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Consider a Hamiltonian system (H,R2",w). Let M be a symplectic submanifold of (R?",«). The system
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1. INTRODUCTION

In this paper we develop a theory for normalizing constrained Hamiltonian systems. We make use of
some ideas of Moser [6] concerning constrained Hamiltonian systems (see also [2]). The idea of con-
strained normalization is the following. Consider a Hamiltonian system with Hamiltonian function H
on (R?,w), where w is the standard symplectic form. Denote such a system by (H,R*,w). For a
symplectic submanifold M CR% define the constrained system corresponding to (H, R>,w) by
(H|M,M,w|M). Here |M means restriction to M. We give a normalization algorithm for the system
(H,R?*",w) which on M restricts to a normalization of the constrained system. The advantage is that
the necessary computations are performed in the ambient space R?", where they are easier to do.

The paper is organized as follows. In the second section we give the facts about constrained Hamil-
tonian systems needed for the development of the constrained normalization algorithm in section
three. In the fourth section we introduce the Kepler system on R?. As is well known (see [5]) the
Kepler system, after regularization , can be considered as a system on R***2 constrained to T*S",
the cotangent bundle to the n-sphere minus its zero section. The same techniques enable us to con-
sider perturbed Kepler systems as constrained systems, as is shown in section five. The facts proved in
section four show that we may apply the constrained normalization algorithm to perturbed Keplerian
systems. We illustrate this with two examples: (i) the lunar problem (section six), and (i) the main
problem of artificial satellite theory (section seven). The treatment of the main problem takes as its
starting point the results of Deprit [3] concerning the elimination of the parallax. The normalization
up to second order of the lunar problem provides a straightforward alternative for the quite different
approach of Kummer [4].
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2. CONSTRAINED HAMILTONIAN SYSTEMS

n
Consider R*" with coordinates (x1,...,X,) 15--,¥,) and standard symplectic form w(x,p)= > dx; Ady;.
i=1

For m<n let Fy,.. ,Fy,cC®@®R?*) be such that dF,,..dF,, are independent on
M={(x,y)eR2" | Fi(x,p)=Fa(x,y)= -+ + =Fp,(x,y)=0}, that is, M is a smoothly -embedded sub-
manifold of R?". Furthermore suppose that the matrix C=(c;)=({F;,F;}) is nonsingular at every
point of M. Then M is a symplectic manifold with symplectic form w|M, the restriction of the sym-
plectic form w to M.

For HeC®(R*") the restriction of the Hamiltonian vector field Xy to M need not be tangential to
M. However we can construct a vector field tangential to M by considering Xy |y on (M,w|M),
where H |M is the restriction of H to M. We call Xy |y the constrained Hamiltonian vector field
corresponding to H. Another way to describe the constrained vector field is that Xj |y is the image of
the projection of Xy on TM with respect to the splitting of TR*" into TM and its w-orthogonal com-
plement. -

Let ¢ be the ideal of C*(R?") generated by F,...,Fs,, that is, ¢ is the ideal of functions vanishing
on M. Furthermore let Ly denote the derivative defined by Ly ={.,H}, where {.,.} is the Poisson
bracket on R?" with respect to the symplectic form w.

LeMMA 1. The following statements are equivalent:
(l) XH}M:XH on M.

(ii) {H,F;}€S, forj=1,...,2m.

(iii) (expLyX$ T4

(iv) M is an invariant manifold of Xy.

(v) Xy is tangent to M at each point of M.

ProOOF . The proof is easy and left to the reader. [l

Let HeC*®(R*). When Xy is not tangent to M we can construct a function H such that
H|M =H |M, Xy is tangent to M, and Xy | M = Xp|p. The construction of H is given in LEMMA 2.
Note that H need not be a smooth function on all of R*". In fact H is first constructed on M and
then extended to some open neighborhood of M in R?". Let C~!=(c¥) be the inverse of the matrix
C.

2m 2m
LemMa 2. If H=H+ 3 o F;, with ;= 3, ¢/ {H,F;}, then Xy |y =Xy on M.
i=1 j=1 :

2m
PROOF . In order for Xy to be tangential to M we must have 0={H,F;}={H,F;} — > &a;{F;,F;}

on M for j=1,...,.2m. This holds for «; as given in the statement of the lemma. By LemMa 1 we have
Xy =Xy u- Because H| M =H | M we have Xy =Xy |y on M. O

The Poisson bracket {.,.} on (M,w|M) can be computed in terms of the Poisson bracket on R?"
by the following

2m .
LeMMA 3. {(H |M,G |MM={H,G}— 3 {H,F;}c”{F;,G} on M, where the right hand side is calcu-
ij=1
lated for any smooth extension of H|M and G|M to an open neighborhood of M in R*".

PROOF . (see [2]). {H | M,G | M} = (| M) Xu |, X | 1) =(w| M) Xuij . Xy )=
=w(Xy,Xc)={H,G} on M. Computing {H,G}, omitting terms in §, proves the lemma. [J




As a direct consequence of LEMMA 3 we have,

LeMMA 4. If Xy =Xy on M then {H |M,G | M} ={H,G} on M for all GeC*(R™).

