem. we first prove some lemma's. 

6.10 LEMMA. If the index set J of E is finite, and partially ordered by a relation > E such that j 0 is 
minimal and Vi,jeJ: X;e7j ~i >E}, then theorem 6.9 holds. 

PROOF: We use induction on the number of elements of J. 

CASE 1. !JI = 1 Because of the partial order on J, Ej
0 

has the form X;
0 
= T or X;

0 
= 6. This means 

. a 
p =Torp= 6. Hence tr(p) = {i\} = {oj3jEJ:Xj

0 
-?> XJ}. 

CASE 2. Suppose the lemma is proved for !JI ~n -1. Consider the case !JI = n (n > 1). Because of 
the partial order on J, equation Eh must be of the form 

m 

X. = °""' ak ·X. Jo £,,,, }• 
k=1 

a 
Now we define for l~k~m :Jk = UeJj3o: X;. ~ Xj}. The designated element of Jk is }k· The 
specification E(k) is defined by E(k) = {E/}EJk}. E(k) is strictly linear and guarded. Because 
j 0 f!;J k (partial order !), we have IJ k I ~n - 1. The restriction of the partial order > E on J to J k gives 
us a partial order >E(k) on Jk such that Vi,jeJk: X;e7j ~i>E<k>i· 

m 

Let Pk be the unique solution of E(k). This means that p = ~ ak Pk· A simple induction argument 
k=1 

gives us that p must be finite. Hence 
m m 

tr(p) = tr( ~ ak Pk)= {i\} U U a'k *tr(pk) = (induction) 
k=I k=I 

= { oj3j eJ: Xj
0
gX;} 

This finishes the proof of lemma 6.10. 

6.11 DEFINITION. Let E = {Ej :jeJ} be a strictly linear specification. For every n;;;a.l the 
specification En = { EJ,m : j eJ, m <n} U { E,.} is defined as follows 
(i) T,. = T 

(ii) for m < n - 1, Tj,m is obtained from Tj by replacing each variable X; in 1j by X;,m + 1 if the vari
able occurs guarded in 7j, and by X;,m otherwise. 

(iii) for m = n - 1, 'Ij,m is obtained from 1j by replacing each variable X; in 1j by X., if the variable 
occurs guarded in 7j, and byX;,m otherwise. 

The index set r of En is {(j,m)IJeJ, m<n} U {T}; the special element of r is (j0,0). En is again a 
strictly linear recursive specification. When E is guarded En is guarded too and the transitive (but not 

reflexive) closure of ~ is a partial order on r. If we throw away all the equations for unreachable 
variables the resulting index set is finite and (j0 ,0) is minimal. 
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6.12 Ex.AMPLE. The following example shows that in En the process specified by E is provided with a 

counter, which counts the number of 'real' steps, and cuts off the process after n 'real' steps. 

E: X=a·X+-r·Y; Y=b·Y 

E 2 : X 0 = a·X1 +-r·Y0 ; Y0 = b·Y1 ;X.,. = T 

X 1 =a·X.,. +-r·Y1 ; Y1 =b·X.,. 

6.13 LEMMA. Let E be a guarded, strictly linear specification with solution p, and let n ;;;a. I. Then 

En('ITn(p ), - ) 

PROOF: By iterated application of lemma 1.5.5. 

Now we are able to prove theorem 6.9. 

PRooF: It is enough to show 

Vn;;;a.l ,,,n(tr(p))='1Tn({ol3jeJ:..\j
0 
~ Aj}) 

Choose an arbitrary n ;;;a. I. 

'ITn(tr(p)) = tr(?Tn(p)) =(lemma 6.10 +lemma 6.13) 

. a 
= {ol3JEP :..\j

0
, 0 ~> ..\j} = 

. a 
= {ollol~n /\31eJ:Aj0 

~> ..\j} = 

='1Tn({ol3jeJ:..\j
0 
~ Xj}) 

Because n was chosen arbitrarily, this finishes the proof of theorem 6.9. 

6.14 DEFINITION. Let E = {Ej:jeJ} be a strictly linear recursive specification with solutionp. Let 

a·Aj be a summand of T; (i,jeJ, aeA.,.). Let qePU{£}, H<;;;;,A, and letp be observable in context 

()H(pllq). The summand a ·Aj is redundant in context ()H(pllq) iff 

{olX. ~ X}*a'nvq,H = 0 
Jo I p 

Eis redundant in context aH(pllq) iff E has a summand which is redundant in this context. 

6.15 Note. If a summand a ·Aj of T; is redundant in context aH(pllq), we can depict this situation 

graphically as follows: 
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a 
~> Xj}*a' 

tr(p) 

Fig. 22 

This is because {olXj. ~> Xj}*a' C {ol3jeJ :Xj0 ~> Xj} = tr(p) (theorem 6.9), and 11
1}'H C tr(p) 

(theorem 6.6). 

6.16 THEOREM. Let E be a strictly linear guarded specification with solution p. Let q be t: or 
sp~able by a guarded specification without T1• Let HCA. Let p be observable in context a H(p llq ). 
Let E be a specification, obtained from E by omitting an arbitrary number of summands which are 
redundant in contex!_}H(pllq) (i!_in a term all summands are omitted, then this term becomes 6). Let 
p be the solution of E (because E is strictly linear and guarded, it has a unique solution). Then: 

aH<pllq) = aH(pllq) 

The proof of this theorem is analogous to the proof of theorem 6.9, but a bit more complicated 
because there is also a q around. 

6.17 LEMMA. If the index set J of E is finite, and partially ordered by a relation > E such that j 0 is 
minimal and 'Vi,jeJ: X;eTj ~i >E j, and if q is equal tot:, or is a finite process, then theorem 6.16 
holds. 

PROOF: We use simultaneous induction on the number of elements of J, and on the term representing 
q (element of BTU {t:}), to prove the following three statements: 
I) aH(pliq) = aH(pllq) 
2) aH(qlL.p) = on(qllj) 
3) aH(plq) = aH(plq) 
We only present the proof of statement l. Statements 2 and 3 can be proved analogously. 

