
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

F.W. Vaandrager

Verification of two communication protocols
by means of process algebra

Computer Science/Department of Software Technology Report CS-R8608 January

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam
"

Verification of two Communication Protocols

by means of Process Algebra

Frits W. Vaandrager
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands

A Positive Acknowledgement with Retransmission protocol, and a One Bit Sliding Window protocol are
verified in the framework of ACPT, the algebra of communicating processes with silent steps, augmented
with some additional axioms. We present the Cluster Fair Abstraction Rule (CFAR), which is a generaliza
tion of Koomen's Fair Abstraction Rule (KFAR), and show that CFAR can be derived from KFAR1 • We
introduce the notion of redundancy in a context, which makes it possible to use trace theoretic arguments
in process algebra calculations. For the verification of the second protocol, we use the technique of local
replacement. In this technique a concurrent system is simplified by repeated replacement of components,
replacements which leave the behaviour of the system invariant. - & r'!i-i.

Ln.ftl bo. rti. ' ~
1980 Mathematical Subject Classification: 68B10, 68C01, 68025, 68F20. !1-1 '..,- J / "'l 1.

. I I''" u'3, t:><Z1 ,&., 1982 CR Categones: F.1.1, F.1.2, F.3.2, F.4.3, C.2.2. l9 °! -1 I 1
Key Words & Phrases: process algebra, concurrency, communication protocol, verification, fairness, trace
set, redundancy, local replacement.
Note: This report is a revised and extended version of the thesis submitted by the author in partial
fullfillment of the requirements for the Master's degree in Mathematics and Computer Science at the State
University of Leiden. The thesis was written under the guidance of Prof. dr. J.A. Bergstra and Prof. dr. A.
Ollongren.
This report will be submitted for publication elsewhere. Partial support received from the European Com
munities under ESPRIT project no. 432, An Integrated Formal Approach to Industrial Software Development
(Meteor).
Andrew S. Tanenbaum, Computer Networks, 1981, pp. 152, 154, reproduced by permission of Prentice
Hall, Englewood Cliffs, NJ.

INTRODUCTION
In this paper, we analyse communication protocols. A communication protocol is a set of rules and
prescriptions, that is given in order to achieve reliable, efficient communication between two (or more)
processors, connected by communication channels. In BERGSTRA & KLoP [7], a simple version of the
Alternating Bit protocol was verified within the framework of process algebra. In this paper we study
two communication protocols, which were described in TANENBAUM [12): a Positive Acknowledge
ment with Retransmission (PAR) protocol, and a One Bit Sliding Window (OBSW) protocol. Among
the existing communication protocols, PAR and OBSW are rather simple ones, and the only reason
for studying them lies in the fact that they allow us to develop the theory of process algebra.

Although this is not an introductory paper about process algebra, we think that, in principle, some
one who is not acquainted with process algebra can read it. In the first section we give a short review
of the theory of process algebra. A more comprehensive introduction is presented in, for example,
BERGSTRA & KLOP [8).

In §2, we discuss Koomen's Fair Abstraction Rule (KFAR), a proof rule which is vital in algebraic
computations for system verification. KF AR says that a process 'does not get stuck' in a cycle of
internal actions. KFAR is parametrized by k;;a. l, indicating the length of the internal cycle. We for
mulate a generalization of KFAR, the Cluster Fair Abstraction Rule (CFAR), which says that a pro
cess does not get stuck in certain graph structures, which we call 'conservative clusters'. We prove that
CF AR can be derived from KF AR1• As a consequence of this, axioms KF AR,,; are redundant for
k;;a.2 (in any practical case, to be more precise). In §3 and §4 we specify and verify the PAR-protocol.

"' Report CS-R8608
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

In these sections our main goal is to show how a verification can be accomplished within the frame
work of process algebra; we do not describe in a detailed way how the process algebra specification of
the PAR-protocol is related to Tanenbaum's description.

However, this is done for the OBSW-protocol in §5. In this section we use the state operator A':,' to
translate Tanenbaum's computer program into process algebra.

In §6 we introduce the notion of 'redundancy in a context'. With the help of this notion, which is
of a trace theoretic nature, a specification can sometimes be simplified.

In §7 we verify the OBSW-protocol. For this verification we use the technique of local replacement.
In this technique the complexity of a concurrent system is reduced by repeated replacement of com
ponents, replacements which leave (after abstraction) the behaviour of the system invariant.

TABLE OF CONTENTS
1. Process algebra
2. Fairness
3. Architecture of the PAR-protocol
4. Verification of the PAR-protocol
5. Specification of the OBSW-protocol, preliminary calculations
6. Redundancy in a context
7. Verification of the OBSW-protocol

§ 1 PROCESS ALGEBRA
In this section, we give a brief review of a number of topics in the theory of process algebra. First we
discus the axiom system ACP.,., the algebra of communicating processes with silent steps (see BERGS
TRA & Kl.OP [6]. Often we expand the system ACP.,. with a number of operators and axioms. These
are reviewed in section 1.2 - 1.12, except for Koomen's Fair Abstraction Rule (KFAR), which will be
discussed in more detail in section 2.

In the analysis of both protocols make use of the axiom system ACP6, the algebra of communicat
ing processes with priorities, as described in BAETEN, BERGSTRA & Kl.OP [3]. We review this axiom
system in section 1.13. ·

1.1 ACP.,.

1.1.1 Signature.

§(Sorts): A
p

IF (Functions): + :P xp_,,p
·:Pxp_,,p
ll:Pxp_,,p
lL:Pxp_,,p
l:Pxp_,,p

'On:P_,,P
TJ;p_,,p

C (Constants): BeP-A
TEP-A

(a finite set of atomic actions)
(the set of processes; A c;;;,P)
(alternative composition or sum)
(sequential composition or product)
(parallel composition or merge)
(left-merge)
(communication merge;
l:A XA_,,A U{B} is given)
(encapsulation ; H c;;;,A)
(abstraction ; I c;;;,A)
(deadlock)
(silent or internal action)

1.1.2 Note. We will use the abbreviations A 6 =AU {8}, A,. =AU {T} and A,.,6 =AU {T,8}.

1.1.3 Axioms. These are presented in table I.
Here a,beA 6 ;x,y,zeP;Hf;;;,A and lf;;,A.

ACP,.

x+y=y+x Al XT = X
x +(y +z) = (x +y)+z A2 Tx+x = TX
x+x = x A3 a(TX +y) = a(TX +y)+ax
(x +y)z = xz +yz A4
(xy)z = x(yz) AS
x+B = x A6
8x = 8 A7

alb = bla Cl
(alb)lc = al(blc) C2
Bia= 8 C3

xl[y = xlly +yllx +x[y CMI
a[Lx = ax CM2 T[LX = TX
(ax)ll,y = a(xl[y) CM3 (Tx)lly = T(xl[y)
(x +y)llz = xllz +yllz CM4 TIX= 8
(ax)jb = (alb)x CMS XIT = 8
al(bx) = (ajb)x CM6 (Tx)!Y = x!Y
(ax)l(by) = (alb)(xl[y) CM7 xl(ry) = x!Y
(x +y)lz = xlz +ylz CMS
xl(Y +z) = x!Y +xlz CM9

On(T) = T
TJ(T) = T

on(a) = a if a££.H DI T1(a) =a if a££./
on(a) = 8 if aeH D2 T1(a) = T if ael
On(X +y) = On(x)+on(y) D3 TJ(X +y) = T1(x)+T1(Y)
on(xy) = on(x)-on(y) D4 T1(xy) = TJ(X) •T1(y)

TABLE 1.

1.1.4 DEFINITION: The set of Basic Terms, BT, is defined inductively as follows:
(i) T,8eBT
(ii) x eBT=>TX eBT
(iii) aeA & xeBT=>axeBT
(iv) x,yeBT=>x + yeBT

T1
T2
T3

TMI
TM2
TCI
TC2
TC3
TC4

DT
Tll
TI2
TI3
TI4
TIS

3

We call a ACP,.-term closed if it contains no process variables. Such a term may contain atomic steps
though (variables ranging over A). The set BT, together with the following theorem, allow us to use
induction in proofs.

4

1.1.5 Elimination Theorem.
Let t be a closed term in the signature of ACP,,.. Then 3t' eBT:ACP ,,.1-t = t'.

PROOF: See BERGSTRA & Kl.OP [6).

1.2 Standard Concurrency. (SC)
Often we expand the system ACP,,. with the following axioms of Standard Concurrency (see table 2).

(xlLy)lLz = xlL(yllz) SCI
(xlay)lLz = xl(ayllz) SC2
x[y = ylx SC3
xl[y = yllx SC4
xl(ylz) = (x[y)lz SC5
xll(yllz) = (xl[y)llz SC6

TABLE 2.

1.3 Handshaking Axiom. (HA)
HA says that all communications are binary

I (HA) x[ylz =B j

If we adopt HA + SC, the:Q. it is easy to prove the following Expansion Theqi:em. Let x 1, ••• , Xn be
given processes, and let '"i be the merge of all xi. .. . ,xn except x;, '"i'1 be the merge of all
xi, .. . ,xn except x; and xj, then the Expansion Theorem (ET) is

(ET) X1 llx2ll ... llxn = ~ x;lL"i + ~ (x;lxj)lL"i'j
l<i<n l<i<j<n

in words: if you merge a number of processes, you can start with an action from one of them or with
a communication between two of them.

1.4 Projection. (PR)
Reasoning about processes often uses a projection operator

'ITn:P~P (n;;a.l),

which "cuts of" processes at depth n (after doing n steps), but with the understanding that T-steps are
"transparent", i.e. a T-step does not raise the depth. Axioms for 'ITn are given in table 3.

1.5 Specifications.

'11n(a) =a
'1T1(ax) =a
'11n +1(ax) = a'1Tn(X)
'11n(X +y) = '11n(X) + '11n(y)

PRl '1Tn(T) = T
PR2 '11n(TX) = T'1Tn(X)
PR3
PR4

TABLE 3.

PRTI
PRT2

5

1.5.1 DEFINITION: A (recursive) specification E = {E/}EJ} is a set of equations in the language of
ACP1' with variables {K.i:JeJ}, such that equation Ej has the form

K.i=TJ

where 1j is a finite ACP1'-term (with finitely many variables), and the index set J contains a desig
nated element Jo·

1.5.2 DEFINITION: Let J be a set, E a recursive specification indexed by J, and let {x/}EJ} be
processes. Putx =xj.• X = {xj:}eJ-Uo}}.
1. x is a solution of E with parameters X, notation E(x,X), if substituting the xj for variables K.i in

E gives only true statements about processes { xj :j eJ}. ,
2. x is a solution of E, notation E(x, -), if there are processes X = { xj :j eJ - U 0 }} such that

E(x,X).

1.5.3 DEFINITION: Let T be an open ACP1'-term without an abstraction operator T1• An occurrence of
a variable X in T is guarded if T has a subterm of the form aM, with a eA 8 (so a=FT), and this X
occurs in M. Otherwise, the occurrence is unguarded.
Let E = {Ej:}eJ} be a specification without an abstraction operator Tf> and let i,jeJ. We define

X; ~K.i ~K.i occurs unguarded in T;,

and we call E guarded if relation ~ is well-founded (i.e. there is no infinite sequence
u u u

K.i. ~K.i. ~K.i. ~· ..).
(For these definitions, also see BAETEN, BERGSTRA & KLoP [4]).

1.5.4 DEFINITION: Let E = {Ej:}eJ} be a specification, and letjeJ. An expansion of K.i is an open
ACP1'-term obtained by a series of substitutions of T; for occurrences of X; in Ej. For a more precise
definition, see BAETEN, BERGSTRA & KLOP (2), 2.7.

1.5.5 LEMMA. Let Ebe a guarded recursive specification in which no abstraction operator ,,.1 occurs,
and let j eJ (the index set of E). Then K.i has an expansion in which all occurrences of variables are
guarded.

PROOF: Essentially, this is lemma 2.14 in BAETEN, BERGSTRA & KLOP (2). We build up such an
expansion in the following way. If in Tj. all occurrences of variables are guarded, we are done. Other
wise, substitute T; for all unguarded X; in 1j, and repeat this process. This must stop after finitely

many steps, for otherwise we obtain by Konig's lemma an infinite sequence K.i ~X; ~···,which
contradicts the well-foundedness of ~

6

1.5.6 THEOREM. Let E = {Ej:}EJ} be a guarded recursive specification, in which no abstraction
operator T1 occurs; let j EJ and let n ;;a. I. Then '1Tn(J0) can be expanded to a closed finite ACP .. -term.

PROOF: By iterated application of lemma 1.5.5.

1.6 Recursive Definition Principle. (RDP)
RDP states that each guarded specification, in which no abstraction operator T1 occurs, has a solution.

E guarded, no abstraction
(RDP)

3x E(x, -)

1. 7 Recursive Specification Principle. (RSP)
RSP says that a guarded specification, in which no T1 occurs, has at most one solution.

E(x, -) E(y, -)
(RSP) E guarded, no abstraction

x=y

RDP and RSP together say that each guarded specification, with no T[, has a unique solution.

1.8 Approximation Induction Principle. (AIP)
AIP is a proof rule which is vital if we want to prove things about processes, which can be specified
by a guarded specification with no T1• The rule expresses the idea that if two processes are equal to
any depth, then they are equal.

'v'n;;;;a.l '1Tn(x)='1Tn(Y) E(x, -)
(AIP) E guarded, no abstraction

x=y

Notice that, as a corollary of theorem 1.5.6, AIP => RSP

1.9 Alphabets. Define l!e= Pow(A), the set of all subsets of A. First we define the alphabet function
for finite processes. According to the elimination theorem it is enough to give the definition for
processes that can be represented by a basic term (see table 4).

1.9.1 Note. We have to check that

x = y ~a(x) = a(y)

1.

2.

3.

4.

5.

a(8) = 0

a(T)= 0

a(Tx) = a(x)

a(ax)= {a}Ua(x) (a EA)

a(x + y) = a(x)Ua(Y)

TABLE 4.

otherwise this definition is not correct. This is not hard to do.

1.9.2 Infinite processes. Next we define a on infinite processes:

6. E (~ -) E guarded, no abstraction

a(x) = LJ a(wn(x))
n=I

7. E (x, -) E guarded, no abstraction
a(T1(x)) = a(x)- I

7

1.9.3 Notes. Essential in definition 1.9.2 is the result of theorem 1.5.6, which says that '7'n;;a.I: wn(x) is
finite. In definition 1.9.2, the partial unions UN_ a(wn(x)) form an increasing sequence (with
respect to the partial order k on~ as N-HXJ, in the""""'furite set~ so the sequence must be eventually
constant, and the limit will always exist. More information about alphabets can be found in BAETEN,
BERGSTRA & KLoP [2]. In this paper too, the following Conditional Axioms were first formulated:

8

1.10 Conditional Axioms. (CA)

a(x}l!a(!:}nH}kH CAI
()H(X l[y)=()H(xil()H(y))

a{x}nH=0 CA3
()H(x)=x

H=H1UH2
CA5

()H(x)=()H, o()H2(X)

Hn/=0
T1°aH(x)=()H0 T1(x)

1.11 Renamings. (RN) For every function

f:A,,.,8~A,,.,8

TABLE 5.

a(x}l{a{!:}nl)= 0
T1(X l[y)=T1(Xi1T1(y))

a{x}nl= 0
T1(x)=x

!=Ii UJi
T1(x)=T1, 0 T12(x)

CA7

with the property thatf(T) = T and/(8) = 8, we define an operator

PfP~P

Axioms for Pf are given in table 6. (/is the identity)

pfa) = f(a) (aEA,,.,8)

PfX +y) = PfX) + P/Y)

Pfxy) = PfX) ·pfY)

P1(x) = x

Pf°Pg{X) = Pfog(X)

TABLE 6.

For tEA,,.,8, and HkA we define

rt,H: A,,.,8~A,,.,8

to be the following function (a EA,,.):

{
a if af/.H

r,,H(a) = t else

RNl

RN2

RN3

RRl

RR2

CA2

CA4

CA6

We use tH as a notation for the operator Pr,,n· The encapsulation operator aH = 8H, and the

9

abstraction operator T1> are examples of tH operators. The Conditional Axioms CA5, CA6 and CA7
are special cases of axiom RR2.

The following rules for tH operators also follow immediately from axiom RR2

(1) tH0 tH(x) = tH(x)

(2) t{s} 0 sH(x) = tHu{s}(x)

t{u} 0 v1(x) = vJ(x)
(3)

uEI; u=t=v

The next theorem shows that the Pf operator is more powerful than the tH operator.

1.11.1 THEOREM. The operator Pf can be written as a sequence of tH operators~

/E/U{gl ig(A.,.,s)l<IA.,.,sl}

PROOF: Easy.