PROOF . If Xy |y =Xy then {H,F;}e$ for all i=1,..,.2m. Consequently 2 {H,F;}cY{F;,G}
ij=1
vanishes on M. In other words {H |M,G |M}*={H,G}|M. O

3. CONSTRAINED NORMALIZATION
Consider a Hamiltonian system on R?" with Hamiltonian function

HE R —R;(x,p)— Ho(x,y) +eH(x,p,€)
which satisfies the following conditions:
(C1) HyeC®(R*") and X, n, has only periodic orbits.
(C2) '{‘he flow of Xy leaves invariant a symplectic manifold M CR?", where M is defined as in § 2.
(C3) H €% where F is the algebra of formal power series in € with coefficients in C*(R?").

Following Cushman [1] we can transform H* into normal form with respect to H, by invertible w-
symplectic formal power series transformations. That is, there exists a transformation of the form
expLg,R €9, such that for %‘*“H‘oexpLR we have {3(,,H,}=0 for every meN, where 3(, is the
coefficient of €” in IC. We say that IC is a normal form for H® with respect to Hy. As a consequence
of LEMMA 4 we have,

THEOREM 5. If H* is in normal form up to order k with respect to H, ,then H®|M is in normal form up
to order k with respect to Hy | M.

PrROOF . If H*=H,+eH+&H,+ -+ is in normal form up to order k then {H,H;}=0 for
0<I<k. Because H*|M=H,|M+eH|M+ --- by LemMA 4 {Hy|M,H;|M}=0 for 0<</<k on
M O

A normal form for H*® is obtained by transformations of the form expLg,R<%. In general these
transformations do not restrict to transformations of M into itself. We will show that one can modify
the transformations expLy in such a way that they restrict to transformations of M into M, and such
that the restriction of the transformed power series to M gives a normal form for H¢|M. This pro-
cedure is called constrained normalization or normalization modulo 4. Note that, because we will make
use of the construction of LEMMA 2 , the procedure of constrained normalization is performed on
some open neighborhood of M in R?".

DEFINITION 6. HcexpLg,R €Y, is in normal form up to order k with respect to Ho modulo the ideal § if
(N1) {R,F;}€S for all j=1,...,2m.
(N2) 4l terms in HéoexpLg of order < k are in (kerLy )+9.

Here M and ¢ are as defined in § 2.

We will now perform the first step in the constrained normalization of H*¢. Write
H¢=Hy+eH,+0(e). Following [1] we have

C®(R*)=kerLy, ®imLy, 6))

because H, satisfies (C1). This splitting is obtained by averaging over the flow o1 of Xp,. In more
detail, for FeC*(R*") we have F=F+(F — F), where FekerLy, is the average of F over the flow of
Xy, , that is,




= 1 (TO), H,.»
FQ)=70y k@) P @

Here T'(p) is the period of the integral curve of Xy, through p and (qbf{“)*F (p)=F (¢f1°p). Thus
H,=H,+H,, with HekerLy,, and H;=H, —H,eimLy,. Now choose R;€C®(R*) such that
Ly Ry —=H,. Then HeoexpLg, =Ho+eH ) +eH ) +eLg Ho+O0(€)=H, +¢H | +0(¢%).  Consequently
HeoexpL, is in normal form with respect to Hoto first order. The generating function R, for the
transformation expL.g, can be obtained from the following

LemMa 7. [1]. Let FEC®(R¥). If F=0, then Ly R=F is solved by

_ 1 Te) g
ROY=Fos €@ Fp) | 3

The above is the usual procedure for normalization of H¢ on R*". However, expL.s, will in gen-
eral not be a transformation leaving M invariant. Therefore we consider expLg where R, is defined
as in LEMMA 2. By LEMMA 1, expL g leaves M invariant. We have

HeoexpLg =H+eH | +eLg Ho+O(€),

2m 2m . 2m
where Ly Ho={Ho,R }+{Ho, 3 a;F;}, with &;= X ¢V {R,F;}. Write I={H,, > a;F;}. Because
i=1 j=1 i=1

2m A —_— A

> o;F;e% by LEMMA 1, I€$ too. Thus {Hy,R,}=—H,+I, I€4. Writing H\=(H,+1)+H,—1I)
i=1

we have

HeexpLg =Ho+e(H,+1)+0(),

where H | t1e(kerLy )+6. Thus HeoexpLg, is in normal form modulo 9 up to order one. By repeat-
ing the above argument we can bring H* into normal form modulo § up to arbitrary order.

THEOREM 8. Suppose H* satisfies conditions (C1), (C2), and (C3), then for each k €N,k >0, there exists
an R €% such that H®oexpLy, is in normal form with respect to Hy modulo 4.

REMARKS. Note that R is defined on some open neighborhood of M in R?". The fact that w is
chosen to be the standard symplectic form on R?" is not really necessary. In fact  can be any sym-
plectic form. The above normalization procedure still works if one takes the Poisson bracket
corresponding to the chosen symplectic form

In some cases the function /<9 in the constrained normalization construction takes a special form.
This is shown in the following theorem.

THEOREM 9. Suppose that the manifold M is defined by F\(x,y)= F, (x,y)=0. Furthermore suppose that
(H,F;Y=o;F\+B,Fy, i=12, where o; and B; are constants. Then for every GeC® (R?") we have
{H,G}=E, where E={H,G}.

ProoF . Using LEMMA 2 we have
(HF\[{F2,G) | (H,{F2,G)}F (K {FL,FajH{F2, G}

{F1.F2} {Fi.F} {(F1,F,)?
{(H,F}{F\,G}  {H{F\,G}}F, _{H {F;,F1}}{F,,G}F,

{H,G}={H,G}+

{Fy,F,} {F2,F,} (Fa,F)?