CASE l. IJI = 1 
Because of the partial order on J, Tj. = T or IJ. = 6. Since Ej. is the only equation of E, this means 
that E doesn't contain redundant summands, so there is nothing to prove. 

CASE 2. Suppose the lemma is proved for IJIE;;;n -1. Consider the case IJI = n (n > 1). Because of 
the partial order on J, equation Ej. must be of the form 

m 
X· = ""'ak ·X Jo ..fu.i l• 

k=I 

As in the proof of lemma 6.10, we define for lE;;;kE;;;m:Jk = LJeJ}l3o:Xj. ~ Xj}. The desig

nated element of Jk is}k· E(k) is defined by E(k) = {Ef}EJk}. E(k) is a strictly linear and guarded 
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specification. Because jo fiJ k> we have IJk I ~ n - l. The :restriction of the partial order > E on J to Jk 

gives us a partial order > E(k) on h such that 'r/i,j eJk : J(i e 1j ~ i > E(k) j. Let Pk be. the unique 
m . . 

solution of E (k ). Hence p = ~ ak Pk . Obse:rve that p is finite.· 
k=I 

The following five propositions allow us to use simultaneous induction. 

PROPOSITION l. If a summand of Eis redundant in context aH(pllT), then the summand is redundant 

in context dH{plif). 

PROOF: 

v;·H = tr(aH(pllT)) = tr(aH(plLT + Tllp +PIT))= 

= tr(T"dH(p) + aH(plLT +PIT))= 

= tr(aH(p)) u tr(aH(plLT +PIT))= 

= vjH u tr(aH(plLT +PIT)) 

So vjH k.,,~H. If a summand a·~ of T; is redundant in context aH(pllT), then 

{al~. ~> X;}*a' n v;·H = 0. But then also {al~. ~> X;}*a' n vjH = 0, which means that 

the summand is redundant in context aH{pllE). 

PR.oPosmoN 2. If a summand of Eis redundant in a context aH(pllax) (aeA.,., xeBT), and afiH, 

then the summand is redundant in context aH(pllx). 

PROOF: Analogous to the proof of proposition 1. 

PROPOSITION 3. If a summand of Eis redundant in a context aH(pll(x + y)) (x,yeBT), then the 

summand is redundant in context aH(pllx). 

PROOF: It is enough to show that v;,·H k v;, +y,H. Using induction, we can easily prove that 

tr(dH(pllx)) k tr(aH(pll(x +y))). vf,•H and v;, +y,H can be obtained from tr(aH(pllx)) and 

tr(aH(pll(x+y)) by means of application of the operators tH and A.1• The inclusion relation however, 

is an invariant of these operators. 

PROPOSITION 4. Let 1 ~k ~m. Suppose ak fiH. If a summand of E, which is also a summand of E (k ), 

is redundant in a context aH(pllq) (qeBT), then it is also redundant in context dH(pkllq). 

PROOF: If a summand a·~ of T; is redundant in context aH(pllq) then 

a ~ 
{al~. ~> X;}*a'nvj·H = 0. In particular {a'k*al~. --::,.~. ~> X;}*a'nvj•H = 0. A simple 

calculation oives us that a'k * .,,q,H C .,,q,H. Hence 
i:r P• - p 

a'k*{al~. ~> J(i}*a' n a'k*vj;H = 0 ~{al~. ~ X;}*a'nvj;H = 0 

This means that the summand is redundant in context aH(pkllq). 

PROPOSITION 5. Let l~k~m. If a summand of E, which is also a summand of E(k), is redundant in 

a context aH(pllax) (aeA.,., xeBT), and aklafiHU{B}, then the summand is redundant in context 

dH{pkllx). 
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PROOF: Analogous to the proof of proposition 4. 

Note. Specification Eis obtained out of specification E by omitting an arbitrary number of _redundan_! 
summands. In the proof of case 2 we will make use of a specification E. Specification E is !!_lee E 
obtained out of E, but now the summands a ·10 _which were omitted in the construction of E, are 
replaced by_ a summand fr10. It will be clear that E(j, -). 
In general E is not strictly linear, but the strictly linear specification E can be obtained in a straight-

- m -
forward way from E. H 10 = ~ ak ·10. is an equation which occurs in specification E, then E con

k= I 
m 

tains a corresponding equation 10 = ~ ak ·10 .. with ak = ak or ak =I>. In the.last case the summand 
k=I 

ak ·10. of 1j is re<!_undant. In the same wal as the specifications E(k) were introduced, we introduce 
the specifications E(k). Let the solution of E(k) be Pk· We have 

m 

i= ~akik 
k=I 

Now we use induction on q: 

CASE 2.1. q = £ 

m m 
aH(plie) = aH(p) = aH( ~ ak ·Jlk) = ~ aH(ak) ·aH(pk) = 

k=I k=I 
m 

= ~ aH(ak)-aH(pkll£) = 
k=I 

(for each I ..;.k ~m there are two cases: 
1. ak EH: aH(ak) ·aH(pklk) = 6 = aH(fik) ·aH(jklk) 
2. ak <£.H: the summand Olk ·10. of J0