In this paper we will only use the tH operator; we don't need the extra power of the Pf operator. The
only reason to introduce the Pf operator was that it gives an elegant axiomization of renamings.

1.12 In BAETEN, BERGSTRA & KLoP [4], a graph model, called the standard model, is constructed for
ACP.,.. All the axioms and rules we have presented thus far, hold in this model, and also Koomen's
Fair Abstraction Rule which will be presented in section 2.

1.13 ACPo.
The axiom system ACP consists of the axioms Al-7, Cl-3, CMl-9, Dl-4, i.e. the left column of table
I. In ACP8 we extend ACP with an operator IJ and give some defining equations for it, to model
priorities. Suppose we have a partial order < on A 8 so that 8 is minima], i.e. we have for all
a,b,cEAs

I. ..,(a<a)
2. a <b =>..,(b<a)
3. a<b&b<c=>a<c
4. lJ<a (if a=t=lJ)

Let a,b,c be (atomic) actions and suppose

b<a and c<a

Relative to this partial order, we want to define an operator IJ that models this priority
(i) IJ(a + b) =a ; IJ(a + c) =a;
(ii) IJ(b + c) = b + c
This is done in the axiom system ACP8 (see table 7). The operator <J:P XP~P is an auxilary opera
tor which is needed in order to define IJ. ACP8 was introduced in BAETEN, BERGSTRA & KLoP [3].

10

1.13.1. ExAMPLES (b <a and c <a):
(i) fJ(a + b) = fJ(a)<Jb + fJ(b)<Ja = a<Jb + b<]a =a+ 6 =a
(ii) fJ(b + c) = fJ(b)<]c + fJ(c)<Jb = b<Jc + c<]b = b + c
(iii) fJ(b(a + c)) = fJ(b)"fJ(a + c) = b(fJ(a)<Jc + fJ(c)<Ja) = b(a<]c + c<]a) = b(a + 6) = ba

ACPu

x+y = y+x
x+(y +z) = (x +y)+z
x+x = x
(x +y)z = xz +yz
(xy)z = x(yz)
x+8 = x
6x = 6

Al
A2
A3
A4
AS
A6
A7

alb = bla Cl
(alb)lc = al(blc) C2
6la = 6 C3

xl[y = xlly +yllx +x IY
a[Lx = ax
axlly = a(xl[y)
(x +y)llz = xllz +yllz
(ax)lb = (alb)x
al(bx) = (alb)x
(ax)l(by) =(a lb)(xl[y)
(x +y)lz = x iz+y lz
x I (y + z) = x IY + x I z

CMI
CM2
CM3
CM4
CMS
CM6
CM7
CM8
CM9

ClH(a) = a if af/.H DI
aH(a) = 6 if a EH D2
ClH(x +y) = aH(x)+ClH(y) D3
aH(xy) = ClH(x)"ClH(y) D4

a<Jb =a if not (a<b)
a<Jb = 6 if a<b
x~z =x~

x<J(y +z) = (x~)<Jz
xy<Jz = (x<Jz)y
(x +y)<Jz = x<Jz +y<]z

fJ(a) = a
fJ(xy) = fJ(x)·fJ(y)
fJ(x +y) = fJ(x)~ +fJ(y)<]x

TABLE 7.

In BAETEN, BERGSTRA & KLOP [3] the following theorem is proved

1.13.2 THEOREM.

PI
P2
P3
P4
PS
P6

THI
TH2
TH3

i) for each ACP9-term s there is a term t not containing <J,8,ll,ll,l,ClH such that ACP91-s = t
ii) ACP9 is a conservative extension of ACP, i.e. for all ACP-terms s,t we have:

ACPul-s = t~ACP 1-s = t
At present it is not clear whether or not ACP9 and ACP.r can be combined into ACP...u. However,

due to theorem 1.13.2 a term like T1(s), with s an ACP,-term, makes sense: we eliminate all fJ and <J
from s, so that it becomes an ACP-term. And when ACP9 1-s = t, then ACP .. i-T1(s) = T1(t) for all

ACP-terms s and t.

11

§2 FAIRNESS

2.1 ExAMPLE: A statistician performs a simple experiment: he tosses a coin until tail comes up. Let
p(tail) be the probability that, if he tosses the coin, tail comes up. We assume 0 < p(tail) < 1. The
behaviour of the statistician is specified by

S = toss ·(head ·S +tail)

The experiment is performed in a room. We are outside of this room and cannot observe what is
going on inside, except for the fact that if tail comes up, we can hear a joyful shout of the statistician:
'tail !!'. This means that if we define

I = {toss, head}

the actions from I are hidden. Now the process we are interested in is specified by

T1(S)

Since 0 < p(tail) < 1, the process will perform a finite number of head-actions, followed by a tail
action. Therefore, according to our intuition

T1(S) = T ·tail

What we need is an algebraic framework in which we can prove this equation.

2.2 Koomen's Fair Abstraction Rule (KFAR), introduced in BERGSTRA & KLoP [7], expresses the idea
that the noncieterministic choices made by a process are fair: a certain option is not discarded
infinitely often. The following algebraic formulation is parametrized by k ;;;;i. 1, indicating the length of
an internal cycle .

(KFAll,c)
T1(Xn)=T·T1(~ Ym)

mez.

2.3 In our example we can apply KF AR to get the desired result: because the specification of S is
guarded, RDP gives that there are processes sand t such that

s =toss ·t + 8

t = head ·s + tail

Now we can apply K.FAR2

T1(s) = T"T1(tail + 8) = T·tail

and since s and t form an arbitrarily chosen solution

T1(S) = T ·tail

12

2.4 Question. How to handle the case in which we know nothing about p(tail) (so p(tail) can be zero
(poor statistician))? In this case the old result for T1(S) is certainly wrong.

Answer 1: The question shows that fairness rules are very dangerous. They yield wrong results. There
fore one should not include a fairness rule in the axiom system. KF AR is false.

Comment: Although this view can be defended, it is a bit impractical. It amounts to an admission of
the proposition that process algebra (and with it any other theory of concurrency known to us) is not
even able to handle in a satisfactory way the simple case of a statistician tossing a coin. Without a
fairness rule protocol verification (in which the fairness of the communication channels plays an
essential role) becomes impossible.

Answer 2: From a process point of view, the cases p(tail)=O, O<p(tail)<l, and p(tail)=I are
totally different. Therefore it is necessary to include the information we have about p (tail) in the
specification. If we adopt KFAR, the specification of S corresponds to the case O<p(tail)<l. If we
want to model the situation in which we know nothing about p(tail), we have to come up with
another specification, for example the following.

Before the statistician starts his experiment, there are three 'possible worlds'. In the first world
p(tail)=O, in the second one O<p(tail)<l, and in the third one p(tail)= 1. As soon as the statistician
starts the experiment, a choice is made between the three possible worlds (compare this with the 'col
lapse of the wave function' which plays a role in quantum physics). The idea yields the following
specification:

S* =ST+SF+SH

ST= tail

SF = head ·SF + tail

SH=head ·SH

Application of KF AR2 gives

'l'[(SF) = T ·tail

and KF AR1 gives

Hence

T1(SH) = T·6

T1(S*) = T1(ST) + T1(SF) + T1(SH) =

=tail+ T·tail + T·6 =(axiom T2)

= T·taif + T·6

This is a solution which is in accordance with our intuition.

Comment: This approach works for example 2.1, and it might work in a lot of other cases. However,
it is not clear if it is always possible to model a situation in which an unfair choice occurs, by means
of a fair choice. The approach of answer 2 is already problematic in the following example (due to A.
Mazurkiewicz): a boy sits at the waterside and throws stones in the water. Every time before he
throws he makes a choice between throwing one or two stones. We know absolutely nothing about the
way this choice is made (maybe the choice is made by means of a probabilistic mechanism, but it is
also possible that this is not the case). The following specification is, in presence of KF AR, certainly
wrong:

B =one ·B + two ·B

With I = {one}, KF AR1, yields

T1(B) = T ·two ·T1(B) = T ·two"'

13

This excludes the possibility that, after throwing 15 times two stones, the boy decides at every
moment of choice thereafter, to throw one stone. The 'possible worlds' approach however, seems to
lead unavoidably to an infinite sum

B* = B 1 + B 2 + · · · + Be.>

Infinite sums are problematic since in their presence the Approximation Induction Principle does not
hold.

Answer 3: In reality certain choices are fair, other choices are unfair. A good theory must be able to
deal with fair as well as unfair choices.

Comment: We can think of a lot of of possible ways to extend the theory of process algebra in such a
way that we can deal with unfairness. A characteristic of all approaches is that things get more com
plicated. Since in the problems we will consider in this paper, the assumption that all choices are fair
is reasonable, we have decided to postpone the introduction of unfairness.

2.5 EXAMPLE: The statistician of example 2.1 now throws a die (which is fair) until six comes up. The
behaviour of the statistician is specified by

S2=toss ·((one+ two+ three+ four+ five)·S2 +six)

The experiment is again performed in a room, and this time the only thing that can be obs~rved by us
is the joyful shout 'six !!!'. If we define '

J = {toss, one, two, three, four, five}

the process we are interested in is specified by

TJ(S2)

We want to prove:

TJ(S2) = T·six

However this is not so easy. The problem is that we have to do with a structure which is not a simple
cycle (the normal input of KFAR).

In order to solve this problem, we will formulate the Cluster Fair Abstraction Rule (CFAR}, which
is a generalization of K.F AR We will prove

ACP.,. + RSP + RDP + KFAR 1 +RN1- CFAR

CF AR deals with every graph structure which is a 'conservative cluster'. It will tum out that applica
tion of CF AR yields

TJ(S2) = T·six

14

2.6 DEFINITIONS: Let E = {Ej:jEJ} be a recursive specification, and let I<;:A. A subset C of J is
called a cluster from I in E~j 0 EC and Vj EC :

3m;;;a.:I

3i 1' ... , im El U { 'T}

3/1' ... ,fmEC

3n;;;a.:O

3g1, ... ,gnEJ -C such that (~ x/=.8 by definition):
je0

m n

1j = ~ ik·X1. + ~Xg,
k=l l=l

Variables ~ with j EC are called cluster variables. For i EC we say

X;~~ ~~ occurs inT;

We define

e(C) = LJEJ-C I 3iEC:X;~~}

Variables~ withjEe(C) are called exits. ---;..> is the transitive and reflexive. closure of~. A clus
ter C from I in E is conservative ~

'r/iEC'rljEe(C): X; ~ ~

2.7 DEFINITION: The Cluster Fair Abstraction Rule (CFAR) is the following rule:

(CFAR)

T1(X) = 'T. ~ T1(Xj)
jee(C)

E guarded, no abstraction; IIl;;;a.:2; C finite
conservative cluster from I in E

2.8 THEOREM. ACP,. + RDP + RSP + RN + K.FAR1 f- CFAR

PRooF: Let E = {Ej:jEJ} be a guarded specification in which no abstraction operator occurs; let
E(x, {xj:j EJ -U0 } }); let I <;:A and {i,i'} <;:I (i=Fi'); let C be a finite conservative cluster from I in
E. We have to prove

T1(X) = 'T • ~ T1(Xj)
jee(C)

CLAIM 1. We can assume that for j 1 EJ - C and j 2 EJ :

~2 E1j1 ~jifl:C

PROOF: Let C' = U'l/EC} be a copy of C. We define the specification E' = {E'/jEJUC'} as fol
lows:

15

1. for }EC T'j=Tj
2. for j'EC' T'j' can be obtained from 1j by replacing all occurrences of variables Xk (kEC) by

xk'
3. for jEJ-C T'j can be obtained from 1j by replacing all occurrences of variables Xk (kEC) by

xk' .
Because E is guarded, E' is guarded too. According to RDP E' has a solution, let us say

E'(x',{x'j:}EJUC'-Uo}})

Substitution in · E' of xj for variables ~ (j EJ), and xj for variables ~· (j' EC'), yields true state
ments. Hence

E'(x, {x/}EJ-LJ0 }} U{xj:}EC})

Now RSP gives us

x'j = Xj (jELJo} Ue(C))

This means that it is enough to prove

T1(x') = T· ~ T1(x'j)
jee(C)

because

T1(x) = T1(x') = T· ~ T1(X'j) = T· ~ T1(Xj)
jee(C) jee(C)

The observation that C is a conservative cluster from I in E', that has the desired property, finishes
the proof of the claim.

CLAIM 2. In addition we can assume that
1. if, for j EC,

m n

1j = ~ ik ·XJ. + ~ Xg, ,
k=l l=l

then ik = i or ik = T (I:s;;;k:s;;;m), and
2. V}Ee(C) 3hjEJ -C such that 1j = h(Xh).

PROOF: Let ce(C) = U"IJEe(C)} be a copy of e(C). Define the specification
E" = { E"j :j EJ U ce (C)} as follows
1. if, for j EC,

m n

1j = ~ ik ·XJ. + ~Xg, ,
k=l /=I

then T"j is defined by
m n

T"j = ~ i" k ·XJ. + ~ Xg",
k=l /=I

with for 1 :s;;;k =s;;;m

{

i if ik::j=.T
i" -k - T if ik=T

2. for j" Ece(C)

T"r = h(~)

16

3. for jEJ-C

T"j = 1j

E" is guarded, so it has a solution

E"(x",{x"j :jEJUce(C) - Uo} })

But if we substitute in E": h(xj) for variables }{_; (j EC), h(xj) for variables x_;,, (j" Ece(C)), and xj
for variables}{_; (}EJ-C), we get true statements (to see this, apply RN-axioms and use claim 1).
RSP gives us

x" = i1(x), and

x"r = i1(xj) (j"Ece(C))

Now it is enough to show that

T1(x") = 'T · ~ T1(x"r)
j"ece(C)

because

T1(x) = T1°i1(x) = T1(x") = T· ~ T1(x"r) =
j"ece(C)

= T· ~ 'T1°i1(Xj) = T· ~ 'T1(xj)
jee(C) jee(C)

C is a conservative cluster from I in E", which has the desired properties (ce(C) is the set of exits of
C in E"). This finishes the proof of claim 2.

CLAIM 3. We can even assume that for }EC, 1j has the form
m n

1j = ~ i ·X.r. + ~ Xg,
k=l /=I

PR.ooF: Let E 1 = {E) :jEJ} be the following specification: for jEJ-C: T) = Tj. and if, for }EC,
m n

1j = ~ ik·X.r. + ~Xg,
k=I l=I

then
m n

T) = ~ ik ·Xt. + ~Xg,
k=I l=I

with for 1 :r;;;.k :r;;;.m

{

i if
·I
lk = i' if

ik-::l=-'T (hence ik = i according to claim 2)

E 1 is guarded, so there is a solution

E 1(x 1 ,{x):JEJ-U0 }})

Substitution in E of Tcn(x)) for variables}{_; (}EC), and x) for variables}{_; (}EJ-C), yields true
statements (use claims 1 + 2, and RN-axioms, especially '1'(i'} 0 i1(x) = h(x)).
RSP gives

Tcn(x 1) = x , and

x)=xj (}Ee(C))

Hence it is enough to show

T1(x 1
) = T" ~ T1(x))

jee(C)

because

T1(x) = T1°T(i'}(x 1
) = T1(x 1

) = T" ~ T1(x)) =
jee(C)

=T· ~ T1(Xj)
jee(C)

We define again a new specification, E 2 = {E}:jeJ}: for jeJ-C: T} = Tj, and if, for jeC,

then

m n
T = ~ ik ·Xr + ~ X

} ~ µ -~ &
k=l /=l

m n

T} = ~i·X.r. + ~Xg,
k=l /=I

E 2 is guarded, so there is a solution

E 2(x 2 ,{x} :jeJ-lj0 }})

17

Substitution in E 2 of i{i'}(x)) for variables~ (jeC), and x) for variables ~ (jeJ -C) gives us

also a solution (use claims I + 2, and the RN-axioms, especially i{i'} 0 i1(x) = h(x)).
According to RSP the two solutions are equal

i{i'}(xl) = x2

x) =x} (jee(C))

Now it is enough to show

because

T1(x 2) = T· ~ T1(xj)
jee(C)

T1(X I) = T1°i {i'} (x I) = T1(x2) = T. ~ T1(xj) =
jee(C)

=T· ~ T1(x))
jee(C)

Observe that C is a conservative cluster from I in E 2, and that E 2 has the desired properties. This

finishes the proof of claim 3.