1
{Fth}

={H,G}+ |(H.F\} (F2,G)~ (HFJ(F1,G) +{{H.F2},G)Fy +

+{{G,H},F,}F,—{{H,F\},G}F,—{{GH},F|}F;— {{H,F },F, )(G—G)—

—u&xnfﬂm~64

By hypothesis we may write {H,F;}=a;,F;+p;F,, i=1,2, where a;,B; are constants. Substitution
then gives

{F,{H,G}}F, | {F\,{H,G}}F,
{F1,F2} {F2,F1}
{F2,E}F, + {Fi,E}F,
{F1,F2} {F2,F1}

{H,G} = {H,G} +

=E.O

If Hy and M satisfy the hypothesis of THEOREM 9 we may slightly adjust our normalization modulo
§ to obtain a somewhat nicer normal forn. We again will perform the normalization process up to
first order. Instead of H*=Hy+eH +O(¢) we consider Hy+eH; +O0(é?). By Lemma 1 (iii) this will
not change the restnctlon to M of the normahzed function. Now if Ly Hy= —H 1> then by THEOREM
9, Ly Hy= -—Hl Because H, = Hl +H1 the constrained normal form up to first order is
Hy+eH, +0(&). Applying the same procedure up to order k gives a normal form which can be

written as H=H+eH, +&H, +...+&¢H, + O (& "), where H,ekerLy,, 0<I<k.

4. THE KEPLER SYSTEM AS A CONSTRAINED OSCILLATOR
Consider the Kepler system (Ko, M, wy, | M), where M =(R" — {0}) XR",

m@m=%mﬁ—ﬁﬁ, @

n
and w,,= ' d§;Ad; is the standard symplectic form on R*". Here || is the norm associated to the
i=1
Euclidean inner product <.,.>.
In this section we will show how constraining the oscillator system (Hg,N,wy,4+2|N) to
(T S", 09, +2| TT S") gives the Kepler system on the punctured cotangent bundle

T*S"={(¢:p)eR***| | |*=1,<gp>=0 p70}.
of §”. Here the Hamiltonian of the oscillator is

Hogp)=(q|*|p I’ —<gp>H", ®)
and the phase space is
N=R¥*2—Cy,,, 6)

where Ca,42={(¢:,p)eR™ *?| |q|? |p |*=<qp>?} .

Converting (Ko, M, wy, | M) into (Hg,N, wy, 42| N) is based upon the regularization given in Moser
[5]. The regularization of the Kepler system consists of a pre-regularization followed by a symplectic
map. We start with the pre-regularization.

The pre-regularized Kepler Hamiltonian is given by

. 1
KOZ'I%L(KW‘/Z"ZH%:EIél(ln12+k2). )
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On the energy surface Ko—ﬂ L (which corresponds to the level set Kq = —'%k?) the Hamiltonian
vector field of the pre-regulanzed Kepler Hamiltonian KO is given by

d§ 2 d l 1 KO
—_ = =& —+ Ko+ =%

ds 817 Ko=—Yk’ { lfl ( ik ) Ko=—Y%k® l a7

d _ BKO _ BKO

ds 0 |K,=—wk’ - |£I ®
In other words on f(o =L, Xk, is just the Kepler vector field Xg,

g Ko _ .

o

dt a¢ 13’
. . . ds k
in a new time scale s given by — =———.

& Y H A
Let T* S}, ={(g,p)eT* S" | 474(0,...,0,1)}. Following Moser [5] the system (Ko, M, w,, | M) is

symplectically diffeomorphic to the system (Go, T S}, w2, 42| T S7,), where

Golgp) = Ip| > (10)
The desired diffeomorphism m:T™ S;,—M is given by

_ 1 _ kg L
§=——@Pi(1=¢n+1) T GPn+1) » =T ,i= l,...,n. (1)
k 1 dn +1

We call m Moser’s regularization map. The inverse map m ™ :M—T? Shp is given by

G== (Flnl +D7 M, g = ( > ]2 +1)” 1( In|>~1),

':—_ ( ‘ I +1)§1+ <7"£>7h apn+1 - <TI,§> ,i=1,...,n . (12)

Since G, does not depend on g it extends to a smooth function Gy on (T S",wy, +2 | T*S"), which
is the Hamiltonian for the geodesic vector field on T%*S”. Note that the set
B=T"§"— T+SZP—{(O, 20, 1,p 1, p)ERT P2 | p=(p,,. ,p,,)#O} corresponds to collisions in the
Kepler system. B is called the collision set. The system (Go,T " S", w42 | T+ S") is called the regular-
ized Kepler system. In the regularized Kepler system a collision orbit can be treated like any other
orbit.

Next we show that the system (Go, T" S",wy, +2| T+ S™) can be considered as a constrained oscilla-
tor. On the symplectic manifold (N, w;, +2 |N), where N is given by (6), consider the Hamiltonian
Hy(q,p) given by (5). Since

lg1?lp 1P —<gp>*= 3 Gp—qp) (13)
I<i<j<sn+1
H, is defined and is a smooth positive function on N. Since C,,+,NT*S"=@ , H, restricted to
T+S" is defined and Hy | T* S"=G,.

LEMMA 10. (TF S™,wy, 42| T S") is a symplectic submanifold of (N, wy, +3 | N).