0 
is not redundant, so aH(ak) = aH(fik). Proposition 4 allows 

us to use induction on the term aH(pklk)) 
m m m 

= ~ aH(fik)-aH(jkll£) = ~ aH(fik)-aH(jk) = aH( ~ ak Pk)= 
k=I k=I k=l 

CASE 2.2. q = 6 
m m m 

aH(plll>) = aH( ~ ak ·(pkll6) + /}·( ~ ak pd+ ~ (akl6)pk) = 
k=I k=I k=I 

m 

= ~ aH(ak)-aH(pklll>) = 
k=I 

(same argument as in case 2.1) 
m 

= ~ aH(fik)·aH(jkll6) = · · · = aH(jll6) 
k=I 

CASE 2.3. q = T 

m m 
aH(pilT) = aH( ~ ak ·(pkllT) + T·{pll£) + ~ (aklT)"jJk) = 

k=I k=I 
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m 

= ~ ds(ak) ·an(pkllT) + T·dn(plk) = 
k=l 

(use for the first term the same argument as in case 2.1, and use induction, which is allowed by pro
position 1, for the second term) 

m 

= ~ ds(tik)·dn<JikllT) + T"ds(/illf) = · · · = ds(/illT) 
k=l 

CASE 2.4. q = ax, a eA.,. 
m m 

dn(pllax) = dn(~ ak ·(pkllax) +a ·(xllp) + ~ (akla)·(pkllx)) = 
k=l k=l 

m m 
= ~ ds(ak)·dn(pkllax) + ds(a)·dn(pllx) + ~ ds(akla)·dn(pkllx) = 

k=l k=I 

(as in case 2.1, we make for each term the distinction akeH or akfl.H, aeH or afl.H, (akla)eHU {8} 
or (akla)fl.HU{8}. In the first case the step made is trivial, in the second case one of the propositions 
allows us to use induction) 

m m 
= ~ dn@k)"dn<Jikllax) + ds(a)·dn(/illx) + ~ dn@kla)·dn<Jikllx) = 

k=I k=l 

· · · = ds(/illax) 

CASE 2.5. q = x + y 
m 

dn(pll(x +y)) = dn( ~ ak ·(pkll(x +y)) + xlL.p + ylL.p +pix+ pjy) = 
k=l 

m 
= ~ ds(ak)·dn(pkll(x +y)) + ds(xlL.p) + dn(ylL.p) + dn(plx) + ds(pjy) = 

k=l 

(case distinction and induction) 
m 

= ~ dn@d·dnVJkll(x +y)) + ds(xll_j) + ds(yll.P) + dn<Jilx) + dn<JilY) = 
k=l 

= · · · = ds(/ill(x +y)) 

This finishes the proof of lemma 6.17. Now we are able to prove theorem 6.16: 

PROOF: Because p is specified by a guarded specification without T1> and q = f or specifiable by a 
guarded specification without T1> as(pllq) is also specifiable by a guarded specification without T1. 

Hence, according to the Approximation Induction Principle (section 1.8), it is enough to prove (with 
'11'n(f)=f for n ;;i. I) 

'Vn ;;;;i.1 '11'n°dn(pllq) = '11'n°ds(/illq) 

As shown by v AN GLABBEEK [9], this is equivalent to 

'Vn ;;;;i.1 '11n°ds('11'n(p)11'11'n(q)) = '11'n°ds('11'n(/i)11'11'n(q). 

Choose an arbitrary n. 

CLAIM. ·1;:n can be obtained from En by removing summands which are redundant in context 
ds('ll'n(p )11'11'n(q)). 
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E omit redundancies E 

in context oH(plJq) 

l 
omit redundancies -n En 
in context 0H('1Tn(p)J1'1Tn(q)) 

E 

Fig. 23 

PROOF: From the construction of En and En it is clear that En can be obtained from En by removing 
summands. Furthermore, these summands correspond to summands in E which are redundant in con
text oH(pllq). So we have to prove that if a summand of E is redundant in context oH(pllq), the 
corresponding summands of En are redundant in context oH('1Tn(p)l1'1Tn(q)). 
Let a·~ be a summand of term T; of E, which is redundant in context oH(pllq). So 

{olX. ~> X}*a' n vq,H = 0 Jo I p 

But for all m <n : 

a a 
{ ol~0,o ~> X;,m} k { ol~. ~> X;} 

Furthermore it is not very difficult to show that 

P'IT.(q),H Cvq,H 
'IT.(p) - p 

Hence for all m <n : 

{olX. ~> X }*a' n v'IT•(q),H = 0 
] 0,0 1,m 'IT.(p) 

This finishes the proof of the claim. 

Jn is not necessarily finite, but U Er l3o: Xj
0
,o ~> ~}=Jn is finite, and it is obvious that, without 

loss of generality, we can restrict En to the equations Ej for which j EJn. 

Because E is guarded, we can impose a partial order > E" on the (new) index set Jin of En such that 
(j0,0) is minimal, and 'Vi,jEJln :X;E~~i>E· j. 

Because q = E, or q is specifiable by a guarded specification without T1> '1Tn(q) is finite or E. 

These facts, together with the claim, allow us to apply lemma 6.17, which gives us 

OH('1Tn(p)11'1Tn(q)) = OH('ITnVJ)IJ'ITn(q)) 

Hence 

" 
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'1Tn°aH('1Tn(p)l1'1Tn(q)) = '1Tn°0H('1Tn(jj)11'1Tn(q)) 

Because n was chosen arbitrarily this finishes the proof of theorem 6.16. 

6.18 Note. We have defined the notion of redundancy only for strictly linear specifications. The 
definition of redundancy can however in an obvious way be extended to linear specifications. 

A recursive specification is linear iff all terms are linear. If { }{_; :} eJ} is a set of variables then 
linear terms are inductively defined as follows 
1. For aeA.,.,8 , a is a linear term, and for jeJ, }{_;is a linear term, 
2. If T1 and T 2 are linear terms, and aeA.,., then so are T1 + T 2 and a ·T1• 

Each linear specification corresponds in a natural way to a strictly linear specification. We give an 
example 

X=abY 

Y=c 

X=aX' X'=bY 

If in the strictly linear specification, which corresponds to a given linear specification, certain sum
mands can be omitted in a certain context, we can translate this back in a straightforward way to the 
linear specification. 

6.19 Redundancy in a context is undecidable 
We show that it is undecidable (in general) whether or not a specification is redundant in a given 
context. We do this by showing that if it were decidable, we would have an algorithm for Post's 
Correspondence Problem (PCP). And such an algorithm can't be found because PCP itself is unde
cidable. 