CLAIM 4. We can even assume that for j e C, 1j has the form

m

1j = ~ i ·XJ. + ~ ~
k =I jee(C)

PROOF: Suppose 3i eC3jee(C): X; --TJ>~. Then there is an r with Ioi;;;;r<ICI · je(C)I such that

l{(i,j) I ieC, jee(C) anci X;~~ in E}I = r

We will construct a specification Ee, which is exactly the same as specification E, except for the fact

that one variable has got one more exit. Hence

l{(i,J)lieC, jee(C) and X;~~ in Ee}I = r + 1

18

Specification Ee has a unique solution

Ee(xe,{xj:jEJ-Uo} })

Claim 1, together with RSP yields

xj = xj (jEe(C))

We will show that

T1(xe) = T1(x)

After that is done, it is enough to prove

T1(xe) = 'T • ~ T1(xj)
jee(C)

since
'

T1(x) = T1(xe) = 'T" ~ T1(xj) = 'T" ~ T1(Xj)
jee(C) jee(C)

Notice that, because we can iterate this construction, all we have to do in order to prove cU,.UU 4, is to
define specification Ee, and show that

T1(xe) = T1(x)

Because cluster C is conservative

3k, /EC3mEe(C): Xk"°'Xi ;Xk ftXm and X1"°'Xm

(suppose not, then

'Vk, lEC'VmEe(C):(Xk"°'Xt and Xi"°'Xm)=>(Xk"°'Xm)

Choose i EC and j Ee (C) such that X; ftX; (this is possible). Because C is conservative

3n 3i 1' ... , in EC: X;"°'X;, "°' · · · ""'X;. "°'X;

but now we can derive X;""'X;• which is a contradiction)
So we can choose k, I and m such that equations Ek and E1 are of the form

Xk = i·X1 + T1

Xi = T2 +Xm

and term T 1 does not contain Xm.
The specifications E 0 = {Ej:jEJ}, Eb = {EJ:jEJ}, Ee= {EJ:jEJ}, Ed= {Ej:jEJ} and
Ee = { Ej :j EJ} are defined as follows: the equations of the specifications are the same as the equa
tions of E, except for the equations for variable Xk. These are resp. given by

Tic= i'·X1 + T1

It= T·X1 + T1

n = T·X1 + T1 + Xm

Tf = i' ·Xi + T1 + Xm

Tk = i ·X1 + T1 + Xm

Let E 0 (x 0
, -), Eb(xb, -), Ec(xc, -), Ed(xd, -) and Ee(xe, -). Using the same arguments as in the

proof of claim 2 we can prove

T1(x) = T1°i{i'}(x 0
) = T1(x 0

) = T1°T{i'}(x 0
) = T1(xb)

The equations Ei and Ef are

xk =T·Xi + T1

X1= T2 +Xm

Hence
T2

xk = T 0 X1 + T1 = T"Xi + X1 + T1 = T0 X1 + T2 + Xm + T1 ~
T2

= T"J4 + X1 + Xm + T1 = T·J(i + T1 + Xm

But since EJc is

Xk=T·X1+T1 +Xm

and all the other equations of Eb and Ee are the same, we can apply RSP and conclude

xb =xc

Again using the same arguments, we continue the derivation:

T1(xb) = T1(xc) = T1°T{i'}(xd) = T1(xd) = T1°i{i'}(xd) = T1(xe)

Summarizing

T1(x) = T1(xe)

This finishes the proof of claim 4.

CLAIM 5. We can even assume that ICI = 1.

PRooF: Define specification £ 00 = {Ej:je(J-C)Ulj0 }} as follows: for jeJ-C: Tj = Tj, and

T'!l =i·X. + ~ X. Jo Jo "'-i J
jee(C)

E 00 is guarded, so there is a unique solution

E 00 (x 00 ,{xj :jeJ-C})

19

Substitution in E of x 00 for variables~ (jeC), and xj for variables~ .. (jeJ-C) gives us a solu
tion of E (use claim 4). Hence

x 00 = x, and xj = xj (jee(C))

and it is enough to prove

T1(x 00
) = T" ~ T1(xj)

jee(C)

This finishes the proof of claim 5.

Now we are able to prove theorem 2.8. Because of claim 5 we have the equation:

X = i·x + ~ Xj
jee(C)

Application of KF AR1 now gives the desired result:

T1(X) = T" ~ T1(Xj)
jee(C)

This finishes the proof of theorem 2.8.

20

2.9 REMARK. Consider KFA~ (k;;;i.I). It will be clear that if the "exit" processes Yn (nEZk) are

specifiable by guarded specifications without abstraction operator, and if IJl;;;i.2, KFA~ is a special
case of CF AR.

Because in any practical case these two premisses are ful1filled, and because the rules KF A~

(k> 1) were not used in the proof of CFAR, these rules can be omitted out of our axiom system.
The only fairness rule needed is KF AR1 :

X = i ·x + y (i E/)

2.10 REMARK. One of the constraints in CFAR is that C is finite. This constraint is not essential.
Let CF AR 00 be the following rule

(CFAR00
)

It is possible to prove

TJ = T" l: T1(Xj)
jee(C)

E guarded, no abstraction; III ;;;i.2; C conserva
tive cluster from I in E; e (C) finite

ACP,. + RDP + RSP +RN+ KFAR1 +PR+ AIP1-CFAR00

Because we only need CF AR in this paper, and because the proof of CF AR 00 is more complicated
than the proof of CF AR, we confined ourselves to the proof of CF AR.

2.11 REMARK: Formally CF AR can only be applied if we have to do with a conservative cluster. In
practice however, most of the specifications do not contain conservative clusters. In these cases, what
we mean when we say that a result is obtained by application of CF AR is that there exists a
specification that is equivalent to the specification we are dealing with (because of RSP), that this
specification contains a conservative cluster, and that application of CF AR on this cluster gives the

result. The specification of S2 in example 2.5 does not contain a conservative cluster. The following
system however, which is equivalent to this specification, contains a conservative cluster.

S2 = toss ·X + Y

X=one·S2+

Y=B

Z =six

Application of CF AR now gives

TJ(S2) = T·six

+ five·S2 + Z

21

§3 ARcmTECTURE OF THE PAR-PROTOCOL
In this section we describe, in terms of process algebra, a Positive Acknowledgement with Retransmis
sion (PAR) protocol. This communication protocol is described in TANENBAUM [12]. In the protocol,
in which data are transmitted only in one direction, the sender awaits a positive acknowledgement
before advancing to the next data item.

3.1 The protocol can be visualised as follows:

There are four components:
S: Sender
K: Data transmission channel
R: Receiver
L: Acknowledgement transmission channel

2

Fig. 8

The interaction of the components with their environment takes place at locations called ports, nwn
bered 1 up to 6.

3.2 Let D be a finite set of data. Elements of Dare to be transmitted by the PAR-protocol from port
1 to port 2. For dED and nE{O,l}, dn is a new datwn, obtained by appending n to d. We write:
DB= {dnldED, nE{0,1}}. Elements of DB, called frames, are communicated by channel K. The
extra bit is needed for the receiver to be able to distinguish a frame that it is seeing for the first time
from a retransmission.
Define D::D =DUDBU{ac,ce} (ac = 'acknowledgement', ce = 'checkswn error'). D::D is the set of
data that occur as parameter of atomic actions.

3.3 We have the following atomic actions
communication-actions

st(f): send f ED::D at port t

rt(/): read f ED::D at port t

for t E { 1,2, ... , 6} there are send-, read-, and

ct(f): communication of /ED::D at port t

The other atomic actions are

to: time out

22

i, j : internal actions of channel K resp. L by which a frame gets lost

3.4 If a message is sent into channel Kor L, three things can happen:
(i) the message is communicated correctly
(ii) the message is damaged
(iii) the message is lost completely
We assume that if a message is damaged in transit, the receiver hardware will detect this when it com
putes the checksum (a plausible assumption we have to make).

3.5 The specification of the channels.
The channels K and L are described by the following equations. We also give the corresponding
state-transition diagrams: ·

K= ~ r3(f)·Kf
feDB

Kf=(s5(f)+s5(ce)+i)·K feDB

s5(f)

r3{f)

s5(ce)

Fig. 9

L =r6(ac)·Lac

Lac =(s4(ac)+s4(ce)+ j) ·L

s4(ac)

s4(ce)

Fig. 10

23

3.6 REMARK. Because, as we will see later on, in the PAR-protocol it is never tried to send a message
into a channel while another message is still in this channel, it is correct to model the channels as
one-datum buffers.

3.7 REMARK. In BERGSTRA & KLoP [7] an "internal choice" action was used to express that a chan
nel, after receiving input, has nondeterminate choice. With an internal choice action the specification
of channel L would become

L =r6(ac)-Lac

Lac=(j ·s4(ac)+ j ·s4(ce)+ j) ·L

In this way one avoids the unrealistic situation (for example) that the atomic action s4(ce) never
occurs, because the receiver never "wants" to read a damaged message. With the internal choice
action one models the fact that the channel (and not the receiver) decides whether a message is com
municated correctly, is damaged, or gets lost.

In the PAR-protocol however, as we will see, the receivers are never in a state in which they can
read some, but not all messages. This means that we can omit the internal choice actions, and thus
keep the calculation simple.

3.8 The specification of the sender S.
WeusevariablesS, RHn, spdn, WSdn (dED, nE{O,l}):

RH: Read a message from the Host at port I (the Host process, which is not specified here, furnishes
the sender with data)

SF: Send a Frame at port 3
WS: Wait for Something to happen

S=RH0

RHn = ~ r l(d) ·SFdn
deD

spdn=s3(dn)·WSdn dED, nE{O,l}

WSdn =r4(ac) ·RH1-n +(r4(ce)+to)-SFdn

24

r4(ce)
to

dO
SF r1 (d)

s3{d0)

WffIO r4(ac)

r4(ac)

~1

r1 (d)

Fig. 11

\f\1Sd1

s3{d1) r4(ce)
to

After transmitting a frame, the sender waits for something to happen. There are three possibilities :
an acknowledgement frame arrives undamaged, something damaged comes in, or the timer goes off. If
a valid acknowledgement comes in, the sender fetches the next message, and advances the sequence
number, otherwise a duplicate of the old frame is sent.

3.9 The specification of the receiver R
WeusevariablesR, WFn, SAn, SHtin (dED,nE{O,l}):

WF:Wait for the arrival of a Frame at port 5
SA: Send an Acknowledgement at port 6
SH: Send a message to the Host at port 2 (in general the host of the receiver will be different from

the host of the sender).

R=WF°

WP=r5(ce)-WFn+ ~r5(d, 1-n)-SAn+ ~r5(d,n)-SHdn

SAn=s6(ac)-WFn

SHtin=s2(d)·SA l-n

deD deD

dED, nE{O,l}

SHdO r5(dO)

s2(d}

1
SA

s6(ac)

r5(d1}

r5(dO}

r5(d1)

Fig. 12

s6(ac}

SAO

s2(d)

d1
SI-I

25

When a valid frame arrives at the receiver, its sequence number is checked to see if it is duplicate. If
not, it is accepted, written at port 2, and an acknowledgement is generated. Duplicates and damaged
frames are not written at port 2.

3.10 Now we define the communication function by

st(j) I rt(j) = ct(j) for te{3,4,5,6},/e[)

and all other communications give 8.
We are interested in

SllKllRllL

but we want to hide unsuccesful communications.
Therefore we define

H = {st(j), rt(j) lte{3,4,5,6},/e0}

and look at

on(SllKllRllL)

26

3.11 Priority. Each time after a frame is sent, the sender S starts a timer. Because we abstract in

proces algebra from the real-time behaviour of a system, we have omitted this action in our model

ling. An unpleasant property of the PAR-protocol is that it requires the timeout interval to be long

enough to prevent premature timeouts. If the sender times out too early, while the acknowledgement

is still on the way, it will send a duplicate. When the previous acknowledgement finally does arrive,

the sender will mistakenly think that the just sent frame is the one being acknowledged and will not

realize that there is potentially another acknowledgement somewhere in the channel. If the next frame

sent is lost completely, but the extra acknowledgement arrives correctly, the sender will not.attempt to

retransmit the lost frame, and the protocol will fail.
An important observation is that in our modelling "too early" corresponds exactly to the availabil

ity of. an alternative action. Thus we can express the desired behaviour of the timer by giving the

atomic action 'to' lower priority than every other atomic action.
So we define fJ with respect to the following partial order < on A 8

(1) 8<a for a EA
(2) to<a foraeA -{to}
and consider

fJ0 an(SllKllRllL)

3.12 Abstraction. We want to focus on the read-actions at port 1, and the send-actions at port 2.

Therefore we define

I= { ct(f)I te{3,4,5,6}, f EID} U {to,i,j}

Now the PAR-protocol is described by

This is a good description because the specifications of S, K, R and L are guarded. Hence, according

to RSP and RDP, these specifications have unique solutions, let's says, k, rand I respectively. This

means that there is a unique process par (par = T1°8°an(sllkllrlll)), which is determined by the equa
tions for variable PAR.

§4 VERIFICATION OF THE PAR-PROTOCOL
Verification of the PAR-protocol amounts to a proof that
(1) the protocol will eventually send at port 2 all and only data it has read at port 1,
(2) the protocol will send the data at port 2 in the same order as it has read them at port 1.
This means that, in order to verify the protocol, it is enough to prove the following theorem

4.1 THEOREM. ACP.1 + ACP9 + SC + HA + RDP + RSP + CA + CF AR 1-

PAR= ~rl(d)·s2(d)·PAR
deD

PROOF: We define

11 = {ct(f)ltE{4,5},/EID}U{to,i,j}

I 1 <;;,!, so according to axiom CA6:

PAR= TJoT1, 0 fJ0 an(SllKllRllL)

27

In the first part of the proof we will derive a guarded system of recursion equation for

T1
1
o{/ol}n(SllKllRllL)

in which all terms are Basic Terms. Thereafter, in the second part, we will abstract from the other
internal actions using CFAR. Throughout the following proof d ranges over D, and n ranges over
{0,1}.

Fig. 13 depicts the state transition diagram that corresponds to the system of recursion equations
we will derive for T1. o{Jol}n(SllKllRllL).

de/ ET
X'l ='1'1

1
°fJo<}n(RHnllKllWPllL) =

= '1'1. o{Jo(} n(RHn IL(Kll wpn llL) + . . . + L IL(RHn llKll WP) +

+ (RHnlK)IL(WPllL)+ ... +(WPIL)IL(RHnllK)) =

= T1, 08°3n((~ rl(d) ·SFdn)IL(Kll wpn llL) + ... +
deD

+ (r6(ac)·L 0 c)IL(RHnllKllWFn) +

+ ((~rl(d)·SFdn)I(~ r3(j)·Kf))IL(WPllL) + · · · +
deD feDB

= ((r5(ce)·WFn + · · · + ~ r5(d,n)·SHdn)I (r6(ac)·L0c)IL(RHnllK)) =
deD

= T1, 0 8°3n(~ rl(d) ·(SFdn llKll WFn llL) + · · · +
deD

+ r6(ac)·(RHnllKllWPllLac) +8 + · · · + 8 =

=T1, 08(~rl(d)·3n(SFdnllKllWPllL)+ · • · +8)=
deD

= ~ r l(d) ·T1, 0 8°3 n(SFdn llKll WP llL)
deD

X1_n =T1, o8o3n(SFdnllKllWPllL) =

= c 3(dn) 'T1, 0 0°aH(Wsdn llKdn II WFn llL)

xf =T1
1
°8°3H(WSdnllKdnllWPllL) =

= T1, 0 8(to ·3H(SFdnllKdnllWPJIL) +
+ i ·3H(WSdnllKllWFnllL) +
+ c5(ce)·3H(WSdnllKllWPllL) +
+ c5(dn)·3H(WSdnllKllSHdnllL)) =

(to-action has lower priority than other actions)

= T1
1
(i ·8°3n(WSdnllKllWPllL) +

+ c5(ce)·8°3H(WSdnllKllWPllL) +

r1 (d)

dO
x
2

c3(d0)

dO

~

t

dO
x4

s2(d)

dO

Xs

c6(ac)

dO

1i

d1

{J<illl--~~~~~-t~~~~~~~-r1~

c6{ac)

d1
x

5

t t s2(d)

d1
x4

t

d1
x3

t t c3{d1)

d1
x2

r1 {d)

1
x1

Fig. 13

29

+ c5(dn)·0°a9 (WSdnllKllSHdnllL)) =

(if the message is damaged the resulting state is the same as in the case in which the message gets
lost)

= T"T1, 0 0°au(WSdnllKllWPllL) + T"TJ, 0 0°au(WSdnllKllSHdnllL) =

= T"TJ, 0 0(to ·au(SFdnllKllWFnllL) + T"TJ, 0 0°au(WSdnllKllSHdnllL) =

= T 0 T"T1, 0 0°au(SFdnllKllWPllL) + T"TJ, 0 0°au(WsdnllKllSHdnllL) =

= T·~n + T·T1, 0 0°au(WSdnllKllSHdnllL)

xt' =T1, 0 0°au(WSdnllKllSHdnllL) =

= s2(d)·T1, 0 0°au(WSdnllKllSA l-nllL)

KT =T1, 0 0°au(WSdnllKllSA l-nllL) =

= c6(ac)·T1, 0 0°au(WSdnllKllWF1-nllL0 c)

}(f,n =T1, 0 0°au(WSdnllKllWF1-nllL0 c) =

= T1,(c4(ac)·0°a9 (RH 1-nllKllWF1-nllL) +
+ c4(ce)·0°a9 (SFdnllKllWF1-nllL) +
+ j ·0°au(WSdnllKllWF1-nllL)) =

= T1,(c4(ac)·0°au(RH1-nllKllWF1-nllL) +
+ c4(ce)·0°()9 (SFdnllKllWF1-nllL) +
+ j·to·0°au(SFdnllKllWF1-nllL)) =

= T·xi-n + T"T1, 0 0°au(SFdnllKllWF1-nllL)

X4n =T1, 0 0°au(SFdnllKllWF1-nllL) =

= c3(dn)·T1, 0 0°au(WSdnllKdnllWF1-nllL)

xf' =T1, 0 0°au(WSdnllKdnllWF1-nllL) =

= T1,(i ·0°a9 (WSdnllKllWF1-nllL) +
+ c5(ce)·0°a9 (WSdnllKllWF1-nllL) +
+ c5(dn)·0°a9 (WSdnllKllSA l-nllL)) =

= T"TJ, 0 0°au(WSdnllKllWF1-nllL) + T·xf' =

= T"TJ, (to ·0°()9 (SFdn llKll WF1-nllL) + T·xf' =
= T"xf + T·xf'

Summarizing, we have found that xY (= T1, 0 0°a9 (SllKllRllL)) satisfies the following guarded system

of recursion equations:

30

X'l = ~rl(d)·xf
deD

xr = c 3(dn) ·X'f

xf = T·xf + 'T"xf

xf =s2(d)·~n

~n = c6(ac) ·X!f'

xf = c3(dn)·xf'

TABLE 14

This finishes the first part of the proof. In the second part we will abstract from the communication
actions at ports 3 and 6. Because PAR = T1(x<f>, it is enough to show

T1(x</) = ~ rl(d) ·s2(d) "'T1(x</)
deD

For fixed d and n, variables xf and xf form a guarded conservative cluster from I (in the sense of
remark 2.11). Hence we can apply CF AR :

T1(xf) = T"T1(.x1n)

Variables xf, X'/,n, ~n and X'/,n (d and n fixed) also form a guarded conservative cluster from I.