ProoF . Let
Fi(gp)=1q|*—1, Falgp)=<qp>. (14)




The matrix C=({F;,F;}), i,j=1,2, is nonsingular on N because {Fy,F;}(¢,p)=2(F\(g.p)+1)=
=2|q|*>0.0

Consequently (Go,T*S",wy,+2|T*S") is the constrained system on T*S" corresponding to
(Ho,N, @y, +2 | N). —

LemMma 11. T*S" is an invariant manifold for Xy, .

PROOF . As is easily checked {Hq,F,}=0 and {H,,F,}=0, which, using LEMMA 1,
completes the proof. [

We can write down the Hamiltonian vector field on (¥, wy, +2 | N) corresponding to Ho(q,p). Expli-
citly, we have

2 —<qp>I,+1 |9+ [g] [z]
Xy (g.p)= ——ro = A(q, 15
1,(q.p) Ho@p) | —Ip 12 host  <@p>Iniy (g:p) (15)

where 1, + is the (n +1)X(n +1) identity matrix. From the proof of LEMMa 11 it follows that |gq [2
and <g,p> are integrals of Xy, . Since Hj is also an integral, |p |? is an integral of X, . Conse-
quently the matrix 4 (g,p) is constant along the orbits of Xy , that is, the flow of X is a linear flow.
For convenience let Ho(g,p)=h, |q|*=a, |p|?>=b, <q,p>=d, where h>=ab —d?>0, then the
flow qbf’“ of X, is given by the matrix

(COS20) 3 47+ (sin2¢)A4
which is equal to

(—-;-f-sin2t+0032t)1,,+1 (-i—sinZt)I,,H

b d. (16)
(— ~};-sm2t)1,, +1 (Zstt +cos2t)], 4

Consequently,
LEMMA 12. On (N, wy, 12| N) the flow of Xy, is periodic, all integral curves having period .

Recall that the vector space C®(R*'*?) of smooth functions on (R**2,w,,.,) is a Lie algebra
under Poisson bracket. A straight forward calculation shows that the smooth functions 5 |¢ 12,

é‘ |P|?, <gq,p> span a Lie subalgebra £ of (C*(R? *2),{.,.}), which is isomorphic to s/,(R). As is
easily checked, every smooth function of the quadratic polynomials

Sy=qp;—qpi , 1<i<j<n+1, an
lies in the centralizer of £ Consequently every smooth function in the quadratic polynomials Sj; com-
mutes with every smooth function on £. Thus we have proved

LemMA 13. S;;|N , 1<i<j<n +1, are integrals of Xy,.

By LEMMA 4 and LEmMMA 10 it follows that the S;;| T+ S" are integrals of Xs, on Tt S". In fact the

Si;| T* 8" are the components of an SO(n +1,R) momentum mapping arising from the linear action
of SO(n+1,R) on R"*! restricted to S” (see [1]). Using (12) a short calculation shows that

=Sy | T SMem ™' =¢m;i—&m; , 1<i<j<n, 18)

S
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correspond to the components of an SO (n,R) momentum mapping for the Kepler Hamiltonian K.
Since K| is invariant under the SO (n, R)-action, the J;; correspond to the integrals of Xk, . The func-
tions

=(S;|T*SDem™" , i=1,.,n, - (19)
on the L-level set of H correspond to the components of the Laplace vector, which are also integrals
for Xk, .

Finally we will determine the orbits of the regularized Kepler system (Go, Tt 8" @y 42| T*S™)
which correspond to collision orbits of the Kepler system (K¢, M, w,, | M). These are the orbits which
pass through the collision set B ={(0,..,0,1,p,. PO ER? 2| (p1,...p,)#0). Let §=(q1,.-.¢,) and
p=@1 ,p,,) be the n-vectors consisting of the first n components of the vectors g and p respectively.
Define G(q,p) 1712 |p |2—<q.p p>% and C,, —{(q,p)efRz" +2) G(qp) 0}. Because G(q,p)—
= 3 (@gpi—qp) , G|T*S" is an integral of Xg,. Consequently C,,NT+S" is a union of

Ii<j<n

orbits of X .
LeMMA 14. C,, NT* S" is the set of all integral curves of X, passing through B.

ProoF . We have to show that {qb, °(B),0<<t<w}=C,,NT*S". Let w denote the n-vector obtained
by takmg the first » components of weR” *+1_ Consider the point (0, 1,p,0)eB. Then ¢, “(0 1,p,0)=
. Pn

(—sm2t

13 Ip |

o (0, 1,,00eCo,NT S".

Finally we will show that each point in C5,N T*S" is the image of &1 of some point in B. Note
that G(q,p)=0 is equivalent to at least one of the following three conditions: (i) p =0, (ii) g=0, (iii)

G=Np , AeR,A540.