6.20 DEFINITION: An instance of PCP consist of two lists A = x 1, ..• , xk and B = y 1, .•• ,yk of 
words over some alphabet l:. This instance of PCP has a solution if there is any sequence of integers 
i., ... , im, with m;;;:. I, such that x;, *x;, * ... *x; .. = J;, *Yi,* ... *Yi.,· The sequence i., ... , im is a solution 
to this instance of PCP. 

A proof that PCP is undecidable is presented in HoPCROFT & ULLMAN [10]. The following example 
can also be found in [10]. 

6.21 EXAMPLE: Let l: = {O, 1 }. Let A and B be lists of three words each, as defined in Fig. 24. In this 
case PCP has a solution. Let m = 4, i 1 = 2, i2 = 1, i3 =land i4 = 3. Then x2x1x1x3 = YV'1Y1Y3 = 
101111110. 

List A List B 
1 Xi Yi 
1 1 111 
2 10111 10 
3 10 0 

Fig. 24 

6.22 THEOREM. Redundancy in a context in undecidable. 

PROOF: Let A = x., ... , xk and B = y 1, ••. ,yk> with xi and Yi words over some alphabet l:, be an 
instance of Post's Correspondence Problem. Consider the following network: 
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Fig. 25 

The idea is the following: process A generates a sequence i 1, ••• , im (which is possibly a solution to 
the given instance of PCP). This sequence is sent into channel I, a FIFO queue with unbounded capa
city. Each time an index i is sent into channel I, the corresponding word x; is sent, character for 
character, into channel X, also a FIFO queue with unbounded capacity. After i 1, ••• , im is sent into 
channel I, and x;,, . .. ,x;m into channel X, a special character J_ (so J_ <l~) is sent into channel I 
and into channel X. 

On the other side of the channels process B checks if x;, * · · · *x;m = y;, * · · · y;m. If a deviation is 
detected process B deadlocks. If process B reads a J_ at port 3 (this can only happen when an entire 
number of words is read at port 4), it tries to read a J_ at port 4. 

This can only happen when x;, * · · · *x;m = y;, * · · · *y;m (PCP has a solution). But that is undecid
able. This means that it is undecidable whether the action r4(J_) (reading a J_-symbol at port 4) in 
the specification of process B is redundant in context oH(B ll(A llillX)). 
We give recursive specifications of process A, B, I and X. Let xj = xj, · · · xjm, and yj = yj, · · · Yj"' 
for l~j~k and let D = {l, ... ,k}U~LJ{J_}. Then 

k 
A = ~ s l(i)-Sj 

j=I 

T =A + s l(J_)-s2(J_) 

k 
B = ~ r3(j) ·Uj 

j=I 

V = B + r3(J_)-r4(J_) 
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I= I,= ~rl(d)·Id 
deD 

la*d =s3(d)·I0 + ~rl(e)·Ie*o*d deD, oeD* 
eeD 

X = X, = ~r2(d)·Xd 
deD 

Xa*d=s4(d)·X0 + ~r2(e)·Xe*o*d deD,oeD* 
· eeD 

Define communication by 

st(d)lrt(d) = ct(d) for tE{l,2,3,4}, deD 

and let 

H = {st(d),rt(d)lte{l,2,3,4}, deD} 

6.23 Proving redundancies 
The proofs of the theorems presented on the previous pages were long and rather technical. However, 

in their application, the theorems provide us with a simple and powerful tool, which allows us to 

prove statements about the trace set of a concurrent system, and to detect and remove redundancies. 

The basic situation we want to analyze is a system which consists of the encapsulated merge of a 

number of components: 

p = on(P1 II ... llPn) 

A reasonable assumption is that each component is observable in context with the others. As 

definition 6.14 shows, it is necessary, in order to prove redundancies, to have information about 

tr(P) 

However, if the number of components of P is large calculating tr(P) becomes a tremendous job, 

which is even beyond the reach of a supercomputer. It is far more easier to calculate the trace sets of 

a component (use theorem 6.9): 

tr(P1) 

Theorem 6.6 now gives us some information about tr(P): 

v(P2ll ... llP.),H Ctr(P ) 
P, - I 

since v~211 • • · llP.),H is obtained from tr(P) by means of renamings. If, for example, in every element of 

tr(P 1) every bis always preceded by an a, theorem 6.6 yields that in tr(P) the renamed version of bis 

always precede by the renamed version of a. We use this type of reasoning in the proof of the follow

ing lemma. (see sections 5.9 - 5.16 for the specifications of the various components) 

6.24 LEMMA. Let Obsw be specified as follows: 

Obsw = on4(/MPAllTAllK1llRBllIMPBllTBllL1llRA) 
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(So OBSW = T12(0bsw)). Then 

'ffdED'tlpEB: c2(d,p,p)ff.tr(Obsw) 

PROOF: Suppose 

3aEA * 3dED 3p EB: a*c2(d,p,p)Etr(Obsw) 

Without loss of generality we may assume 'tie ED VqEB: c2(e,q,q)f/.a. 
If we look at the specification of IMPA and apply theorem 6.6 this gives us 

3ai.a'1 EA* 3d1ED3p1 EB: a= a1 *c IO(di. l -pi.pi)*a'1 

Now look at the specification of RA and apply again theorem 6.6 

302,<1'2 EA*: a1 = a2*c3(d1>l-pi,p1)*a'2 

We iterate this procedure a number of times; look at the specification of L 1: 

3a3,a' 3 EA* : <J2 = <13*c6(di,1-p 1>P 1)*a'3 

We walk backward through IMPB: 

3a4, a'4 EA• 3d2 ED 3p2 EB : <13 = <14*c12(d2,P2,p2)*a'4 

from port 12 backward to port 7 through RB, 

3a5,a'5 EA*: <14 = a5*c?(d2,p2,p2)*a'5 

and from ?Ort 7 via channel K 1 to port 2, the starting point of our excursion: 

3a6,a'6 EA•: a5 = a6*c2(d2,p2,p2)*a'6 

And since a5 is a prefix of a this gives the desired contradiction. 