CFARgives:

T1(xf) = 'l .. T1(Xl-n}

We use these two results in the following derivation:

'T1(X'f) = ~ rl(d) "T1(rin) =
deD

= ~rl(d)·-r·-r1(xf) =
deD

= ~rl(d)·s2(d)·-r1(rsn> =
deD

= ~rl(d)·s2(d)·T1(Xl-n)
deD

Substituting this equation in itself gives:

-r1(x</) = ~rl(d)·s2(d)· ~r1(e)·s2(e)--r1(x</) and
deD eeD

-r1(XI) = ~ rl(d)·s2(d)· ~rl(e)·s2(e)--r1(XI)
deD eeD

Because of the Recursive Specification Principle

31

Hence

T1(x<f) = ~ r l(d) ·s 2(d) ·71(Xf)
deD

which is the desired result.

§5 SPECIFICATION OF THE OBSW-PROTOCOL, PRELIMINARY CALCULATIONS

In this section we will give a description, in terms of process algebra, of a One Bit Sliding Window

(OBSW) protocol. This protocol is described in TANENBAUM [12]. We will use the state operator A':
to translate a computer program, which occurs in the description of the OBSW-protocol by Tanen

baum, into process algebra (In the section about the PAR-protocol we paid no attention to the rela

tion between Tanenbaum's description of the protocol and our algebraic specification, because in that

section our main goal was to show how a verification can be accomplished within the formalism of

process algebra).

5.1 The essence of all sliding window protocols is that at any instant of time, the sender maintains a list

of consecutive sequence numbers corresponding to frames it is permitted to send. These frames are

said to fall within the sending window. Similarly, the receiver also maintains a receiving window

corresponding to frames it is permitted to accept. The protocol we will analyse is a very simple slid

ing window protocol: the maximum window size is 1, and the only possible sequence numbers are 0

and 1 (One Bit).

5.2 The protocol is full duplex. This means that data are to be transmitted in both directions. There

are two systems, A and B, both containing a sender as well as a receiver. A and B communicate by

means of channels Kand L (see Fig. 15). Elements of a finite data set Dare to be transmitted by the

protocol from port 1 to port 8, and from port 5 to port 4.

Fig. 15

5.3 The most important component of A as well as Bis the Interface Message Processor (IMP). The

IMP of system A (IMP A) executes the program which is depicted in Fig. 16. The program for the IMP

of system B (IMPB) is slightly different, and will be presented later.

The first step we take is that we discuss the semantics of the various statements which occur in the

program. Abbreviations will be introduced for the names of variables and procedures. Furthermore

we reformulate a number of statements in order to reduce the number of variables.

32

const MaxSeq = l;

type EvType = (FrameArrival, CksumErr, TimeOut);

procedure protoco/4;
var NextFrameToSend: SequenceNr; {O or l only}

FrameExpected: SequenceNr; {O or l only}
r ,s: frame; {scratch variables}
btifjer: message; {current message being sent}
event: EvType;

begin
NextFrameToSend: = O;
FrameExpected: = O;
FromHost (buffer);
s .info : = buffer;
s.seq := NextFrameToSend;
s.ack := l - FrameExpected;
sendf(s);
Start Timer (s. seq);

repeat
wait(event);
if event = FrameArrival then

begin
getf(r);

{initialize outbound stream}
{initialize inbound stream}
{fetch message from host)
{prepare to send initial frame}
(frame sequence number}
{piggybacked ack}
{transmit the frame}
{start the timer running)

{possibilities: FrameArrival, CksumErr, TimeOun

{an inbound frame made it without error}
{go get itl

if r .seq = FrameExpected then
begin {handle inbound frame stream}

ToHost(r.info); (pass the message to the host}
inc (FrameExpected) {invert the receiver seq number}

end;

if r .ack = NextFrameToSend then
begin {handle outbound frame stream}

FromHost(bujfer); {fetch a new message from host}
inc (NextFrameToSend) {invert sender seq number}

end

end;

s.info := buffer;
s .seq : = NextFrameToSend;
s.ack := l - FrameExpected;
sendf(s);
StartTimer (s .seq)

until doomsday

end; {protoco/4}

{construct outbound frame}
{insert sequence number into it}
{this is seq number of last received frame}
{transmit a frame}
{start the timer running}

Fig. 16

5.3.1 The meaning of assignments, if-statements, repeat-statements and block-statement will be clear

and needs no further attention. We introduce the following abbreviations:

33

NextFrameToSend ~ n
FrameExpected ~ e
buffer ~ b
r.seq ~ n
r.ack ~ e
r.info ~ b

5.3.2. procedure FromHost (var m : message).
The procedure FromHost(m) fetches a message (element of D) from the host and copies it to m.
Abbreviation: Fh (m).

5.3.3. procedure ToHost (m: message).
The procedures ToHost(m) delivers the value of variable m to the host. Abbreviation: Th(m).

5.3.4. procedure getf (var r: frame).
The procedure getf(r) gets an inbound frame and copies it to r. A frame is a packed record of the
fields r.info, r.seq and r.ack (ranging over resp. D, Band B). Because we want to reduce the number
of variables as much as possible before starting the calculations, we replace getf by a procedure

Gf(var m : message; var p, q : SequenceNr).

This procedure gets an inbound frame, unpacks it, and copies the fields to resp. variables m, p and q.

5.3.5. procedure sendf (s : frame).
We replace the statements

by the single statement

Sf(b,n, I -e)

s.info : = buffer;
s.seq : = NextFrameToSend;
s.ack : = 1 - FrameExpected;
sendf (s)

The procedure Sf (m : message; p, q: SequenceNr) packs the values of variables m, p and q together
in a frame, and transmits this frame.

5.3.6. procedure StartTimer (k: SequenceNr).
This procedure starts the clock running and enables the TimeOut event. Tanenbaum does not make
demands concerning the behaviour of the timers (see TANENBAUM (12], p.153):

'No combination of lost frames or premature timeouts can cause the protocol to deliver duplicate
messages to either host, or to skip a message, or to get into a deadlock'

Because in process algebra we abstract from the real time behaviour of a system, the only relevant
information concerning the timers is whether or not the TimeOut event is enabled. Since right before
the wait(event) statement a StartTimer command can be found, and the wait(event) statement is the
only place in the program where the timers can influence the process, the StartTimer command can be
omitted out of the program if we assume that the TimeOut event is always enabled.

34

5.3.7. procedure wait (var event: EvType).
This procedure embodies the classical way to model a nondeterministic choice in a language in which

nondeterministic choice is not a primitive. After the procedure call wait(event) the IMP sits in a tight

loop waiting for something to happen. The procedure only returns when something has happened,

(e.g., a frame has arrived). Upon return, the variable event will tell what happened; the value of event

determines the place where the extention of the program is resumed.
We replace this construction by the statement

ev 1: stat 1 + ev2: stat2 + · · · +evn: statn

As in process algebra'+' expresses nondeterministic choice. ev l,ev2, ... , evn are of type EvType. In
our case there are three possible values for EvType:

ce (= checksum error)
fa (= frame arrival)
to (= time out)

5.4 IMPB. The program for IMPB is essentially the same as the one for IMPA. However, to avoid a

synchronization difficulty, the program for IMPB has to be slightly different. As pointed out by

Tanenbaum, a synchronization difficulty arises if A and B both simultaneously send an initial mes

sage. Fig. 17, taken from TANENBAUM [12], illustrates the problem. In part (a), normal operation of

the protocol is shown. In (b), a peculiarity is illustrated. In (a) each frame arrival brings a new mes

sage for the host. In (b) half of the frames contain duplicates, even though there are no transmission

errors.
A sends (0, 1, AOI

.............. B gets (0, 1, AO)•
~ B sends (0, 0, BO)

A gets (0, 0, BO)*
A sends (1, 0, All

B gets (1, 0, All*
~ B sends (1, 1, Bll

A gets (1, 1, Bll*
A sends (0, 1, A2)

B gets (0, 1, A21*
- · ~ B sends (0, 0, B2l

A gets (0, 0, B2) •
A sends 11. 0, A3)

(al

B gets 11, 0, A3)*
B sends (1, 1, B3)

- Asends(0, 1,AOl

7
Bsends(0,1,BO)

· B gets (0, 1, AO)•
B sends (0, 0, BO)

A sends (0, 0, AO)
A gets (0, 1, BOI"/

A sends (1. 0, A 1 l
A gets !O. 0, BO) I
A gets (1, 0, Bll*
Asends(l, l,All............._

Time

(bi

B gets {0, 0, AOl
B sends {1, 0, 81)

B gets 11. 0, Al)*
B sends (1, 1, 81)

B gets (1, 1, All
B sends 10. 1, B2l

Two scenarios for protocol 4. The notation is (seq, ack,
message number). An as"terisk indicates where a host accepts a mes
sage.

Fig. 17

The solution Tanenbaum gives for this problem ('only one of the IMP programs should contain the

'sendf' and 'StartTimer' procedure calls outside the main loop') is incomplete. It does not cope with

the situation in which the first datum sent by A is mangled in the communication channel, and also

the timer at A times out too early. In this case situation (b) still can be reached. What we want is that

IMPB does not undertake any action until the first message from A is received undamaged.

35

5.5 Now the flowchart of Fig. 18 represents the rewritten version of Tanenbaum's original program.
The open circle corresponds to a nondeterministic choice. The intuitive meaning of the various labels
is the following

PA start of program for IMP A

SF send frame
WS wait for something to happen
GF get frame
TI first test
T2 second test
PB start of program for IMPB
WF wait for frame arrival

5.6 We translate this into process algebra as follows : all simple statements will become atomic
actions, and program constructs become process algebra constructs. The recursive specification
corresponding to the programs for processes A and B becomes:

PA Pl3

Fh(b) Fh(b)

WF H-----..

ce

Gf(b,n~e)

TI

no

T2

e:n

no

Fig. 18

PA= [n := O]·[e := O]·[Fh(b)]·SF

SF= [Sf(b,n, I-e)]·WS

WS = to·SF + ce ·SF+ fa ·GF

GF = [Gf(b,n,e)] ·TI

TI =[Ii= e] flh(b)] ·[e: = 1-e] ·T2 + [1i=t6=e] ·T2

T2 =Le= n]·[Fh(b)]·[n := I-n]·SF + [e=t6=n]·SF

PB= [n := O]·[e := O]·[Fh(b)]·WF

WF = ce · WF +fa ·GF

37

Of course, writing down this specification does not finish the specification of the IMP's : performing

an atomic action changes the value of variables, and the value of the variables determine whether or

not certain actions (for example [Ii = e]) can take place. The mechanisms used to model this is the so
called state operator, which is described below.

5.7 State operator (SO). In BAETEN & BERGSTRA [l], the state operator A': is introduced. The formal

definition of this operator looks horrifying, but the idea behind it is quite simple. First we have a cer

tain object m (think of a computer). We are interested in the process which describes the behaviour

of m. The object m contains a part which can be in different states o (the memory of the computer).

Inside the object there is also a process x going on (the program which is executed).
Now the principal idea is that:
(1) executing a step of the process inside object m can (from the point of view of an observer of

object m) result in several possible actions. The set of possibilities depends on the state o.

Example I: If IMPA performs the action [Fh(b)] , this results, from an external point of view, in
one of the following possible actions : { rl(d) I d ED}.
Example 2: If IMPA can perform the action [Ii= e], but the value of n is not the same as the
value of e, then this action is forbidden by the environment.

(2) executing a step of the internal process x, can, depending on the alternative chosen out of the set
of possible external actions, result in a certain effect on the state a.
Example 3: If IMPA performs the action [Fh(b)] , and the chosen external action is r l(d0), then
the value of variable bis changed to d0 •

Now we give the formal definition of operator A': :

5.8 Definition. Let Mand~ be two given finite sets, so that sets A, M, ~ are pairwise disjoint. Sup
pose two functions act, eff are given:

act:A XMX~~Pow(AT)

eff:A XATXMX~~~

Now we extend the signature with operators

A': : P-">P (for m eM,oe~)

and extend the set of axioms by (~ xj = 8) :
je0

38

A:;'(T) =.,.

A:;'(ax)= ~ b·A:}(a,b,m,a}(x) (aEA)
b eact(a,m, a)

A:;'(x + y) = A:;'(x) + A:;'(Y)

TABLE 19

5.9 Before we define the state operators for IMPA and IMPB, we first take a more detailed look at the
environment in which the IMP's operate. Fig. 20 is a refined version of Fig. 15.

A

K

L

Fig. 20

B [........................ .._ -. l
~ 7 !
• I
~ I
~ i

I al
!6 IM~B !
~ 5 I ' .. .J

In 5.3.6 we showed that we can assume that at every moment one of the timers is enabled. Because a
TimeOut from the first timer cannot be distinguished from a TimeOut from the second one, the fol
lowing process describes the behaviour of the timers in system A

Analogously the timers of system B are described by

TB = s ll(to) ·TB

The behaviour of the receivers RA and RB is specified by (with DBB = { dpq Id ED, p eB}) :

RA= ~ r3(f)·R~ + r3(ce)·R'i
feDBB

R~ = s9(fa) ·s IO(f) ·RA (feDBB)

R'i =s9(ce)·RA

and

RB= ~ r1(f)·R~ + r1(ce)·Rj
feDBB

Rf, = s ll(fa) ·s 12({) ·RB (f eDBB)

Rj = s ll(ce)·RB

39

We cannot model the communication channels Kand Las one-datum-buffers because, as we will see,

in the OBSW protocol it is possible for K and L to contain more than one frame at a time. A reason

able specification seems to be a FIFO-queue with unbounded capacity. Further the behaviour of the

communication channels is the same as in the PAR-protocol: if a frame is sent into a channel it can

be communicated correctly, damaged, or lost completely. We give an infinite specification of the chan

nels. It is possible to give a finite specification (see BAETEN, BERGSTRA & KLoP [4]), but that does not

simplify the calculations.