(i) Suppose (4,v)eCa, NT+S" , 4=0. From |u |*=|u|*>+u}, =1 we obtain u, +; ==1, and from
<u,y>=0 we obtain v,.,=0. Consequently (u,v)=((~),t1,17,0). We have (6,1,5,0)EB and
©,—1,7,0)=¢(0,1,7,0). ‘

(ii) Suppose (#,v)€C2, NT*S", V=0 Because (4,v)eT*S" we must have v, +,;70. Consequently
t,+1=0 because of <u,v>=0. Thus we have (u,v):(&,O,a,v,,H). If v,+1>0 then
(ﬂ,O,a,v,,H):(l)g‘:(a,l,ul\/v,,+1,...,u,,\/v,,+1 0, and if v,4;<0 then (#,0,0,v,41)=

:¢H+':,(O’1’ul V" Vn+15 -8V “Vn+1 50)'

(iii) Suppose (u,v)€C,, NTTS", u=A. From |u|*=|a|*+u} 1 =N |v|*+u} =1 we have

sin2¢,cos2¢,p  C0s2t,...,p,c0s2t, — | p | sin2¢). It is now easy to check that

1—u?
A =—"L 1f we choose to such that u, +, =cos2t ( this can always be done because |u ]2 =1

117
thus u, +; <1, there are two choices depending on the sign of A) then (\v,u, + 1,5,-;?14,, )=

=gy, °(0 1, 0. O

Uy +1

Since G is an integral of X , ¥V =N — C,, with symplectic form w,, +, | V' is an invariant symplec-
tic manifold for Xy . From LEMMA 12 it follows that all the integral curves of Xy, |V are periodic
with period 7. Constraining the system (Ho,V,wy,+2 | V) to THS"=T* 8" ~(Cp,, NT* S") gives the
system (G, T" 8,6, +2 | T+ S") whose integral curves, when projected on S”, are geodesics which do
not pass through the pole (0,...,0,1).
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5. NORMALIZATION OF PERTURBED KEPLER SYSTEMS
Consider a perturbed Keplerian system on (M =(R" —{0})XR",w,, | M) with Hamiltonian given by

K&m)=KoEn)+eKi(Emse) , 20

where K| is the Kepler Hamiltonian given by (1), and K €9, that is, K; is a formal power series in €
with coefficients which are smooth on M. K* is said to be in normal form if {K,K;}=0:TIn this sec-
tion we will show how the formal Hamiltonian (20) can be transformed into normal form using the
theory of constrained normalization developed in section 3. Towards this end we first have to describe
(K, M, w,, | M) as a constrained system. We do this by following the regularization process for the
Kepler system of § 4. We start by applying the pre-regularization to K. This gives

K EmM=KoEm+eKi(me) @n
where K(, is the function given by (13), and K 1= —]—LK 1, with K as in (20). Next apply Moser’s reg-
ularization map m to K* to obtain a system (G‘ T+ Shps@2n +2 | T Syp) with

G (q,p)=Go(q,p)+eGl(q,p, o, 22)

where GO is given by (10).

Now we have to distinguish two cases: (i) G* can be extended to a power series with smooth
coefficients on T+ $". (ii) G* can not be extended to such a power series.

We are in case (1) when K is at most linear in the coordinates 1. This follows easily from the fact
that under m~", |&| turns into 1 [ p |(1—g,+1) while n turns into I__qq_ It is now clear that

n+1

under this hypothesis Gl can be extended to a smooth function on all of T*S". Extending Go to
T S" gives us the system on (T+ S",wy, 42| T*$") with Hamiltonian

G‘(q,p)=Go(q,p)+fGl(q,p, o). | (23)

Because (¢,p) are in fact coordinates on R**? there is a natural extension H*(g,p) of G*(g,p) to
(NawZn +2 IN) given by

H(q.p)=Ho(g:p)+eH (¢,p;€) @4

where H is given by (5), and N is given by (6). The system (G, T*S",wy,+2|T+S") is now
obtained by constraining the system (H,N,w;, 1, |N) to T * 8" By Lemma’s 10, 11, and 12 we may
apply the constrained normalization algorithm of § 3.

When we are in case (ii) G¢ is singular at the collision set B given in § 4. Because normalization
involves averaging over the orbits of Xg , we have to omit all the collision orbits of Xg , i.e. the orbits
passing through B. Therefore we consider (G‘ T*S",wy,+2 | TTS") (notation as in § 4). This system is
obtained by constraining to T*S" the system (H,V,wp,+,|V), where H is given in (24) and
V =N —C,,. Again we may apply the constrained normalization algorithm to H*.

Now suppose that we have obtained a normal form JC for H¢ defined on W, where W is either N
or V, using the constrained normalization algorithm. Then 3¢ =H +¢€J(. If ¢ is the normalizing sym-
plectic transformation then 3G, =H°¢. Because of the normalization algorithm, the restrictions of 3G
and Hy to T* 5" N W commute under the Poisson bracket on (T"* S"NW,02,+2 | T*S" Nnw).

Because m is a symplectic diffeomorphism we obtain a normal form % =9Com ! for K*. More pre-
cisely I = Ko +€eX; where K; =K ,omo¢om ~*. Notice that ¢ is defined on m(T*S” » NW). Going
backwards through the pre-regularization process now gives a normal form for K*.