6.25 It will be clear that we can generalize the result of lemma 6.24: if a frame is communicated at 
port 2, 7 or 12 it is of the form (d, 1-p,p), and if it is communicated at ports 6, 3 or 10 it is of the 
form (d,p,p). In other words: the first control bit determines the second one. This means that there are 
a number of redundancies in the specifications of the components. If we apply theorem 6.16 to 
remove these redundancies, and omit the second control bit out of the communication actions (an 
abbreviation) this gives us the following theorem: 



6.26 'THEOREM. The following specification of OBSW is equivalent to the old one (deD; p eB): 

IMP A = T • I r l(d)-S£1° 
deD 

sP1j = s2(d,p)-WS'i.' 

WS'!f = (r9(to) + r9(ce)) ·SP1J + r9(fa)-GP1j 

GP1j = I r IO(e, 1 -p )-SP1j + 
eeD 

+ I r 10(e,p)-s4(e)- Iriif)-SF~<1 -p> 
eeD feD 

IMP8 = T" Ir5(d)-W.Pi0 

deD 

wri0 =rl1(ce)-W.Pi0 +r1 l(fa)- Ir 12(e0)-s8(e)"S.Pi0 

eeD 

SPf = s6(d,p)-WS'ff 

WS'ff = (r ll(to) + r ll(ce)) ·SPf + r ll(fa)"GPf 

GPf = I r 12(e,p) ·SPf + 
eeD 

+ Ir 12(e, 1-p)"s8(e)-Ir5(f)"SFfP-p> 
eeD feD 

T8 = s 12(to) ·T8 

61 



62 

RA= ~ r3(f)-s9(fa)·slO(f)·RA +r3(ce)-s9(ce)·RA 
feDn 

Rn = ~ r7(/) ·s 11(/a) ·s 12(/) ·Rn + r7(ce) ·s ll(ce) ·Rn 
feDn 

K1 = ~ = ~ r2(/)·K{ fEDB;aE(DB)* 
feDn 

Kff=(s7(f)+s7(ce)+T)·K'{ + ~ r2(g)·K¥*a*J 
geDn 

Li = L' = ~ r6(f)-L{ fEDB;aE(DB)* 
feDn 

Lff = (s3(f) + s3(ce) + T)·L1 + ~ r6(g)·Lf0 *J 
geDn 

H = {st(f),rt(f)itE{2,3,6,7,9, 10, 11, 12},/EDB U {ce,to,fa}} 

I= {ct(f)ltE{2,3,6,7, 10, 11, 12},/EDB U {ce,to,fa}} 

OBSW=T1°aa(RAllIMPAllTAllK1llRnllIMPnllTnllL1) 

6.27 REMARK. The redundancy in the specification of the OBSW-protocol can be retraced to a redun
dancy in the computer progam which is presented in TANENBAUM [12]. The presence of this redun
dancy can be explained as follows: In his book Tanenbaum presents the One Bit Sliding Window pro
tocol as an introduction to the general sliding window protocols (in which the window size is larger 
than 1). If the window size is larger than 1, the redundancy does not occur (the value of the field 
s.seq does not determine the value of the field s.ack). 

This means that the One Bit Sliding Window Protocol has a behaviour which is essentially 
different from the behaviour of Sliding Window protocols with a larger window size. 
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7.1 Local Replacement. For the verification of the OBSW-protocol we will make extensive use of a 

technique which we shall call 'local replacement'. In fact we used the technique already in some of 

the preliminary calculations for the OBSW-protocol (notably lemma 5.15 and theorem 6.26). In this 

section however we will make it explicit. 
The basic situation we have to deal with is the abstracted and encapsulated merge of a number of 

components: 

T1°<lH(Xill · · · llXn) 

In general the complexity of this system is immense. It is difficult to verify statements about the sys

tem. Now the basic idea behind the local replacement is that one proves that one can replace certain 

components by new components, without changing the properties of the system as a whole. A replace

ment makes sense if the complexity of the resulting system is less than the complexity of the original 

system. After the first replacement, for example of X 1 and X 2 by X'1 and X'2 , we can perform a 

second one, for example the replacement of X'2 and X 3 by X"2 (the number of components can 

change). Thus we use local replacement to reduce stepwise the complexity of the system as a whole. 

Of course the succes of the local replacement technique depends on the ability to fin<;l succesful 

replacements. By now two mechanisms are available. · 

7.1.1 Redundancy. In section 6 we saw how the trace sets of the components give us information 

about the trace set of the system 

<lH(Xdl · · · llXn) 

Further we saw how this information can be used to prove redundancies. And since redundancies 

can be removed (theorem 6.16), this gives us a mechanism to accomplish replacements: 

T1°0H(Xill(X2ll • · · llXn))-H1°0H(X'1 ll(X2ll · · · llXn)) 

7.1.2 Conditional Axioms. The conditional axioms (in particular CAI and CA2) allow us to 'pull Tr 

and <lwoperators through a merge'. This can be used to accomplish replacements in the following 

way: 
(step 1) 

T1°oH(X1 II · · · llX5) =(conditional axioms) 

= T1°0H(T1• 0 ow(X1 llX2)llX3llX4llXs) 

0 0 
0 0° 

Fig. 26 

0 0 
O[ill 
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(step 2) 

(step 3) 

Fig. 27 

'1"[0 oy(T1•0 on·(X'il1X'2)llX3 llX4 11X5) =(conditional axioms) 

0 0 
o~ 

= T1°0H(X'1 llX'2llX3llX4i1Xs) 

Fig. 28 

0 0 
0 •® 

So we will show by means of the local replacement technique that the OBSW-protocol is a valid com
munication protocol. The first thing we do (lemma 7.2) is that we give the receiver a 'memory' to 
distinguish a frame that it is seeing for the first time from a retransmission. Further we make the 
observation that it does not matter if the receiver loses a frame now and then, since the communica
tion channel can lose frames too. 