K = K(= ~ r2(f)·Kf
feDBB

K 0 *f = (s7(f) + s1(ce) + i)·K0 + ~ r2(g)·Kg•o•f
geDBB

f EDBB; oe(DBB)*

40

L =L' = ~ r6(j)·V
feDBB

L 0 *! = (s3(j) + s3(ce) + j)·L 0 + ~ r6(g)·Lg*a*f
geDBB

f EDBB; oE(DBB)*

5.10 State operators for IMPA and IMPB
There are two objects

M= {A,B}

Let Var be the set of storage elements

Var = { n,e,b,ii,e,b}

For xEVar: Dom(x) denotes the set of possible values of x

Dom(n) = Dom(e) = Dom(ii) = Dom(e) = {0,1}

Dom(b) = Dom(b) = D

Let DOM be the set of all possible values of all variables

DOM = LJ Dom(x)
xeVar

Now the state space l: consists of all functions from Var to DOM, with the property that every vari
able has a value in its domain

l: = {o: Var~DOMl'7'xEVar:o(x)EDom(x)}

For each oEl:, xEVar and aEDom(x) we write o{a /x} for the element of l: which satisfies, for
eachyEVar

o{a / x}(y) =a, ify = x

o{ a/ x }(y) = o(y), if y *x
In words, o{ a / x} is like o, but for its delivering a when applied to x (this definition is adopted from
DE BAKKER [5]). 1

The following equations define the state operator for IMPA and IMPB (xEP} :
1. 't/m EM V'oEl::

A:Z([n: = O] ·x) = T·A:Zto /n}(x)

A:Z([e: = O] ·x) = T·A:(o /e}(x)

A;'([n: = 1-n] ·x) = T·A:f:1-a(n) /n}(x)

A;'([e := 1-e]·x) = T·A:{1-a(e)/e}(x)

2. V'oE~:

A:([Fh(b)]·x) = ~rl(d)·A:{d /b}(x)
deD

A:([Fh(b)]·x) = ~r5(d)·A:{d/b}(x)
deD

3. V'oE~:

A:([Th(b)]·x) = s4(o(b))-A:(x)

A:([Th(b)]·x) = s8(o(b))-A:(x)

4. V'oE~:

A:([Gf(b,n,e)]·x) = ~ ~ rlO(d,p,q)-A:{d /b}{p /ii}{q /e}(x)
deD p,qeB

A:([Gf(b,n,e)]·x) = ~ ~ rl2(d,p,q)-A:{d /b}{p /ii}{q /e}(x)
deD p,qeB

5. V'oE~ V'eeEvType:

A:(e ·x) = r9(e)-A:(x)

A:(e ·x) = r ll(e)-A:(x)

6. V'oE~ V'm EM:

m _ _ • _ {T·A:(x) if o(li) = o(e)
Aa ([n - e] x)- 8 otherwise

m _ • _ {T·A:(x) if o(li):i=o(e)
Aa ([n =i=e] x) - 8 otherwise

m _ • _ {T·A:(x) if o(e) = o(n)
Aa ([e - n] x) - 8 otherwise

{

T·A:(x) if o(e):i=o(n)
A:([e:i=n]·x) = 8 otherwise

7. V'oE~ :

A:([Sf (b,n, 1-e)] ·x) = s2(o(b),o(n), 1-o(e)) ·A:(x)

A:([Sf(b,n, 1-e)]·x) = s6(o(b),o(n), 1-o(e))-A:(x)

41

This finishes the definition of the state operator. Let o0 be an arbitrary element of~. Now the process
IMP A is defined by

IMPA = A:
0
(PA)

and IMPB is defined by

IMPB = A:.(PB)

5.11 LEMMA. The following specifications of IMPA and IMPB are equivalent to the specifications
presented above (deD ;p,qeB):

42

IMP A = T • ~ r l(d) ·SF!./XJ
dED

SF!fq =s2(d,p, 1-q)·WSfq

WSfq = (r9(to + r9(ce)) ·SF!fq + r9(ja) ·GF!fq

GF!fq = ~rlO(e, 1-q, 1-p)·SF!fq +
eED

+ ~rlO(e,q, l-p)·s4(e)·SF!f<1-q> +
eED

+ ~rlO(e, 1-q,p)· ~rl(j)·SF~(l-p)q +
eED fED

+ ~r 10(e,q,p)·s4(e)· ~rl(j)·SF~(t-p)(t-q)
eED fED

IMPB = T· ~r5(d)·WF},00
dED

WF},00 = rll(ce)·WF},00 + rll(ja)·GF},00

SF'iq = s6(d,p, 1-q)·WS'/fq

WS'/fq = (rll(to) + rll(ce)·SF'iq + rll(ja)·GF'iq

GF'iq = ~r12(e, 1-q, 1-p)·SF'iq +
eED

+ ~r12(e,q, 1-p)·s8(e)·SF'i(l-q) +
eED

+ ~r12(e, 1-q,p)· ~r5(j)·SFfp-p)q +
eED fED

+ ~r 12(e,q,p) ·s8(e) · ~r5(j)·SF~(t-p)(t-q)
eED fED

PRooF: Straightforward. Use axioms ACP,. + RDP + RSP + SO.

5.12 We define the communication function by

st(j) lrt(j) = ct(j) for tE{2,3,6,7,9, 10, 11, 12}, jEDBB U {ce, to, fa}

and all other communications give 8.

43

5.13 Priority. Suppose RA has received a frame from channel L. Now RA gives a signal to IMP.A. that
a frame has arrived. IMP A however is very busy doing other things, and doesn't notice the signal.
And because the IMP doesn't fetch the frame from the receiver before the signal is noticed, and

because the receiver does not read a frame from the channel before the old message is passed to the

IMP, the receiver RA does not read a new frame from the channel as long as IMP.A. is busy doing

other things. The frames in the channel however, are not as patient as the receiver: if no one wants

to read them they just dissappear (of course the same holds the frames in channel K).

This message passing mechanism is called 'Put and Get'. In BERGSTRA [6a] it is shown that this

mechanism can be modelled easily by means of the priority operator: at ports 3 and 7 send- as well as

communication-actions can take place; however, if a communication-action is possible, it will occur

(communication-actions have a higher priority). So we define a 8 operator with respect to the follow

ing partial order < on A 8

(1) 8<a for a EA
(2) s 3(j)<c 3(/) for f eDBB U { ce}
(3) s7(j)<c7(j) forfeDBBU{ce}

We define

HI= {r3if)lfeDBBU{ce}}, and

H2 = {r7(j) I/ eDBB U { ce} }.

Now the system consisting of components RA and L is described by

0°aH1(LllRA)

and the system RB, K by

8°a92(KllRB)

5.14 Specification OBSW-protoco/.
We define

and

H = {st(j),rtif)lte{2,6,9,10,ll,12}, JeDBBU{ce,to,fa}}

I= {ctif)lte{2,3,6,7,9, 10, 11, 12},feDBB U {ce,to,fa}} U

U {stif)lte{3, 1},feDBB U {ce}} U {i,j}

Now the One Bit Sliding Window protocol is described by:

OBSW = -r1°an(IMPA llTA ll0°an2(KllRB)llIMPBllTBll0°aH1(LllR.A.))

5.15 LEMMA. Let

I1 = {s3(j)lfeDBBU{ce}}ULJ}, and

H3 = {r3(j),s3(j)lfeDBBU{ce}}

Let L 1 be defined as follows

44

L1 = L1 = ~ r6(j)·L{
feDBB

Ly*f = (s3(j) + s3(ce) + T)"LY + ~ r6(g)-L(0 *f
geDBB

f EDBB; OE(DBB)*

Then

PROOF: Straightforward. In words : After abstraction it is not possible to see if a frame was lost
because of a j-action by the channel, or because the receiver could not read it.

5.16 COROLLARY. Let

12 = {ct(j) I tE{2,3,6,7,9, 10, 11, 12},/EDBB U {ce,to,fa}}

H 4 = {st(j),rt(j) I tE{2,3,6,7,9, 10, 11, 12},/EDBB U {ce,to,fa}}

Let K 1 be defined by

K1 = K\ = ~ r2(j)·Kf'
feDBB

Ky*f = (s1(j) + s1(ce) + T)·KY + ~ r2(g)·K!(0 *f
geDBB

f EDBB; OE(DBB)*

Then

PROOF: For reasons of symmetry an analogon of lemma 5.15 holds for Kand RB. Now apply the con
ditional axioms from section 1.10.

§6 REDUNDANCY IN A CONTEXT

As soon as the specification of a concurrent system is written down, one faces the question how to
verify statements about this system. And if the number of components exceeds one this is not a trivial
issue (as the number of publications about the subject shows).

A lot of insight into the behaviour of a system can be obtained by looking at its trace set. A trace
set is the set which consists of all the sequences of actions that can be performed by a system. In this
section we will give the definition of trace sets. Furthermore we will show how observations of the
form 'process p never performs an action a in context ()H(pllq)'(which are essentially of a trace
theoretic nature), can be used to simplify a specification by removing redundancies. In particular we

45

will show that the specification of the OBSW-protocol is redundant and can be simplified. (for more
information about trace sets, see BAETEN & BERGSTRA [l], and REM [11]).

6.1 ExAMPLE: Consider the case of a theoretical computer scientist, who first drinks a cup of coffee or
a cup of tea, then thinks for a while, next drinks again a cup of coffee or a cup of tea, etc. The
behaviour of this scientist can be specified as follows (0 = coffee, CP = tea, i = to think)

TCS = (Q+CP)·i·TCS

There is also an automaton

A=l!!f·A

Now we define the communication function by

0 I !!t= •and CPl-.=w.
and all other communications give 8. We are interested in the merge of processes TCS and A,
shielded off from the outside by encapsulation. Therefore we define

and look at

on(TCSllA)

A simple calculation gives us that

on(TCSllA) = •·i·on(TCSllA)
.......

So in a certain sense, the specification of TCS is redundant in the given context: it is useless to keep
open the option of drinking tea, if there is no tea. So the following specification would do as well:

TCS'= D·i·TCS'

6.2 REMARK. A specification can also be intrinsically redundant, i.e. if you look at the specification
itself (you know nothing about the context), you can come to the conclusion that some parts of it can
be omitted. The following specification for example is redundant in this sense:

A' =~!A'+ ~·A'

the second summand can be omitted, but the solution remains the same.
However, we are not interested in this kind of redundancy here. What we want to study in this

section are redundancies in a context: situations in which a process cannot perform a certain action
when it is placed in a specific context. In this view the specification A' is not redundant in context
o9 (TCSllA'). The specification X = o9 (TCSllA') however is redundant: first of all because TCS is
redundant in context X, and in the second place because A' is redundant.

6.3 Trace sets. Before we formally introduce the notion of trace set, we first give some definitions.

6.3. l DEFINITION: An alphabet is a finite set of symbols. A word over an alphabet ~ is a finite list of
elements from~. We use A as a notation for the empty word. If o1 and o2 are words over an alpha
bet ~. o1 * o2 (also denoted by o1 o2) denotes the concatenation of o1 and o2 • If o is a word over an
alphabet ~. and B is a set of words over the same alphabet, we define o*B = {o*blbEB} and
B*o = {b*olbEB}. lol denotes the length of o.

6.3.2 DEFINITION: Now, we will define the trace set of processes which can be specified by a guarded

46

specification with no T1• A trace set is a set of words from A, so we will have a partial function

tr: P~Pow(A *)

On BT, we define tr inductively (see table 21).

1. tr(8) ={A}

2. tr(T) ={A}

3. tr(Tx) = tr(x)

4. tr(ax) ={A} Ua*tr(x) (a EA)

5. tr(x + y) = tr(x)Utr(y)

TABLE 21.

and we extend this definition to processes which can be specified by a guarded specification with no

'f'J by:

6. E(x, -) E guarded, no abstraction
00

tr(x) = U tr('1Tn(x))
n=l

6.3.3 Note. Definition 6.3.2.6 is correct because trace sets are prefix closed, i.e. if o* p is in some trace
set (o,pEA *), then o is too.

6.3.4 DEFINITIONS: The following functions from A• ~A•, are defined inductively.

6.3.4. l For I kA
1. A1(A) =A
2. A1(a*o) = A1(o) if a El
3. A1(a*o) = a*A1(o) if a fl/

6.3.4.2 For t EA and H kA
1. tn(A) =A
2. tn(a*o) = t*tn(o) if a EH
3. tn(a*o) = a*tn(o) if a flH

6.3.4.3 These definitions are extended to functions from Pow(A ·)~Pow(A *) as follows. Let
B EPow(A *). Then we define
1. A1(B) = {A1(o)lo EB} (/ kA)
2. tn(B)={tn(o)loEB} (tEA,HkA)

6.3.4.4 Now we can define the interrelation between the operators A1 and T1•

7. E(x, -) E guarded, no abstraction
tr(T1(x)) = >..1(tr(x))

6.3.4.5 For n ;;a. I we define the function

'Un : Pow(A *)~Pow(A *)

by

'rrn(B) = {al lal~n}

The following theorem follows directly from the definitions and theorem 1.5.6.

6.3.5 THEOREM. Let x EP be specifiable by a guarded specifications in which no T1 occurs. Then

Vn;;a.I: 'rrn(tr(x)) = tr('rrn(x))

47

6.4 In this section we are interested in the behaviour of a process p EP, when placed in a context.

The types of contexts we will consider, are of the form o8 (p) or o8 (pllq) (qEP, H<;;;,A).

We use o8 (pllt:) as a notation for o8 (p). So we will speak about a context o8 (pllq)

(q EP U { t: }, H <;;,A). In order to make the analysis easier, we demand that p is observable in context

o8 (pllq): it must be possible to tell whether a certain action of o8 (pllq) is originated by p, and if so,

by which action of p.
If, for example, we place the theoretical computer scientist of section 6.1 in a context with a

number of other people and a lot of automata, and we analyze this system in order to answer the

question: 'Is there a possible action sequence in which our scientist drinks a cup of tea ?', observa

tions like 'someone is drinking something ' are very non-informative. Is our scientist drinking tea ? Or

coffee ? Or is someone else drinking something ? In order to avoid these difficulties we give the fol

lowing definitions.

6.4.2 DEFINITION. Let p EP,q EP U { t:} and H <;;,A. We will use the notation a(t:) = 0. p is observable

in context on(pllq) if:
1. a(p)- H, a(q)-H and (a(p)la(q))-H are mutually disjoint.

2. Vai.a2Ea(p) Vbi.b2Ea(q) [y(a1>b1) = y(a2,b2)E(a(p)la(q))-H] ~ a1 = a2

6.4.3 Note. Without the Handshaking Axiom the condition (a(p)-H) n (a(p)la(q)-H) = 0 would

be against our intuition. Consider, for example, the case p =a, q = b, with a -=f=b and alb =a. Our

intuition says p is observable in context o8 (pllq), but according to the definition it isn't.

If the second requirement is satisfied, then y has an 'inverse' on (a(p)la(q))-H, i.e. if

cE(a(p)la(q))-H, then there is exactly one aEa(p) so that a bEa(q) exists with y(a,b) =c. In this

case, we put a= y- 1(c).

6.5 DEFINITIONS: Let pEP,qEPU{t:},H<;;;,A, with p observable in context oa(pllq). Suppose

(a(p)la(q))-H ={cl> ... ,en}· We define the trace set 11'j,•
8 (tr(o8 (pllq) localized top) by

48

What we do in fact is that we rename actions in the trace set of process Cln(pllq):
(i) Elements of a(p). These are the actions of p we are focusing on. So we do not rename them.
(ii) Elements of a(q). We are not interested in actions from q. Therefore we omit them out of the

traces by means of renaming into >...
(iii) Elements of a(p)la(q) These actions are renamed into their inverses, which are actions from p.
The idea of localization was, in a somewhat different form, introduced in BAETEN & BERGSTRA [l]. It
is a very useful concept, which allows us to 'view' a process while it is interacting with an environ
ment.

6.6 THEOREM. Let p EP be specifiable by a guarded specification without T1• Let q be £, or specifiable
by a guarded specification without T1• Let H<;;;,A and let p be observable in context Cln(pllq). Then

v'J'H <;;;, tr(p)

PROOF. In case p is finite and q is finite or£, the proof is easy. Using simultaneous induction on the
structure of the terms (elements of BTU { £}) representing p and q, we can prove theorem 6.6 in a
straightforward way. This part of the proof is left to the reader.