We will illustrate the constrained normalization algorithm with two examples: (a) the lunar prob-
lem which belongs to case (i); (b) the main problem of artificial satellite theory which belongs to case

(ii).
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6. NORMALIZATION OF THE LUNAR PROBLEM
The name lunar problem stands for the three dimensional restricted three body problem (sun, earth,
moon) when the value of the Jacobi constant is large. The primaries (sun, earth) have masses 1—»
and », and the massless body (the moon) is assumed to be confined to move in the Hill’s region of the
body with mass » (the earth). -

Following Kummer [4] this system can be formulated as a perturbed Kepler system on
(M =(R?—{0}) XR3,w | M) with Hamiltonian

I?(x,y)z%l}’lz‘ — —(xy2—xy) (10T — |x |H+o(x 1Y) (25)

x|

. - 1,5 ' . i .
restricted to the energy surface K= —>k*¢ 2, where e<<<k. Stretching variables according to

x =vet¢ Y =, I;"—'G_ZK , t =Ny,

where A =vé?, gives

Kh(s,n)=%|n|2——l§-l— —Mam—&m)— 3 (1—9NGE— | £])+007 N 6)

on K*=— %kz. _
Going through the pre-regularization process we obtain

Rem= €10 2 +k)=AlE @ —En)— 71 -0V (€[ GE — [§)+067N) . @)

Applying the map m given by (11) gives

1 3 (1-7)
HNgp)=1p | A |+ 1p 10— qaXgip2—q1p2) | +A | 552 |p |(@p2—g2p1) +
k 2 &
1d=» 3(0-» 3=y, 3 _
+ 2 kZ + 2 kz IP lPl 2 k3 ‘PI 94
3 (1-%) 3 (1-») 3 (1=¥)
— 28D 1o 1qpa—gap g+ 2 P55 |p | qapr —
2k 2.k 2k
1 (1— _
-2 1 Pt room N (28)

We consider this as a formal power series in A, writing
HNg.p)=Ho(g.p) TAH (q.p) + N Hy(g:p)+ O (7 'XY)

replacing |p | by Ho(g:p)=(|q|*|p |>*—<g.,p>%)". Notice that H* is smooth on N =R®—Cy (see
(6)). The original system corresponds to the system (H A,N,ws | N) constrained to T+ 5°.

We start our normalization process by computing the average H; of H,. Because |p |(§1p2—42P1)
is an integral of Xj;, we only have to compute the average g4 of g4. According to formula (2),

= _ 17 _d. 4 . =
q4 p fo ( hsm2t+c052t)q4 +( hsm2t)p4dt 0.
Consequently

= 1
Hy(gp)=——71p1@ip2=q2p1) - (29)

The generating function R(q,p) of the normalizing transformation expLyg (up to first order) is com-
puted using (3). We have
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1,71 d_ .
R(gp)=— [ 711P |@p2=qap1) |(— 5sin2e +cosde)gy + (5 sin2e)py |dt

1 1 271, d . 1 1 .
_—_-E 1 [(q1p2 ——qul)z;fo —2‘(—-};usmu+—2-ucosu)q4 +3_“(—;17usmu)p4du
—

1 1
=P (P2 —qop ), (dge—aps)

<¢p>q4— 191’4

(q1*1p P —<gp>*"
1 |plqip2—q2p1) 2

= P4~ q4Pi)G; - ' 30
% Hogp) 2GPeT94PDd (30)

i=1

=—1—|pl(qp —q2p1)
2k 172 271

Let Fi(¢,p)=|q|*—1 and Fy(q,p)=<gq,p >. Then we find that

{(Fi,R}= —ﬁ %&3—5’)2(@4 —q4pf-)] {lg1%1p| }=25‘-‘§’;—2>—R(q,p) , G
{F,R}=~ —2-1,-; [%—Qé@p‘, —q4p.~)] {(<ep>.lp1}-
~3 @ Z)Zf;’)) 2] é |(@ps=ap(<ap>.a)]
=R(g.p)—R(g:p)=0. (32

Since {F,R}|T*S*={F,,R}|T*S*=0 the normalizing transformation expL,z leaves T ™S>
invariant. Thus we need not compute R.
After the first order normalization the new second order term in the Hamiltonian is

Hy=Hy(q,p)+ (H|,R}+5{{Ho,R},R)=H(g;p)+ {H,,R}+5(H,,R} , (33)

where f!l =H,—H,. To compute the average I~12 of iIz, we_compute H,, {fIl,R}, and {fIl,R}.
We start with H;, which is given in (28). The computation of H, comes down to finding the average
of p1,94,94P 1,95 and g3. As in the computation of H,, one has p; =g, =¢34 =0. It remains to

compute g%, and q4p;. To simplify the somewhat long formulas recall that
Sy=qp;—4pi -
Furthermore let

_<ap>g¢;—q1’p

9% Ho(g,p) ’
<q,p>p;— |p|%q
P;= H 34
/ Ho(g.p) 4
and
A=|q|=a*,
B=|p|=b*.

In addition write
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D=<gqp>=d.
Using (2) and (16) we have

— 1 7 d . . d . .
qiq;= P fo (- —}—l-stt +cos2t)g; + (—Z—stt)p,] {( — —i-l—stt +cos2t)q; + (%stt)pj dt

-
1 1
=50:0;t7544; - (33)
Similarly
— 1 1
4p;=—2 QP T 29p; - (36)
From (35) and (36) we obtain Zﬁ and q4p;. Consequently H, is given by
- 31— 11— 31—p 3 3 1—
Hz(q,p)— B BS14+2 2 B3+4 —2 B30+ YR LB+
31 31—
7 ks ~BQ4P1~ 4 k3 ~—Bgup: - G7
The next term to be computed is {ITI 1,R}. We find that '
— 1 (qp2—qp)lp |2 3 1w
H,R}= ; ; — 81, BP, .
{HuR}=775 Ho(q,p) Z@pa=qp)lp1.a}= 77 SuBPs

Since P4= ES,4p, and p; =0, Py= ZS,4p, =0, Thus
i=1 i=1

(H,,R}=0. (38)
Finally we have to compute —;-{IAI 1.R}. Since H 1= —H 144 We obtain