7.2 LEMMA. Let RA 1 be the specified as follows (p eB): 

R~1 = ~r3(d,p)·s9(fa)·sIO(d,p)·R~!P + 
deD 

+ ~r3(d, l-p)·s9(fa)·sIO(d, l-p)·R~ 1 + 
deD 

+ ~r3(d, l-p)·R~1 + 
deD 

+ r3(ce)·s9(ce)·~ 1 + r3(ce)·R~ 1 

Let H 1 and I 1 be the following sets: 

then 

HI= {r3(f),s3(f)lfeDBU{ce}} 

II = { c 3(f)lfeDB U { ce}} 

T11°au1(L1 llRA) = T11°au1(L1llRA1) 

PROOF: Straightforward. 

7.3 COROLLARY 

OBSW = T1°au(RA 1 llIMPA llTA llK1 llRBllIMPBllTBllL1) 

PRooF: Local replacement. 

The basic idea behind the following lemma is that : 
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(1) If RA 1 sends a checksum error message or an old frame to IMPA, the only result of this is that 

IMPA sends a copy of the last sent frame to IMPB. 
(2) A timeout-action causes IMP A to do the same. 
(3) If RA 1 reads a checksum error or an old frame at port 3, this does not necessarily mean that 

thereafter this information is passed to IMPA. 
(4) If IMPA sends a copy of the last sent frame to IMPB it is (after appropriate abstraction) unclear 

if this was caused by a timeout or by the arrival at RA 1 of a checksum error message or of an old 
frame. 

(5) It is allowed to change RA 1 in such a way that it does not send checksum error messages or old 

frames to IMPA. 
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7.4 LEMMA. Let RA 2 be specified as follows (p EB): 

~2 = ~r3(d,p)·s9(fa)·sIO(d,p)·R~1.P + 
deD 

+ ~r3(d, l-p)·R~ 2 + r3(ce)·R~ 2 
deD 

Let H2 and I 2 be the following sets 

then 

H2 = {st(f),rt(f)lte{9, 10};/eDB U { ce,to,fa}} 

12 = {ct(f)ltE{9,10};/eDB U {ce,to,fa}} 

PROOF: Straightforward (in essence, an application of axiom T3). 

Since RA 2 never sends an old frame or a checksum error message to IMPA, a number of summands 
in the specification of IMPA are redundant. Application of theorem 6.16, together with the rather 
trivial elimination of the timer, gives us the following lemma: 

7.5 LEMMA. Let IMPA 1 be given by the following equations (dED,pEB): 

IMPA1 =T·~rl(d)·Sfj~ 
deD 

SF'!l1 = s 2(d,p). WST1 

wst. = T·SFf1 + r9(fa)·GP1J1 

GP1J1 = ~r 10(e,p)·s4(e)· ~rl(f)·SF~q-p> 
eeD feD 

then 

PROOF:-

7.6 COROLLARY. 

OBSW = T1°aH(RA2llIMPA 1 llK1 llRallIMPallTallL1) 

PR.ooF: Local replacement. 

The sending behaviour of IMPA 1 is, to a large extent, independent of the incoming messages at port 
3. This allows us to split IMP A 1 up in two parts: a sender-component and an IMP-component. To 
this purpose we add to the parameters of atomic actions the parameter ss ( = start sending), and 



extend the communication function by 

st(ss)lrt(ss) = ct(ss) tE{l,2, ... , 12} 

Now we can easily prove the following lemma: 

7.7 LEMMA. Let IMPA 2 and SA be given by the following equations (pEB,dED): 

IMPA 2 =s9(ss)· ~ rlO(d,p)·s4(d)·IMPA2 
deD,peB 

"sender" 

~ = r9(ss)·SRJA 

SRJA = ~ rl(d) ·SST "sender reads" 
deD 

SST= s2(d,p)·Swf "sender sends" 

swt = -r·SST + r9(fa)·s1-p "sender waits" 

Let H 3 and I 3 be the following sets 

H3={st(f),rtif)ltE{9,10};/EDB U {ce,fa,ss}} 

13 = {ct(f)ltE{9,10};/EDB U {ce,fa,ss}} 

then 

PROOF:-
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The receiver RA 2 throws away all the old and damaged frames. The following lemma states that this 
job can be performed also by channel L 1• 
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7.8 LEMMA. Let L2 and RA3 be specified as follows (oE(DB)*,pEB,dED): 

!JJ.P = ~ r6(j)·ll;.•P 
feDB 

Lfld,p1p = s3(d,p)·Li· 1-p + T·Li•P + ~ r6(g) ·Lfa*[d,p],p 
geBD 

Lfld, l-p],p = T·Li•P + ~ r6(g)·Lfa*(d, l-p1p 
geBD 

RA 3 = ~ r 3(/) ·s 9(/a) ·s lO(j) ·RA 3 

feDB 

Let H 4 and I 4 be the following sets 

then 

H4 = {r3(/),s3(/)lfEDBU{ce}} 

14 = {c3(/)lfEDBU {ce}} 

PROOF: Straightforward. 

It will be clear that we can derive analogous versions of lemmas 7.2 - 7.8 for channel K 1 and the 

components of system B. The only real difference is caused by the initialization phase of IMP8 • We 

summarize all results in one lemma: 