Now we use theorem 1.5.6 to reduce the general case of our theorem to the finite case. It is
sufficient to prove

Vn ;;a. I 'TT n(P'j,'H) <;;;, 'TTn(tr(p))

Choose an arbitrary n. Suppose (a(p)la(q))-H = {ci. ... ,ck}.
We have to prove

'TTn°'Y- 1(ci)(c,} 0
• • •

0 y- 1
(ck){c.} 0 A.,(q)-H(tr(Cln(pllq))) <;;;, 'TTn((tr(p))

For tEA and H<;;;,A, the "'m operator (m;;a.I) and the tn operator are clearly commutative. So this is
equivalent to

y- 1 (ci)(c,) o • • • oy- 1(ck){c.} o'TTnoA.,cq)-H(tr(Cln(p llq))) <;;;, 'TTn(tr(p))

We cannot simply change the order of the operators 'TTn and A.,cq)-H• because in general the A.,cq)-H
operator doesn't preserve the length of the elements of its argument. But we claim that there exists
an m ;;;;;. n such that

'TTn°A.,cq)-n(tr(on(pllq))) = 'TTn°Aa(q)-H 0'TTm(tr(Cln(pllq)))

First observe that, because the alphabet A is finite, the set 'TTn°Aa(q)-n(tr(Cln(pllq))) is finite. For each
aEAa(q)-n(tr(on(pllq))) there is a a'Etr(Cln(pllq)) such that A.,(q)-n(a') =a (an 'inverse' of a). Now
choose for each element of 'TTn°Aa(q)-n(tr(on(pllq))) an inverse, and let M be the set of these inverses.
So

A.,(q)-n(M) = 'TTn°A..(q)-n(tr(un(pllq)))

Because M is finite there exists an m ;;a.n such that

this means

'TTn°Aa(q)-n(tr(un(pllq))) = 'TTn°A..(q)-H°"'m(tr(on(pllq)))

Choose an m;;a.n with this property. It is enough to show

y-1(c1){c.} 0
• • • oY- 1(ck){c.}°'1Tn°hacq>-H°'1Tm(tr(on(pllq))) C 'ITn(tr(p))

According to theorem 6.3.5 this is equivalent to

y-1(c1){ct) 0
• • • oY- 1(ck){c,) 0 '1Tn°hacq)-H(tr('1Tm 0 0n(pllq))) k 'ITn(tr(p))

A theorem proved by v AN GLABBEEK [9] yields that the LHS can be rewritten as

y-1(c1){c.} 0 • • • 0 Y- 1(ck){c,} °'11'n°Aa(q)-H(tr('1Tm0 0n('11'm(p)11'1Tm(q)))) k

(use theorem 6.3.5 and the fact that 'ITn(B)C,B)

kY-l(CJ){c.} o • • • 0 (Ck)(c,} °'11'n°Aa(q)-H(tr(oH('1Tm(p)11'1Tm(q)))) =

= '1Tn°Y- 1(c1){c,} 0
• • • oY- 1(ck){c,} 0 Aa(q)-H(tr(on('1Tm(p)11'1Tm(q)))) =

= 'IT (P'll.,(q),H) c (finite case!)
n '11.,(p) -

k,'1Tn(tr('11'm(p)) = (theorem 6.3.5)

= 'ITn°'ITm(tr(p) = (n~m)

= 'ITn(tr(p)) = RHS

because n was chosen arbitrarily, this finishes the proof of theorem 6.6.

49

In order to keep things simple, we will only give the definition of redundancy for a special class of

specifications:

6.7 DEFINITIONS: A specification E = {E/}EJ} is called strictly linear, if 'VjEJ:

1j = T or

1j = 8 or

3m~l

m

1j = ~ak ·J0.
k=l

In the last case we say ak ·J0. is a summand of Tj, and also of E. Furthermore we say J0, ETj. It is

perfectly legal to think of strictly linear specifications as graphs.

The equations Xj = T are introduced to keep notation and proofs simple. In practical cases the vari

able J0 and equations Ej for which 1j = T can be omitted.

6.8 DEFINITIONS: For a EA,. we define

{
a if a EA

a'= ' if I\ a= T

a'
If a ·J0 is a summand of term T;, then we say: X; ~J0. __,,.> is the transitive and refie:icive closure

al a2 a. a
of ~ : if J0

0
~J0, ~ · · · ~J0. and o = a 1*a2* ···*an, then we say that J0

0
~ J0 .. The

reflexivity is expressed by saying that X; ~ X;.

50

6.9 THEOREM. Let E = {Ej:}eJ} be a guarded, strictly linear specification with solutionp. Then

a
tr(p) = {oj3jeJ:X;

0
~ X;}

In order to prove this theorem. we first prove some lemma's.

6.10 LEMMA. If the index set J of E is finite, and partially ordered by a relation > E such that j 0 is
minimal and Vi,jeJ: X;e7j ~i >E}, then theorem 6.9 holds.

PROOF: We use induction on the number of elements of J.

CASE 1. !JI = 1 Because of the partial order on J, Ej
0

has the form X;
0
= T or X;

0
= 6. This means

. a
p =Torp= 6. Hence tr(p) = {i\} = {oj3jEJ:Xj

0
-?> XJ}.

CASE 2. Suppose the lemma is proved for !JI ~n -1. Consider the case !JI = n (n > 1). Because of
the partial order on J, equation Eh must be of the form

m

X. = °""' ak ·X. Jo £,,,, }•
k=1

a
Now we define for l~k~m :Jk = UeJj3o: X;. ~ Xj}. The designated element of Jk is }k· The
specification E(k) is defined by E(k) = {E/}EJk}. E(k) is strictly linear and guarded. Because
j 0 f!;J k (partial order !), we have IJ k I ~n - 1. The restriction of the partial order > E on J to J k gives
us a partial order >E(k) on Jk such that Vi,jeJk: X;e7j ~i>E<k>i·

m

Let Pk be the unique solution of E(k). This means that p = ~ ak Pk· A simple induction argument
k=1

gives us that p must be finite. Hence
m m

tr(p) = tr(~ ak Pk)= {i\} U U a'k *tr(pk) = (induction)
k=I k=I

= { oj3j eJ: Xj
0
gX;}

This finishes the proof of lemma 6.10.

6.11 DEFINITION. Let E = {Ej :jeJ} be a strictly linear specification. For every n;;;a.l the
specification En = { EJ,m : j eJ, m <n} U { E,.} is defined as follows
(i) T,. = T

(ii) for m < n - 1, Tj,m is obtained from Tj by replacing each variable X; in 1j by X;,m + 1 if the vari
able occurs guarded in 7j, and by X;,m otherwise.

(iii) for m = n - 1, 'Ij,m is obtained from 1j by replacing each variable X; in 1j by X., if the variable
occurs guarded in 7j, and byX;,m otherwise.

The index set r of En is {(j,m)IJeJ, m<n} U {T}; the special element of r is (j0,0). En is again a
strictly linear recursive specification. When E is guarded En is guarded too and the transitive (but not

reflexive) closure of ~ is a partial order on r. If we throw away all the equations for unreachable
variables the resulting index set is finite and (j0 ,0) is minimal.

51

6.12 Ex.AMPLE. The following example shows that in En the process specified by E is provided with a

counter, which counts the number of 'real' steps, and cuts off the process after n 'real' steps.

E: X=a·X+-r·Y; Y=b·Y

E 2 : X 0 = a·X1 +-r·Y0 ; Y0 = b·Y1 ;X.,. = T

X 1 =a·X.,. +-r·Y1 ; Y1 =b·X.,.

6.13 LEMMA. Let E be a guarded, strictly linear specification with solution p, and let n ;;;a. I. Then

En('ITn(p), -)

PROOF: By iterated application of lemma 1.5.5.

Now we are able to prove theorem 6.9.

PRooF: It is enough to show

Vn;;;a.l ,,,n(tr(p))='1Tn({ol3jeJ:..\j
0
~ Aj})

Choose an arbitrary n ;;;a. I.

'ITn(tr(p)) = tr(?Tn(p)) =(lemma 6.10 +lemma 6.13)

. a
= {ol3JEP :..\j

0
, 0 ~> ..\j} =

. a
= {ollol~n /\31eJ:Aj0

~> ..\j} =

='1Tn({ol3jeJ:..\j
0
~ Xj})

Because n was chosen arbitrarily, this finishes the proof of theorem 6.9.

6.14 DEFINITION. Let E = {Ej:jeJ} be a strictly linear recursive specification with solutionp. Let

a·Aj be a summand of T; (i,jeJ, aeA.,.). Let qePU{£}, H<;;;;,A, and letp be observable in context

()H(pllq). The summand a ·Aj is redundant in context ()H(pllq) iff

{olX. ~ X}*a'nvq,H = 0
Jo I p

Eis redundant in context aH(pllq) iff E has a summand which is redundant in this context.

6.15 Note. If a summand a ·Aj of T; is redundant in context aH(pllq), we can depict this situation

graphically as follows:

52

a
~> Xj}*a'

tr(p)

Fig. 22

This is because {olXj. ~> Xj}*a' C {ol3jeJ :Xj0 ~> Xj} = tr(p) (theorem 6.9), and 11
1}'H C tr(p)

(theorem 6.6).

6.16 THEOREM. Let E be a strictly linear guarded specification with solution p. Let q be t: or
sp~able by a guarded specification without T1• Let HCA. Let p be observable in context a H(p llq).
Let E be a specification, obtained from E by omitting an arbitrary number of summands which are
redundant in contex!_}H(pllq) (i!_in a term all summands are omitted, then this term becomes 6). Let
p be the solution of E (because E is strictly linear and guarded, it has a unique solution). Then:

aH<pllq) = aH(pllq)

The proof of this theorem is analogous to the proof of theorem 6.9, but a bit more complicated
because there is also a q around.

6.17 LEMMA. If the index set J of E is finite, and partially ordered by a relation > E such that j 0 is
minimal and 'Vi,jeJ: X;eTj ~i >E j, and if q is equal tot:, or is a finite process, then theorem 6.16
holds.

PROOF: We use simultaneous induction on the number of elements of J, and on the term representing
q (element of BTU {t:}), to prove the following three statements:
I) aH(pliq) = aH(pllq)
2) aH(qlL.p) = on(qllj)
3) aH(plq) = aH(plq)
We only present the proof of statement l. Statements 2 and 3 can be proved analogously.

CASE l. IJI = 1
Because of the partial order on J, Tj. = T or IJ. = 6. Since Ej. is the only equation of E, this means
that E doesn't contain redundant summands, so there is nothing to prove.

CASE 2. Suppose the lemma is proved for IJIE;;;n -1. Consider the case IJI = n (n > 1). Because of
the partial order on J, equation Ej. must be of the form

m
X· = ""'ak ·X Jo ..fu.i l•

k=I

As in the proof of lemma 6.10, we define for lE;;;kE;;;m:Jk = LJeJ}l3o:Xj. ~ Xj}. The desig

nated element of Jk is}k· E(k) is defined by E(k) = {Ef}EJk}. E(k) is a strictly linear and guarded

53

specification. Because jo fiJ k> we have IJk I ~ n - l. The :restriction of the partial order > E on J to Jk

gives us a partial order > E(k) on h such that 'r/i,j eJk : J(i e 1j ~ i > E(k) j. Let Pk be. the unique
m . .

solution of E (k). Hence p = ~ ak Pk . Obse:rve that p is finite.·
k=I

The following five propositions allow us to use simultaneous induction.

PROPOSITION l. If a summand of Eis redundant in context aH(pllT), then the summand is redundant

in context dH{plif).

PROOF:

v;·H = tr(aH(pllT)) = tr(aH(plLT + Tllp +PIT))=

= tr(T"dH(p) + aH(plLT +PIT))=

= tr(aH(p)) u tr(aH(plLT +PIT))=

= vjH u tr(aH(plLT +PIT))

So vjH k.,,~H. If a summand a·~ of T; is redundant in context aH(pllT), then

{al~. ~> X;}*a' n v;·H = 0. But then also {al~. ~> X;}*a' n vjH = 0, which means that

the summand is redundant in context aH{pllE).

PR.oPosmoN 2. If a summand of Eis redundant in a context aH(pllax) (aeA.,., xeBT), and afiH,

then the summand is redundant in context aH(pllx).

PROOF: Analogous to the proof of proposition 1.

PROPOSITION 3. If a summand of Eis redundant in a context aH(pll(x + y)) (x,yeBT), then the

summand is redundant in context aH(pllx).

PROOF: It is enough to show that v;,·H k v;, +y,H. Using induction, we can easily prove that

tr(dH(pllx)) k tr(aH(pll(x +y))). vf,•H and v;, +y,H can be obtained from tr(aH(pllx)) and

tr(aH(pll(x+y)) by means of application of the operators tH and A.1• The inclusion relation however,

is an invariant of these operators.

PROPOSITION 4. Let 1 ~k ~m. Suppose ak fiH. If a summand of E, which is also a summand of E (k),

is redundant in a context aH(pllq) (qeBT), then it is also redundant in context dH(pkllq).

PROOF: If a summand a·~ of T; is redundant in context aH(pllq) then

a ~
{al~. ~> X;}*a'nvj·H = 0. In particular {a'k*al~. --::,.~. ~> X;}*a'nvj•H = 0. A simple

calculation oives us that a'k * .,,q,H C .,,q,H. Hence
i:r P• - p

a'k*{al~. ~> J(i}*a' n a'k*vj;H = 0 ~{al~. ~ X;}*a'nvj;H = 0

This means that the summand is redundant in context aH(pkllq).

PROPOSITION 5. Let l~k~m. If a summand of E, which is also a summand of E(k), is redundant in

a context aH(pllax) (aeA.,., xeBT), and aklafiHU{B}, then the summand is redundant in context

dH{pkllx).

54

PROOF: Analogous to the proof of proposition 4.

Note. Specification Eis obtained out of specification E by omitting an arbitrary number of _redundan_!
summands. In the proof of case 2 we will make use of a specification E. Specification E is !!_lee E
obtained out of E, but now the summands a ·10 _which were omitted in the construction of E, are
replaced by_ a summand fr10. It will be clear that E(j, -).
In general E is not strictly linear, but the strictly linear specification E can be obtained in a straight-

- m -
forward way from E. H 10 = ~ ak ·10. is an equation which occurs in specification E, then E con

k= I
m

tains a corresponding equation 10 = ~ ak ·10 .. with ak = ak or ak =I>. In the.last case the summand
k=I

ak ·10. of 1j is re<!_undant. In the same wal as the specifications E(k) were introduced, we introduce
the specifications E(k). Let the solution of E(k) be Pk· We have

m

i= ~akik
k=I

Now we use induction on q:

CASE 2.1. q = £

m m
aH(plie) = aH(p) = aH(~ ak ·Jlk) = ~ aH(ak) ·aH(pk) =

k=I k=I
m

= ~ aH(ak)-aH(pkll£) =
k=I

(for each I ..;.k ~m there are two cases:
1. ak EH: aH(ak) ·aH(pklk) = 6 = aH(fik) ·aH(jklk)
2. ak <£.H: the summand Olk ·10. of J0

0
is not redundant, so aH(ak) = aH(fik). Proposition 4 allows

us to use induction on the term aH(pklk))
m m m

= ~ aH(fik)-aH(jkll£) = ~ aH(fik)-aH(jk) = aH(~ ak Pk)=
k=I k=I k=l

CASE 2.2. q = 6
m m m

aH(plll>) = aH(~ ak ·(pkll6) + /}·(~ ak pd+ ~ (akl6)pk) =
k=I k=I k=I

m

= ~ aH(ak)-aH(pklll>) =
k=I

(same argument as in case 2.1)
m

= ~ aH(fik)·aH(jkll6) = · · · = aH(jll6)
k=I

CASE 2.3. q = T

m m
aH(pilT) = aH(~ ak ·(pkllT) + T·{pll£) + ~ (aklT)"jJk) =

k=I k=I

55

m

= ~ ds(ak) ·an(pkllT) + T·dn(plk) =
k=l

(use for the first term the same argument as in case 2.1, and use induction, which is allowed by pro
position 1, for the second term)

m

= ~ ds(tik)·dn<JikllT) + T"ds(/illf) = · · · = ds(/illT)
k=l

CASE 2.4. q = ax, a eA.,.
m m

dn(pllax) = dn(~ ak ·(pkllax) +a ·(xllp) + ~ (akla)·(pkllx)) =
k=l k=l

m m
= ~ ds(ak)·dn(pkllax) + ds(a)·dn(pllx) + ~ ds(akla)·dn(pkllx) =

k=l k=I

(as in case 2.1, we make for each term the distinction akeH or akfl.H, aeH or afl.H, (akla)eHU {8}
or (akla)fl.HU{8}. In the first case the step made is trivial, in the second case one of the propositions
allows us to use induction)

m m
= ~ dn@k)"dn<Jikllax) + ds(a)·dn(/illx) + ~ dn@kla)·dn<Jikllx) =

k=I k=l

· · · = ds(/illax)

CASE 2.5. q = x + y
m

dn(pll(x +y)) = dn(~ ak ·(pkll(x +y)) + xlL.p + ylL.p +pix+ pjy) =
k=l

m
= ~ ds(ak)·dn(pkll(x +y)) + ds(xlL.p) + dn(ylL.p) + dn(plx) + ds(pjy) =

k=l

(case distinction and induction)
m

= ~ dn@d·dnVJkll(x +y)) + ds(xll_j) + ds(yll.P) + dn<Jilx) + dn<JilY) =
k=l

= · · · = ds(/ill(x +y))

This finishes the proof of lemma 6.17. Now we are able to prove theorem 6.16:

PROOF: Because p is specified by a guarded specification without T1> and q = f or specifiable by a
guarded specification without T1> as(pllq) is also specifiable by a guarded specification without T1.