1.~ 1 = 1 -

S{H,R}= —7{H1,R}q4—7{q4,R}H1
1 1

1
S —— 2 +_.__.___.Sz 2 7.
12Qapa— 4k2 H, B2Q; A Ho ’2_1‘1

SHBP4qs—

.
8k?2 k

To compute -;-{il 1,R} we have to determine ;Z . As in the calculation of (35) and (36), we obtain

= _ 1 1
pi=7Pi+3pi . - (39)
A short calculation gives
__1 1 1 1 1 p3 2
2{H1,R} k2 Hy ——BDSH(—5Q4Pst+75q4ps —‘ék-z‘H— Sz( Qi+ 2‘14)'*'
1 1 1 1
LbYeY ‘ﬁ—A S 2(—P4 + 21’4) k2 F"DS 2(— 5 Q4Pat5qapa)t
1 1 1 1
TENT A*B*Sh(7Pi + 2P4)+ 2k2 'E?AZBZDS 2(— 2Q4P4+ 2441’4)
0
1 1
TWEH B*D? Sz( Qi+ qﬁ)
1 1
e ?st 2(~Q4 + 2q4)+z——2—-H—AzBZS : (40)
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Taking the average of (33) yields
= — 1 =
Hy(g:p)=Hy(g:p)+ 5 {H1,R}

where H 5 and {I} 1,R} are given by (37) and (40). Notice that on T +83 we have the following

equalities -
Q,-tT+S3=-—§f]—, T S*=—|plg;.
Thus
, 31—
Hygp)|T*S ——( 5 +4 P —9)p l(@ipa— q4p1)+2 kz Zlp 1>+

3 1 _
snraend AR +p3)——7(qlpz—qu1)2(lpI2q3+pl‘i)+

kz(unz @ PP | ——5—(q1p2— 91 (P 1’45 +p3) . (41)

k2 Ip I

Using the fact that on T+ S® we have the relations _

lp12ITS*= 3 (qp;—qpi)*#0, 42)

I<i<j<d4
and
3
Up 1P +pD|T*S*= 3 (qupa—qap)* » (see[1], page 137) 43)
k=1

we find that the normal form H ) +I:I—2 onT+S3is equal to a smooth function in the quadratic func-
tions S; defined in (17). On T* S 3 consider the H level set corresponding to |p | =L 2—;—. Applying
the inverse of Moser’s regularization map and the inverse of the pre-regularization process gives the
normal form for the lunar problem to second order on the K¢= ~——;-k2 level set.

7. THE MAIN PROBLEM OF ARTIFICIAL SATELLITE THEORY
In this section we discuss the main problem of artificial satellite theory. This is the problem in which
a point mass moves subject to the gravitational forces of an oblate sphere. In the perturbation term of
the potential due to the oblateness only the dominant term is taken into account.

According to Deprit ([3], page 114, 130 ) the Hamiltonian of the main problem of artificial satellite
theory in Whittaker coordinates (,0,»,R, ®,N) is

2

Assuming ©540 we may eliminate the parallax. In mixed Whittaker and Delaunay variables, the latter
given by (/,g,h,L,G,H), (44) becomes

@2 52 o 2 : %
M=Myy+—5 3= |= S e¥ D M, i(s?)sHcos2kg . (45)
r

a1 P o<i=un  o<k=)

where M, j,k(sz) are the inclination polynomials ([3], page 137,138), and




R
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2
Moo=t R+ —L—nN=M;—n.N
r r
is thezKepler Hamiltonian M, with added constant —n,N. After using the identities ®=G and

P _—_—G”— and rearranging the terms, the Hamiltonian (45) takes the form -

2n

S P, j(e*s%)es sing)¥ , (46)

0<j<<thn

G € |ap
= 4 = _—
M MO r2 nzon! [G

where the eccentricity-inclination polynomials P, ; are given in table I for n<4.

Table I. Eccentricity-inclination polynomials
Pio=Mjoo(s”) a ' .
Pro=M;00(s?)+e? [ M1 0(sH)+5> M3 1,1 (%)
Pyi=—M;,1(s%) L
P3o=Mig0(sH)+e? [ M5 0(H)+s*M31,1(%)
Pyy==2M51:6%) | . 1
Pao=Migo(s2)+e? | My 0(H)+s My, G7)

et [Mino6H) 52 M (6P +5*Mia2(6)
Pyy=—2M; (s?)—2e? [M;,z,l(Sz)+4S2M4,2,2(52)]
Py =8M;,5(s%)

Let J =(J,,J3.J3) and 4 =(4,,4,,43) be the angular momentum and Laplace vectors for the
Kepler problem when n =3. We have the following relations

2
MO:——Z”L—Z, G =} +53+J3, Gist=Jt 473,
H=J,;, essing=A;, L**=L—(J}+J53+J}). 47

Using (47) we may express the Delaunay variables in (46) in terms of L, and the components of J and
A. Thus the Hamiltonian of the main problem after elimination of the parallax has the form

K1(¢m,9)
HE
where Ko(£,m) is the Kepler Hamiltonian (4) and {Ky,K}=0, because K, is a smooth formal power

series in J;,4;, i =1,2,3, and L which are integrals of X,.