7.9 LEMMA. Let K2, IMP82 , S8 and R83 be given by the following equations (pEB,dED): 

K.'j_P = ~ r2(/) ·K{·P 
feDB 

Kfld,p],p = s1(d,p) ·Ki•P + T·Ki· 1-p + ~ r2(g) ·Kfa*[d,p],p 
geBD 

Ki*[d, 1-p],p = T·Ki•P + ~ r2(g) ·Kfa*(d, 1-p),p 
geBD 



IMPB 2 = s ll(ss) · ~ rl2(d,p) ·s 8(d) ·IMPB2 
deD,peB 

SB = rll(ss)· ~r5(d)·rll(fa)·rll(ss)·SS~0 
deD 

SIB = r 1 l(ss) ·SR!JJ 

SRIJJ = ~ r S(d) ·SSf 
deD 

SSf = s 6(d,p) ·Swf 

Swf =T·SS'i +rll(fa)·s1-p 

RB3 = ~ r1(f)·s ll(fa)·s 12(f)·RB3 
feBD 

Let H 5 and I 5 be the following sets 

then 

HS = {st(f),rt(f)jte{2,3,6, 7,9, 10, 11, 12},feDB U {ce,fa,ss}} 

15={ct(f)jte{2,3,6,7,9,10, 11, 12},feDB U {ce,fa,ss}} 

PROOF: Straightforward. 
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This lemma alters the overall picture of our system drastically. The protocol we are considering now 
is completely different form the original one. Only after abstraction they are the same. Fig. 29 depicts 
the new version of Fig. 20. 
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Fig. 29 

At first sight we have not made any progress at all, since the beginning of this section. The 
specification of the OBSW-protocol we have now is longer than the one in theorem 6.26. However, 
we have been able to separate the sending and the receiving behaviour of systems A and B, and this 
makes it possible to replace SA and K2 on the one hand, and SB and L 2 on the other, by very sim
ple specifications. But before we can do this, still some work has to be done. 

The specification of channel K2 looks complicated, but has some nice properties. In lemma 7.12 we 
will prove that for d eD and p eB: 

~· l-p],p = T·K.'1.P 

Before we do this, we first give two auxiliary lemmas. 
The first lemma says that channel K2 , in state p and with content o (Ki•P), can be thought of as 

the merge of two processes: a read-process ~. and a send-process K_'J·P. The read-process reads new 
data at port 2, the send-process sends the data of oat port 7. When the send-process is finished, and 
is in state K!s·q, it gives a signals l3(q) to the read-process. After this signal is received by the read
process (which is in state K'{), the read-process becomes a normal channel again (.Ki'·q). 
We add to the alphabet of atomic actions: 

r l3(p),s 13(p) and cl3(p) (p eB) 

and extend the communication function by 

r13(p)ls 13(p) = cl3(p) (peB) 



7.10 LEMMA. Let, for oe(BD}*,deD,peB: 

~ = ~ r2(g) ·Iq. 
geBD 

JC:*! = ~ r2(g) ·Iq."11*! + ~ r 13(q) ·Krf,p 
geBD qeB 

JG•P = s 13(p) 

K'J*[d,p],p = s1(d,p)·K'J·l-p + -r·K'J•P 

let H 6 and I 6 be the following sets 

H6={r13(p),s 13(p)IP eB} 

16={c13(p)IPeB} 

then for oe(BD)* and p eB 

~·P = 'TJ6°0H6(~11.K'J•P) 

PROOF: Straightforward. 

7.11 LEMMA. If x,yeP are specifiable by a guarded specification without -r1 operator, then 

xll'I)' = -r·(xl[y) 
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PRooF: Use simultaneous induction on the structure of the basic terms representing x and y to prove 

the finite case. The infinite case can be dealt with by application of AIP, and by the use of the iden

tity 

'll'n(Xll'I)') = '11'n('11'n(x)11'11'n('IJ')) (n;;a.I) 

( VAN GLABBEEK [9] ). 

7.12 LEMMA. For d,e eD and p eB we have the following identities 

(i) 

(ii) 

~.p]*[d,p],p = -r·~·p],p 

PROOF: The following identities hold for the send-process: 

(1) 

Jdd, 1-p],p = -r·VE.f' 
s .l.\.j 

(2) 

~d,p]*[d,p],p = s1(d,p)·[(lj•P],l-p + -r·~d,p),p = 
= s1(d,p)·Kj1-P + -r·(s1(d,p)·JG·1-P + -r·JG•P) = 
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= T·(s1(d,p)-~·l-p + T"~'p) = 
= ,, . .fdd,p],p 

s 

The identities (i) and (ii) follow directly from identities (1) and (2) by application of lemmas 7.10 and 
7.11. 

Define obsw as follows: 

obsw = aHs(IMPA2llRA3llSA llK2llIMPB2llRB3llSBllL2) 

(so we have "Hs(obsw) = OBSW). 
The following lemma gives a property of tr(obsw) which will be used to prove a redundancy. The 
lemma states that a frame-arrival message is not passed to the sender before the frame actually has 
arrived. 

7.13 Note. We use laEal as a notation for IA.A-{a}(a)I. 

7.14 LEMMA. Vaetr(obsw) 

je9(fa)Eal o;;;; ~ le7(f)Eal o;;;; le9(fa)Eal + 1 
feDB 

PROOF: (sketch) Each of the components of obsw is observable in context with the others. This means 
we can apply theorem 6.6 for each of the components. 
1. 

2. 

3. 

4. 

le9(fa)eal o;;;; ~ le3(f)eal 
feBD 

(look at specification of component RA 3 ) 

~ le3(f)Eal o;;;; le ll(fa)Eal 
feDB 

(look at specification of components L 2 and SB. The sequence number of successive frames sent 
by channel L 2 at port 3 are different. This means that the number of frames sent at port 3 is less 
than the number of times the sequence number of the frames read at port 6 changed. But if we 
look at the specification of SB, we see that this last number is less than the number of frame
arrival messages at port 11) 

le ll(fa)eaj o;;;; ~ le7(f)eal 
feDB 

(look at specification of component RB 3) 

~ ls7(f)Eal o;;;; le9(fa)Eal + l 
feDB 

(look at specification of components K 2 and SA 3; same argument as in 2) 
The lemma follows from the combination of 1, 2, 3 and 4. 