Hence, according to the Approximation Induction Principle (section 1.8), it is enough to prove (with
'11'n(f)=f for n ;;i. I)

'Vn ;;;;i.1 '11'n°dn(pllq) = '11'n°ds(/illq)

As shown by v AN GLABBEEK [9], this is equivalent to

'Vn ;;;;i.1 '11n°ds('11'n(p)11'11'n(q)) = '11'n°ds('11'n(/i)11'11'n(q).

Choose an arbitrary n.

CLAIM. ·1;:n can be obtained from En by removing summands which are redundant in context
ds('ll'n(p)11'11'n(q)).

56

E omit redundancies E

in context oH(plJq)

l
omit redundancies -n En
in context 0H('1Tn(p)J1'1Tn(q))

E

Fig. 23

PROOF: From the construction of En and En it is clear that En can be obtained from En by removing
summands. Furthermore, these summands correspond to summands in E which are redundant in con
text oH(pllq). So we have to prove that if a summand of E is redundant in context oH(pllq), the
corresponding summands of En are redundant in context oH('1Tn(p)l1'1Tn(q)).
Let a·~ be a summand of term T; of E, which is redundant in context oH(pllq). So

{olX. ~> X}*a' n vq,H = 0 Jo I p

But for all m <n :

a a
{ ol~0,o ~> X;,m} k { ol~. ~> X;}

Furthermore it is not very difficult to show that

P'IT.(q),H Cvq,H
'IT.(p) - p

Hence for all m <n :

{olX. ~> X }*a' n v'IT•(q),H = 0
] 0,0 1,m 'IT.(p)

This finishes the proof of the claim.

Jn is not necessarily finite, but U Er l3o: Xj
0
,o ~> ~}=Jn is finite, and it is obvious that, without

loss of generality, we can restrict En to the equations Ej for which j EJn.

Because E is guarded, we can impose a partial order > E" on the (new) index set Jin of En such that
(j0,0) is minimal, and 'Vi,jEJln :X;E~~i>E· j.

Because q = E, or q is specifiable by a guarded specification without T1> '1Tn(q) is finite or E.

These facts, together with the claim, allow us to apply lemma 6.17, which gives us

OH('1Tn(p)11'1Tn(q)) = OH('ITnVJ)IJ'ITn(q))

Hence

"

57

'1Tn°aH('1Tn(p)l1'1Tn(q)) = '1Tn°0H('1Tn(jj)11'1Tn(q))

Because n was chosen arbitrarily this finishes the proof of theorem 6.16.

6.18 Note. We have defined the notion of redundancy only for strictly linear specifications. The
definition of redundancy can however in an obvious way be extended to linear specifications.

A recursive specification is linear iff all terms are linear. If { }{_; :} eJ} is a set of variables then
linear terms are inductively defined as follows
1. For aeA.,.,8 , a is a linear term, and for jeJ, }{_;is a linear term,
2. If T1 and T 2 are linear terms, and aeA.,., then so are T1 + T 2 and a ·T1•

Each linear specification corresponds in a natural way to a strictly linear specification. We give an
example

X=abY

Y=c

X=aX' X'=bY

If in the strictly linear specification, which corresponds to a given linear specification, certain sum
mands can be omitted in a certain context, we can translate this back in a straightforward way to the
linear specification.

6.19 Redundancy in a context is undecidable
We show that it is undecidable (in general) whether or not a specification is redundant in a given
context. We do this by showing that if it were decidable, we would have an algorithm for Post's
Correspondence Problem (PCP). And such an algorithm can't be found because PCP itself is unde
cidable.

6.20 DEFINITION: An instance of PCP consist of two lists A = x 1, ..• , xk and B = y 1, .•• ,yk of
words over some alphabet l:. This instance of PCP has a solution if there is any sequence of integers
i., ... , im, with m;;;:. I, such that x;, *x;, * ... *x; .. = J;, *Yi,* ... *Yi.,· The sequence i., ... , im is a solution
to this instance of PCP.

A proof that PCP is undecidable is presented in HoPCROFT & ULLMAN [10]. The following example
can also be found in [10].

6.21 EXAMPLE: Let l: = {O, 1 }. Let A and B be lists of three words each, as defined in Fig. 24. In this
case PCP has a solution. Let m = 4, i 1 = 2, i2 = 1, i3 =land i4 = 3. Then x2x1x1x3 = YV'1Y1Y3 =
101111110.

List A List B
1 Xi Yi
1 1 111
2 10111 10
3 10 0

Fig. 24

6.22 THEOREM. Redundancy in a context in undecidable.

PROOF: Let A = x., ... , xk and B = y 1, ••. ,yk> with xi and Yi words over some alphabet l:, be an
instance of Post's Correspondence Problem. Consider the following network:

58

Fig. 25

The idea is the following: process A generates a sequence i 1, ••• , im (which is possibly a solution to
the given instance of PCP). This sequence is sent into channel I, a FIFO queue with unbounded capa
city. Each time an index i is sent into channel I, the corresponding word x; is sent, character for
character, into channel X, also a FIFO queue with unbounded capacity. After i 1, ••• , im is sent into
channel I, and x;,, . .. ,x;m into channel X, a special character J_ (so J_ <l~) is sent into channel I
and into channel X.

On the other side of the channels process B checks if x;, * · · · *x;m = y;, * · · · y;m. If a deviation is
detected process B deadlocks. If process B reads a J_ at port 3 (this can only happen when an entire
number of words is read at port 4), it tries to read a J_ at port 4.

This can only happen when x;, * · · · *x;m = y;, * · · · *y;m (PCP has a solution). But that is undecid
able. This means that it is undecidable whether the action r4(J_) (reading a J_-symbol at port 4) in
the specification of process B is redundant in context oH(B ll(A llillX)).
We give recursive specifications of process A, B, I and X. Let xj = xj, · · · xjm, and yj = yj, · · · Yj"'
for l~j~k and let D = {l, ... ,k}U~LJ{J_}. Then

k
A = ~ s l(i)-Sj

j=I

T =A + s l(J_)-s2(J_)

k
B = ~ r3(j) ·Uj

j=I

V = B + r3(J_)-r4(J_)

59

I= I,= ~rl(d)·Id
deD

la*d =s3(d)·I0 + ~rl(e)·Ie*o*d deD, oeD*
eeD

X = X, = ~r2(d)·Xd
deD

Xa*d=s4(d)·X0 + ~r2(e)·Xe*o*d deD,oeD*
· eeD

Define communication by

st(d)lrt(d) = ct(d) for tE{l,2,3,4}, deD

and let

H = {st(d),rt(d)lte{l,2,3,4}, deD}

6.23 Proving redundancies
The proofs of the theorems presented on the previous pages were long and rather technical. However,

in their application, the theorems provide us with a simple and powerful tool, which allows us to

prove statements about the trace set of a concurrent system, and to detect and remove redundancies.

The basic situation we want to analyze is a system which consists of the encapsulated merge of a

number of components:

p = on(P1 II ... llPn)

A reasonable assumption is that each component is observable in context with the others. As

definition 6.14 shows, it is necessary, in order to prove redundancies, to have information about

tr(P)

However, if the number of components of P is large calculating tr(P) becomes a tremendous job,

which is even beyond the reach of a supercomputer. It is far more easier to calculate the trace sets of

a component (use theorem 6.9):

tr(P1)

Theorem 6.6 now gives us some information about tr(P):

v(P2ll ... llP.),H Ctr(P)
P, - I

since v~211 • • · llP.),H is obtained from tr(P) by means of renamings. If, for example, in every element of

tr(P 1) every bis always preceded by an a, theorem 6.6 yields that in tr(P) the renamed version of bis

always precede by the renamed version of a. We use this type of reasoning in the proof of the follow

ing lemma. (see sections 5.9 - 5.16 for the specifications of the various components)

6.24 LEMMA. Let Obsw be specified as follows:

Obsw = on4(/MPAllTAllK1llRBllIMPBllTBllL1llRA)

60

(So OBSW = T12(0bsw)). Then

'ffdED'tlpEB: c2(d,p,p)ff.tr(Obsw)

PROOF: Suppose

3aEA * 3dED 3p EB: a*c2(d,p,p)Etr(Obsw)

Without loss of generality we may assume 'tie ED VqEB: c2(e,q,q)f/.a.
If we look at the specification of IMPA and apply theorem 6.6 this gives us

3ai.a'1 EA* 3d1ED3p1 EB: a= a1 *c IO(di. l -pi.pi)*a'1

Now look at the specification of RA and apply again theorem 6.6

302,<1'2 EA*: a1 = a2*c3(d1>l-pi,p1)*a'2

We iterate this procedure a number of times; look at the specification of L 1:

3a3,a' 3 EA* : <J2 = <13*c6(di,1-p 1>P 1)*a'3

We walk backward through IMPB:

3a4, a'4 EA• 3d2 ED 3p2 EB : <13 = <14*c12(d2,P2,p2)*a'4

from port 12 backward to port 7 through RB,

3a5,a'5 EA*: <14 = a5*c?(d2,p2,p2)*a'5

and from ?Ort 7 via channel K 1 to port 2, the starting point of our excursion:

3a6,a'6 EA•: a5 = a6*c2(d2,p2,p2)*a'6

And since a5 is a prefix of a this gives the desired contradiction.

6.25 It will be clear that we can generalize the result of lemma 6.24: if a frame is communicated at
port 2, 7 or 12 it is of the form (d, 1-p,p), and if it is communicated at ports 6, 3 or 10 it is of the
form (d,p,p). In other words: the first control bit determines the second one. This means that there are
a number of redundancies in the specifications of the components. If we apply theorem 6.16 to
remove these redundancies, and omit the second control bit out of the communication actions (an
abbreviation) this gives us the following theorem:

6.26 'THEOREM. The following specification of OBSW is equivalent to the old one (deD; p eB):

IMP A = T • I r l(d)-S£1°
deD

sP1j = s2(d,p)-WS'i.'

WS'!f = (r9(to) + r9(ce)) ·SP1J + r9(fa)-GP1j

GP1j = I r IO(e, 1 -p)-SP1j +
eeD

+ I r 10(e,p)-s4(e)- Iriif)-SF~<1 -p>
eeD feD

IMP8 = T" Ir5(d)-W.Pi0

deD

wri0 =rl1(ce)-W.Pi0 +r1 l(fa)- Ir 12(e0)-s8(e)"S.Pi0

eeD

SPf = s6(d,p)-WS'ff

WS'ff = (r ll(to) + r ll(ce)) ·SPf + r ll(fa)"GPf

GPf = I r 12(e,p) ·SPf +
eeD

+ Ir 12(e, 1-p)"s8(e)-Ir5(f)"SFfP-p>
eeD feD

T8 = s 12(to) ·T8

61

62

RA= ~ r3(f)-s9(fa)·slO(f)·RA +r3(ce)-s9(ce)·RA
feDn

Rn = ~ r7(/) ·s 11(/a) ·s 12(/) ·Rn + r7(ce) ·s ll(ce) ·Rn
feDn

K1 = ~ = ~ r2(/)·K{ fEDB;aE(DB)*
feDn

Kff=(s7(f)+s7(ce)+T)·K'{ + ~ r2(g)·K¥*a*J
geDn

Li = L' = ~ r6(f)-L{ fEDB;aE(DB)*
feDn

Lff = (s3(f) + s3(ce) + T)·L1 + ~ r6(g)·Lf0 *J
geDn

H = {st(f),rt(f)itE{2,3,6,7,9, 10, 11, 12},/EDB U {ce,to,fa}}

I= {ct(f)ltE{2,3,6,7, 10, 11, 12},/EDB U {ce,to,fa}}

OBSW=T1°aa(RAllIMPAllTAllK1llRnllIMPnllTnllL1)

6.27 REMARK. The redundancy in the specification of the OBSW-protocol can be retraced to a redun
dancy in the computer progam which is presented in TANENBAUM [12]. The presence of this redun
dancy can be explained as follows: In his book Tanenbaum presents the One Bit Sliding Window pro
tocol as an introduction to the general sliding window protocols (in which the window size is larger
than 1). If the window size is larger than 1, the redundancy does not occur (the value of the field
s.seq does not determine the value of the field s.ack).

This means that the One Bit Sliding Window Protocol has a behaviour which is essentially
different from the behaviour of Sliding Window protocols with a larger window size.

§7 VERIFICATION OF THE OBSW-PROTOCOL
63

7.1 Local Replacement. For the verification of the OBSW-protocol we will make extensive use of a

technique which we shall call 'local replacement'. In fact we used the technique already in some of

the preliminary calculations for the OBSW-protocol (notably lemma 5.15 and theorem 6.26). In this

section however we will make it explicit.
The basic situation we have to deal with is the abstracted and encapsulated merge of a number of

components:

T1°<lH(Xill · · · llXn)

In general the complexity of this system is immense. It is difficult to verify statements about the sys

tem. Now the basic idea behind the local replacement is that one proves that one can replace certain

components by new components, without changing the properties of the system as a whole. A replace

ment makes sense if the complexity of the resulting system is less than the complexity of the original

system. After the first replacement, for example of X 1 and X 2 by X'1 and X'2 , we can perform a

second one, for example the replacement of X'2 and X 3 by X"2 (the number of components can

change). Thus we use local replacement to reduce stepwise the complexity of the system as a whole.

Of course the succes of the local replacement technique depends on the ability to fin<;l succesful

replacements. By now two mechanisms are available. ·

7.1.1 Redundancy. In section 6 we saw how the trace sets of the components give us information

about the trace set of the system

<lH(Xdl · · · llXn)

Further we saw how this information can be used to prove redundancies. And since redundancies

can be removed (theorem 6.16), this gives us a mechanism to accomplish replacements:

T1°0H(Xill(X2ll • · · llXn))-H1°0H(X'1 ll(X2ll · · · llXn))

7.1.2 Conditional Axioms. The conditional axioms (in particular CAI and CA2) allow us to 'pull Tr

and <lwoperators through a merge'. This can be used to accomplish replacements in the following

way:
(step 1)

T1°oH(X1 II · · · llX5) =(conditional axioms)

= T1°0H(T1• 0 ow(X1 llX2)llX3llX4llXs)

0 0
0 0°

Fig. 26

0 0
O[ill

64

(step 2)

(step 3)

Fig. 27

'1"[0 oy(T1•0 on·(X'il1X'2)llX3 llX4 11X5) =(conditional axioms)

0 0
o~

= T1°0H(X'1 llX'2llX3llX4i1Xs)

Fig. 28

0 0
0 •®

So we will show by means of the local replacement technique that the OBSW-protocol is a valid com
munication protocol. The first thing we do (lemma 7.2) is that we give the receiver a 'memory' to
distinguish a frame that it is seeing for the first time from a retransmission. Further we make the
observation that it does not matter if the receiver loses a frame now and then, since the communica
tion channel can lose frames too.

7.2 LEMMA. Let RA 1 be the specified as follows (p eB):

R~1 = ~r3(d,p)·s9(fa)·sIO(d,p)·R~!P +
deD

+ ~r3(d, l-p)·s9(fa)·sIO(d, l-p)·R~ 1 +
deD

+ ~r3(d, l-p)·R~1 +
deD

+ r3(ce)·s9(ce)·~ 1 + r3(ce)·R~ 1

Let H 1 and I 1 be the following sets:

then

HI= {r3(f),s3(f)lfeDBU{ce}}

II = { c 3(f)lfeDB U { ce}}

T11°au1(L1 llRA) = T11°au1(L1llRA1)

PROOF: Straightforward.

7.3 COROLLARY

OBSW = T1°au(RA 1 llIMPA llTA llK1 llRBllIMPBllTBllL1)

PRooF: Local replacement.

The basic idea behind the following lemma is that :

65

(1) If RA 1 sends a checksum error message or an old frame to IMPA, the only result of this is that

IMPA sends a copy of the last sent frame to IMPB.
(2) A timeout-action causes IMP A to do the same.
(3) If RA 1 reads a checksum error or an old frame at port 3, this does not necessarily mean that

thereafter this information is passed to IMPA.
(4) If IMPA sends a copy of the last sent frame to IMPB it is (after appropriate abstraction) unclear

if this was caused by a timeout or by the arrival at RA 1 of a checksum error message or of an old
frame.

(5) It is allowed to change RA 1 in such a way that it does not send checksum error messages or old

frames to IMPA.

66

7.4 LEMMA. Let RA 2 be specified as follows (p EB):

~2 = ~r3(d,p)·s9(fa)·sIO(d,p)·R~1.P +
deD

+ ~r3(d, l-p)·R~ 2 + r3(ce)·R~ 2
deD

Let H2 and I 2 be the following sets

then

H2 = {st(f),rt(f)lte{9, 10};/eDB U { ce,to,fa}}

12 = {ct(f)ltE{9,10};/eDB U {ce,to,fa}}

PROOF: Straightforward (in essence, an application of axiom T3).