‘Recall that for e=0 we consider only those orbits whose total energy is negative. Because after reg-
ularization the perturbation term in (48) can not be extended to a smooth function on 7% S* we must
consider those orbits of the unperturbed Kepler system with nonzero angular momentum. After pre-
regularization (48) becomes

K¢m=Ko(Em)te , , 43

kK l(&"’hf)
1€ )
Applying Moser’s diffeomorphism m to K® yields a Hamiltonian system (G T 8wy 42| THS?).
Here

ke@m= 181112 +iD) e 49

G(¢,p)=Go(g:p) +eF ()G 1(g:p,€) » (50)

. I k
where GO(q7P): IP | » F(q,P)—_’(l_q‘t) la and Gl(q,P,f):‘i;l—Kl"m(q,P,f)-
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Consider the polynomials S;;=g;p; —¢;p; on R®. On G; ' (L) CR®, where L :-I%’ we have

J1°m=S23 , J2°m :S13 s J3°m =S12 . (51.1)
1

A1°m=—%S14, A2°m=—%S24, A3°m‘—'—~-l-:-S34. - (51.2)
We consider these as smooth functions on T+S? instead of Gg ! (L). Because K is a smooth function
of L, J;, 4;,i=12,3, it follows that G; is a smooth function of S;j |T+S3 ,» 1<<i <j=<4. Because
Moser's map m is a symplectic diffeomorphism from (T*S%w5|TS%) onto
(R?*—{0})XR*)—m(Cs N T S*) with symplectic form equal to the restriction of w, G, is a formal
power series integral of Xg, |T*S>.

We may now apply the constrained normalization process on the Hamiltonian system
(H*,V, w3 | V), where ¥ =R®—Cy N Cg, and H* is given by '

HY(g.p)=Ho(g.p) +eF (QH (g,p:€) , | ’ (52)
with Ho(g,p)=(|q |?|p |>—<q,p >*)*,F(g)=(|q| —q4)~', and H, the smooth extension of G, to
V defined by H, =él(S,~j| V,¢). Note that H, is a smooth formal power series integral of Xy and
that H* is a smooth extension of G*.

To compute the constrained normal form for H¢ we have to compute F-H,=F-H,. Using (2) and
(16) we obtain

1 —1
Tl ™| 44 _a.
F=— fo [a [(—= sin2t +cos21)g, (hsm2t)p4]] dt

-1
1wl d _at . 44
= 27ra"’f° [H_(a%h T - 4)sinv g cosv} dv . (53)
If we let
d__a* 1,]"
= 241 2
e= [(mq4—7p4) +t—q) (54)
and choose x so that
~ q9a .. d a”
=% T T% 44T P4 55
CCOSX =5 » ESIX= =y qa ™~ P4 (55)
then (53) becomes
- 2
a* L L dv . (56)

C2mo 1—ecos(v +x)

Before we compute (56) we digress to show that e is a smooth extension of eom, where e is the exen-
tricity ~ defined in  (47). On Q=G;'(L)—(CeNT*S*»HCT'S’  the integrals
lg|*=a, |p|*=b, <qp>=d, Hy=h of Xy, on V take the values 1, L2, 0, and L respec-
tively. Therefore

. 1 1
eZIQ=(f—2-p%+;q%)IQ=F(IP 12q% +p}) | Q

=(4} +43 +4%)m|Q=e’m |Q . (57)

Here we have used (43). The following argument shows that on V the function & takes values in [0,1).
Since
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q4(V) Ho+ 94
g0~ %) g

it follows that e=1 if and only if for some v €[0,27] q4(»)=|q(¥)|, that is if and onmly if

ql(v) ¢2(")=q3(»)=0 and g4(v)>0. But then (g(»),p(v)) Lies on C¢ and consequently 1t does not lie
in V. Therefore the integrand of (56) is defined. We have

=ecos(v+x)

—_ 2 27+
I T I T
2m 70 1—ecos(v+x) 2m ’x 1-—ecosu
2 .
S Y U S p—— L (58)

2170 1—Gcosu V1-2a2

By LEMMA 7 we obtain the normalizing transformation expLeR (see also LEMMA 2 and THEOREM 8)
where

] L oy* = ot
R :;jo to Y (F-H,—F-H\)dt=H, F

and
~ —l . Hy» =
F=— [ t(¢") (F ~ F)dt . (59)
It remains to calculate F. Using (58) and (59) we find that
~ 27
a"F=—1{ "t - L -
2770 | 1—¢gcos(t +x) 1—2&2
. t+x X (7 1 dt — T
2'77 0 1—écos(t +x) 2170 1—gcos(t +x) 1—22
2n+
:_l.._ X 1" du — xtm
27 ’x 1—ecosu 1—e?
but
1 2ty u 1 0 2n+x
— —_—dy =— { + ] a7 1]
27 fx 1—ecosu 2m j;< f" ’[ 1—ecosu

1 rx v +2m
—dy +-—— | ——dy
T [f fo ]l—ecosu 277/0 1—ecos(v +2m)
_ x__1

= du + ————-——-du
2770 1—gcosu fo 1—ecosu

%
= T + 2 tan_l 1+f tan-x- .
Vi-2  V1-2 1-¢) 2
Therefore on V'

~%
a"‘f:—\/——_z-_——__z—tan“ HH‘;’ tanl} X (60)
1—e

1—e 2 1—2e2
This completes the computations.

-4

Note that because 22=—LI—Z(S%4 +83, +5%) on T*S? we find that the restriction of our normal

form to T+S® is a smooth function in the S;; | T*S>.
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