In the proof of the following lemma we use lemmas 7.11, 7.12 and 7.14. 
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7.15 LEMMA. Let Xbe specified as follows (dED,pEB): 

x =x<l 

Xl{ = r9(ss)·~ 

~ = ~ r l(d) ·xf 
deD 

x4f = c2(d,p)·xf 

xt =,,.)ff + s1(d,p)·xf + ,,.x9f 

X'f = c2(d,p)·xf + s1(d,p)·xt' + T·xf 

xt' =T·xt' +r9(fa)·Xl-p 

x9f = 7·xf 

xt = c2(d,p)·xf 

then 

PROOF: Let H7 = {r2(/),s2(/)lfEDB} then 

obsw = ans(/MPA2llRA3ll()H7(SAllK2)llIMPB2llRB3llSBllL2) 

Now look at the equations below (the numbers of the equations correspond to the subscripts of vari

ables in the specification of X). Observe that if we omit the summands in blocks, we have 

X = an1(SA llK2) 

by application of RSP. See Fig. 30 for the state-transition diagram of X. 

an1(SA llK2) = ()H7(S~ 11~0 ) 

an1(~ ll~P) = r9(ss) ·()H7(SR~ ll~P) 

aH1(SR~ ll~P) = ~ r l(d) ·()H1(SSf ll~P) 
deD 

aH1(SSfll~P) = c2(d,p)·()H7(Swf11Klf·Pl,p) 

aH1(Swfll~d,p],p = ,,.aH1(SSfllKlf·P1·P + 

+ s1(d,p)·()H1(Swfll~ 1 -P) + 
+ 7·()H1(Swfll~P) 

()H7(SSfllKlf·P1·P) = c2(d,p)-an1(SwfllKlf·Pl*[d,pJ,p) + 

(-) 

(1) 

(2) 

(3) 

(4) 

(5) 
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+ s1(d,p)-as1(SSA 11~ 1 -P) + 
+ T·aH7(SSfll~P) = 

(lemmas 7.12 (ii) and 7.1!) 

= c2(d,p)-an1(Swfll~·P1·P) + 
+ s1(d,p)-aH1(SSA 11~ 1 -P) + 
+ T"On1(SSfll~P) 

on1(Swfll~ 1 -P) = T"On1(SSfll~ 1 -P) + 
+ r9(fa)-an1(S~-pll~ 1 -P) 

an1(Swfll~P) = T·aH7(SSfll~P) + 

an1(SSA 11~ 1 -P) = c2(d,p)-aH1(Swfll~·Pl,l-p) = 

(lemmas 7.12(i) and 7.11) 

r9(ss) rl(d) 
2 

r9(fe) t/ 
c2(dl) / 

.'t! t 

....... 
s7(dl) ·., s7(d1) ', 

c2(d0) r9(fe) "·., .. ', c2(dl) . , 
'· 

··.\ .... 

·,, s7(d0) 

t .. , t 
4 

c2(d0) 

r9(fe) t 
t 

• rl(d) 
2 

r9(ss) 

Fig. 30 

• + 
'""- r9(fe)i 

" I 
c2(d0)' 

1 

t 

·~~. ·,. ... 
·,-r9(fe) .. 

··~-~ 
s7(d0) .. 

·· .. 
·~ • 

r9(fe) 

We claim that the summands in blocks in fact can be deleted. This is because 

" 

(6) 

(7) 

(8) 
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(i) There exist strictly linear specifications for ()H7(S~-pll~·Pl•P) and ()H7(S~-pll~P), and therefore 
also for ClH1(SA llK2) (theorem 1.5.6). 

(ii) In the strictly linear specification for ClH7(SA llK2), the summands which correspond to the sum
mands in blocks are redundant in context obsw by application of lemma 7 .14. 

(iii) According to theorem 6.16 we can omit the redundant summands in the strictly linear 
specification of ClH1(SA llK2). 

(iv) By RSP, the solution of the resulting specification is the same as the solution of X. 
This finishes the proof of lemma 7.15. 

7.16 LEMMA. Let Xabs be specified as follows (p EB): 

Xl'abs = r9(ss) · ~ r l(d) ·s1(d,p) ·r9ifa) ·X}il 
deD 

then 

PROOF: Leth= {c2(/)lfEDB}. Then 

OBSW = T15(obsw) = 

= T15°ClHS(lMPA2llRA3llXlllMPB2llRB3llSBllL2) = 
= T15°ClHS(lMPA2llRA3llT17(X)lllMPB2llRB3llSBllL2) 

It is enough to prove 

Xabs = T17(X) 

Observe that ford and p fixed, Xf and xf form a conservative cluster from 17. CFAR gives: 

T17(Xf) = T17(xf) = T·r9ifa) ·T17(X}-P) 

Ford anp fixed, X'!f, x'J', xf and xf also form a conservative cluster from 17. CFAR gives: 

T17(xf) = T·(s1(d,p)·T17(Xf) + s1(d,p)·Tn(xf)) = 

= T·s1(d,p)·r9(ja)·T17(X}-P) 

The rest of the proof is straightforward: 

T17(X) = T17(_xll) 

T17(Xlf.) = r9(ss)· ~rl(d)·s1(d,p)·r9ifa)·Tn(Xl-P) 
deD 

Now apply RSP. 

Analogously we can prove the following lemma: 
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7.17 LEMMA. Let Y abs be specified as follows (p EB): 

Y abs = r l l(ss) · ~ r5(d) ·r l l(fa) ·r l l(ss) ·s 3(d, 0) ·r l l(fa) · Y!bs 
deD 

Yl'abs = r l l(ss)· ~ r5(d)·s3(d,p)·r l l(fa)· Y!;;? 
deD 

then 

PROOF:-

Lemma 5.15 up to and including lemma 7.17 were preparations for the following theorem, which 
shows that the OBSW-protocol is a valid communication protocol (although not very efficient). 

7 .18 THEOREM. 

OBSW = , .. (~rl(d)· ~r5(e) + ~r5(e)· ~rl(d))-s8(d)·s4(e)·OBSW' 
deD eeD eeD deD 

OBSW' = ~rl(d)·s8(d)· ~r5(e)·s4(e)·OBSW' 
deD eeD 

PROOF: Straightforward. To handle the nondeterminism at the beginning, use axioms Tl and T2. 
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