Since RA 2 never sends an old frame or a checksum error message to IMPA, a number of summands
in the specification of IMPA are redundant. Application of theorem 6.16, together with the rather
trivial elimination of the timer, gives us the following lemma:

7.5 LEMMA. Let IMPA 1 be given by the following equations (dED,pEB):

IMPA1 =T·~rl(d)·Sfj~
deD

SF'!l1 = s 2(d,p). WST1

wst. = T·SFf1 + r9(fa)·GP1J1

GP1J1 = ~r 10(e,p)·s4(e)· ~rl(f)·SF~q-p>
eeD feD

then

PROOF:-

7.6 COROLLARY.

OBSW = T1°aH(RA2llIMPA 1 llK1 llRallIMPallTallL1)

PR.ooF: Local replacement.

The sending behaviour of IMPA 1 is, to a large extent, independent of the incoming messages at port
3. This allows us to split IMP A 1 up in two parts: a sender-component and an IMP-component. To
this purpose we add to the parameters of atomic actions the parameter ss (= start sending), and

extend the communication function by

st(ss)lrt(ss) = ct(ss) tE{l,2, ... , 12}

Now we can easily prove the following lemma:

7.7 LEMMA. Let IMPA 2 and SA be given by the following equations (pEB,dED):

IMPA 2 =s9(ss)· ~ rlO(d,p)·s4(d)·IMPA2
deD,peB

"sender"

~ = r9(ss)·SRJA

SRJA = ~ rl(d) ·SST "sender reads"
deD

SST= s2(d,p)·Swf "sender sends"

swt = -r·SST + r9(fa)·s1-p "sender waits"

Let H 3 and I 3 be the following sets

H3={st(f),rtif)ltE{9,10};/EDB U {ce,fa,ss}}

13 = {ct(f)ltE{9,10};/EDB U {ce,fa,ss}}

then

PROOF:-

67

The receiver RA 2 throws away all the old and damaged frames. The following lemma states that this
job can be performed also by channel L 1•

68

7.8 LEMMA. Let L2 and RA3 be specified as follows (oE(DB)*,pEB,dED):

!JJ.P = ~ r6(j)·ll;.•P
feDB

Lfld,p1p = s3(d,p)·Li· 1-p + T·Li•P + ~ r6(g) ·Lfa*[d,p],p
geBD

Lfld, l-p],p = T·Li•P + ~ r6(g)·Lfa*(d, l-p1p
geBD

RA 3 = ~ r 3(/) ·s 9(/a) ·s lO(j) ·RA 3

feDB

Let H 4 and I 4 be the following sets

then

H4 = {r3(/),s3(/)lfEDBU{ce}}

14 = {c3(/)lfEDBU {ce}}

PROOF: Straightforward.

It will be clear that we can derive analogous versions of lemmas 7.2 - 7.8 for channel K 1 and the

components of system B. The only real difference is caused by the initialization phase of IMP8 • We

summarize all results in one lemma:

7.9 LEMMA. Let K2, IMP82 , S8 and R83 be given by the following equations (pEB,dED):

K.'j_P = ~ r2(/) ·K{·P
feDB

Kfld,p],p = s1(d,p) ·Ki•P + T·Ki· 1-p + ~ r2(g) ·Kfa*[d,p],p
geBD

Ki*[d, 1-p],p = T·Ki•P + ~ r2(g) ·Kfa*(d, 1-p),p
geBD

IMPB 2 = s ll(ss) · ~ rl2(d,p) ·s 8(d) ·IMPB2
deD,peB

SB = rll(ss)· ~r5(d)·rll(fa)·rll(ss)·SS~0
deD

SIB = r 1 l(ss) ·SR!JJ

SRIJJ = ~ r S(d) ·SSf
deD

SSf = s 6(d,p) ·Swf

Swf =T·SS'i +rll(fa)·s1-p

RB3 = ~ r1(f)·s ll(fa)·s 12(f)·RB3
feBD

Let H 5 and I 5 be the following sets

then

HS = {st(f),rt(f)jte{2,3,6, 7,9, 10, 11, 12},feDB U {ce,fa,ss}}

15={ct(f)jte{2,3,6,7,9,10, 11, 12},feDB U {ce,fa,ss}}

PROOF: Straightforward.

69

This lemma alters the overall picture of our system drastically. The protocol we are considering now
is completely different form the original one. Only after abstraction they are the same. Fig. 29 depicts
the new version of Fig. 20.

70

A B

8

IMP,i.2
4

5

Fig. 29

At first sight we have not made any progress at all, since the beginning of this section. The
specification of the OBSW-protocol we have now is longer than the one in theorem 6.26. However,
we have been able to separate the sending and the receiving behaviour of systems A and B, and this
makes it possible to replace SA and K2 on the one hand, and SB and L 2 on the other, by very sim
ple specifications. But before we can do this, still some work has to be done.

The specification of channel K2 looks complicated, but has some nice properties. In lemma 7.12 we
will prove that for d eD and p eB:

~· l-p],p = T·K.'1.P

Before we do this, we first give two auxiliary lemmas.
The first lemma says that channel K2 , in state p and with content o (Ki•P), can be thought of as

the merge of two processes: a read-process ~. and a send-process K_'J·P. The read-process reads new
data at port 2, the send-process sends the data of oat port 7. When the send-process is finished, and
is in state K!s·q, it gives a signals l3(q) to the read-process. After this signal is received by the read
process (which is in state K'{), the read-process becomes a normal channel again (.Ki'·q).
We add to the alphabet of atomic actions:

r l3(p),s 13(p) and cl3(p) (p eB)

and extend the communication function by

r13(p)ls 13(p) = cl3(p) (peB)

7.10 LEMMA. Let, for oe(BD}*,deD,peB:

~ = ~ r2(g) ·Iq.
geBD

JC:*! = ~ r2(g) ·Iq."11*! + ~ r 13(q) ·Krf,p
geBD qeB

JG•P = s 13(p)

K'J*[d,p],p = s1(d,p)·K'J·l-p + -r·K'J•P

let H 6 and I 6 be the following sets

H6={r13(p),s 13(p)IP eB}

16={c13(p)IPeB}

then for oe(BD)* and p eB

~·P = 'TJ6°0H6(~11.K'J•P)

PROOF: Straightforward.

7.11 LEMMA. If x,yeP are specifiable by a guarded specification without -r1 operator, then

xll'I)' = -r·(xl[y)

71

PRooF: Use simultaneous induction on the structure of the basic terms representing x and y to prove

the finite case. The infinite case can be dealt with by application of AIP, and by the use of the iden

tity

'll'n(Xll'I)') = '11'n('11'n(x)11'11'n('IJ')) (n;;a.I)

(VAN GLABBEEK [9]).

7.12 LEMMA. For d,e eD and p eB we have the following identities

(i)

(ii)

~.p]*[d,p],p = -r·~·p],p

PROOF: The following identities hold for the send-process:

(1)

Jdd, 1-p],p = -r·VE.f'
s .l.\.j

(2)

~d,p]*[d,p],p = s1(d,p)·[(lj•P],l-p + -r·~d,p),p =
= s1(d,p)·Kj1-P + -r·(s1(d,p)·JG·1-P + -r·JG•P) =

72

= T·(s1(d,p)-~·l-p + T"~'p) =
= ,, . .fdd,p],p

s

The identities (i) and (ii) follow directly from identities (1) and (2) by application of lemmas 7.10 and
7.11.

Define obsw as follows:

obsw = aHs(IMPA2llRA3llSA llK2llIMPB2llRB3llSBllL2)

(so we have "Hs(obsw) = OBSW).
The following lemma gives a property of tr(obsw) which will be used to prove a redundancy. The
lemma states that a frame-arrival message is not passed to the sender before the frame actually has
arrived.

7.13 Note. We use laEal as a notation for IA.A-{a}(a)I.

7.14 LEMMA. Vaetr(obsw)

je9(fa)Eal o;;;; ~ le7(f)Eal o;;;; le9(fa)Eal + 1
feDB

PROOF: (sketch) Each of the components of obsw is observable in context with the others. This means
we can apply theorem 6.6 for each of the components.
1.

2.

3.

4.

le9(fa)eal o;;;; ~ le3(f)eal
feBD

(look at specification of component RA 3)

~ le3(f)Eal o;;;; le ll(fa)Eal
feDB

(look at specification of components L 2 and SB. The sequence number of successive frames sent
by channel L 2 at port 3 are different. This means that the number of frames sent at port 3 is less
than the number of times the sequence number of the frames read at port 6 changed. But if we
look at the specification of SB, we see that this last number is less than the number of frame
arrival messages at port 11)

le ll(fa)eaj o;;;; ~ le7(f)eal
feDB

(look at specification of component RB 3)

~ ls7(f)Eal o;;;; le9(fa)Eal + l
feDB

(look at specification of components K 2 and SA 3; same argument as in 2)
The lemma follows from the combination of 1, 2, 3 and 4.

In the proof of the following lemma we use lemmas 7.11, 7.12 and 7.14.

73

7.15 LEMMA. Let Xbe specified as follows (dED,pEB):

x =x<l

Xl{ = r9(ss)·~

~ = ~ r l(d) ·xf
deD

x4f = c2(d,p)·xf

xt =,,.)ff + s1(d,p)·xf + ,,.x9f

X'f = c2(d,p)·xf + s1(d,p)·xt' + T·xf

xt' =T·xt' +r9(fa)·Xl-p

x9f = 7·xf

xt = c2(d,p)·xf

then

PROOF: Let H7 = {r2(/),s2(/)lfEDB} then

obsw = ans(/MPA2llRA3ll()H7(SAllK2)llIMPB2llRB3llSBllL2)

Now look at the equations below (the numbers of the equations correspond to the subscripts of vari

ables in the specification of X). Observe that if we omit the summands in blocks, we have

X = an1(SA llK2)

by application of RSP. See Fig. 30 for the state-transition diagram of X.

an1(SA llK2) = ()H7(S~ 11~0)

an1(~ ll~P) = r9(ss) ·()H7(SR~ ll~P)

aH1(SR~ ll~P) = ~ r l(d) ·()H1(SSf ll~P)
deD

aH1(SSfll~P) = c2(d,p)·()H7(Swf11Klf·Pl,p)

aH1(Swfll~d,p],p = ,,.aH1(SSfllKlf·P1·P +

+ s1(d,p)·()H1(Swfll~ 1 -P) +
+ 7·()H1(Swfll~P)

()H7(SSfllKlf·P1·P) = c2(d,p)-an1(SwfllKlf·Pl*[d,pJ,p) +

(-)

(1)

(2)

(3)

(4)

(5)

74

+ s1(d,p)-as1(SSA 11~ 1 -P) +
+ T·aH7(SSfll~P) =

(lemmas 7.12 (ii) and 7.1!)

= c2(d,p)-an1(Swfll~·P1·P) +
+ s1(d,p)-aH1(SSA 11~ 1 -P) +
+ T"On1(SSfll~P)

on1(Swfll~ 1 -P) = T"On1(SSfll~ 1 -P) +
+ r9(fa)-an1(S~-pll~ 1 -P)

an1(Swfll~P) = T·aH7(SSfll~P) +

an1(SSA 11~ 1 -P) = c2(d,p)-aH1(Swfll~·Pl,l-p) =

(lemmas 7.12(i) and 7.11)

r9(ss) rl(d)
2

r9(fe) t/
c2(dl) /

.'t! t

.......
s7(dl) ·., s7(d1) ',

c2(d0) r9(fe) "·., .. ', c2(dl) . ,
'·

··.\

·,, s7(d0)

t .. , t
4

c2(d0)

r9(fe) t
t

• rl(d)
2

r9(ss)

Fig. 30

• +
'""- r9(fe)i

" I
c2(d0)'

1

t

·~~. ·,. ...
·,-r9(fe) ..

··~-~
s7(d0) ..

·· ..
·~ •

r9(fe)

We claim that the summands in blocks in fact can be deleted. This is because

"

(6)

(7)

(8)

75

(i) There exist strictly linear specifications for ()H7(S~-pll~·Pl•P) and ()H7(S~-pll~P), and therefore
also for ClH1(SA llK2) (theorem 1.5.6).

(ii) In the strictly linear specification for ClH7(SA llK2), the summands which correspond to the sum
mands in blocks are redundant in context obsw by application of lemma 7 .14.

(iii) According to theorem 6.16 we can omit the redundant summands in the strictly linear
specification of ClH1(SA llK2).

(iv) By RSP, the solution of the resulting specification is the same as the solution of X.
This finishes the proof of lemma 7.15.

7.16 LEMMA. Let Xabs be specified as follows (p EB):

Xl'abs = r9(ss) · ~ r l(d) ·s1(d,p) ·r9ifa) ·X}il
deD

then

PROOF: Leth= {c2(/)lfEDB}. Then

OBSW = T15(obsw) =

= T15°ClHS(lMPA2llRA3llXlllMPB2llRB3llSBllL2) =
= T15°ClHS(lMPA2llRA3llT17(X)lllMPB2llRB3llSBllL2)

It is enough to prove

Xabs = T17(X)

Observe that ford and p fixed, Xf and xf form a conservative cluster from 17. CFAR gives:

T17(Xf) = T17(xf) = T·r9ifa) ·T17(X}-P)

Ford anp fixed, X'!f, x'J', xf and xf also form a conservative cluster from 17. CFAR gives:

T17(xf) = T·(s1(d,p)·T17(Xf) + s1(d,p)·Tn(xf)) =

= T·s1(d,p)·r9(ja)·T17(X}-P)

The rest of the proof is straightforward:

T17(X) = T17(_xll)

T17(Xlf.) = r9(ss)· ~rl(d)·s1(d,p)·r9ifa)·Tn(Xl-P)
deD

Now apply RSP.

Analogously we can prove the following lemma:

76

7.17 LEMMA. Let Y abs be specified as follows (p EB):

Y abs = r l l(ss) · ~ r5(d) ·r l l(fa) ·r l l(ss) ·s 3(d, 0) ·r l l(fa) · Y!bs
deD

Yl'abs = r l l(ss)· ~ r5(d)·s3(d,p)·r l l(fa)· Y!;;?
deD

then

PROOF:-

Lemma 5.15 up to and including lemma 7.17 were preparations for the following theorem, which
shows that the OBSW-protocol is a valid communication protocol (although not very efficient).

7 .18 THEOREM.

OBSW = , .. (~rl(d)· ~r5(e) + ~r5(e)· ~rl(d))-s8(d)·s4(e)·OBSW'
deD eeD eeD deD

OBSW' = ~rl(d)·s8(d)· ~r5(e)·s4(e)·OBSW'
deD eeD

PROOF: Straightforward. To handle the nondeterminism at the beginning, use axioms Tl and T2.

REFERENCES
[l] BAETEN, J.C.M. & J.A. BERGSTRA, Global renaming operators in concrete process algebra, CWI

Report CS-R8521, Amsterdam 1985.
[2] BAETEN, J.C.M. , J.A. BERGSTRA & J.W. KLoP, Conditional axioms and a/ f3 calculus in process

algebra, CWI Report CS-R 8502, Amsterdam 1985.
[3] BAETEN, J.C.M., J.A. BERGSTRA & J.W. KLoP, Syntax and defining equations for an interrupt

mechanism in process algebra, CWI Report CS-8503, Amsterdam 1985.
[4] BAETEN, J.C.M., J.A. BERGSTRA & KLoP, On the consistency of Koomen's fair abstraction rule,

CWI Report CS-8511, Amsterdam 1985.
[5] BAKKER, J.W. DE, Mathematical Theory of Program Correctness, Prentice-Hall International series

in computer science, London, 1980.
[6a] BERGSTRA, J.A., Put and Get, primitives for synchronous unreliable message passing, LGPS No. 3,

Department of Philosophy, University of Utrecht, 1985.
[6] BERGSTRA, J.A., & J.W. KLOP, Algebra of communicating processes with abstraction, Theor. Comp.

Sci. 37(1), pp. 77-121, 1985.
[7] BERGSTRA, J.A., & J.W. KLoP, Verification of an alternating bit protocol by means of process alge

bra, report CS-R8404, Amsterdam 1984.
[8] BERGSTRA, J.A. & J.W. KLoP, Algebra of Communicating Processes, CWI Report CS-R8421, to be

published in: Proceedings of the CWI Symposium Mathematics and Computer Science (eds. J.W.
de Bakker, M. Hazewinkel and J.K Lenstra), North-Holland, Amsterdam 1986.

[9] GLABBEEK, R.J. VAN, personal communication.
[10] HOPCROFT, J.E. & J.D. ULLMAN, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, 1979.
[11] REM, M., Partially ordered computations, with applications to VLSI design, in: Proc. 4th Advanced

Course on Found. of Comp. Sci. part 2, eds. J.W. de Bakker & J. van Leeuwen, MC Tract 159,
Mathematical centre, pp. 1-44, Amsterdam 1983.

[12] TA?jENBAUM, A.S., Computer Networks, Prentice Hall, 1981.

