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note on notations and referencing 

Throughout this report, a bold letter denotes a stochastic variable. References to formulas are given 
according to the following rule: A reference to, say, relation (3.1) (the first numbered relation of Sec­
tion 3) in Chapter II is denoted by (3.1) in that chapter and by II.(3.1) in another chapter. For the 
appendices the roman numeral, indicating the chapter, is replaced by a letter, indicating the appendix. 
Similar rules apply for references to sections, theorems etc. The name of an author, followed by a 
number between brackets, refers to the list of references. 
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Chapter I 

Introduction 

A local area network is a computer network that is completely situated within a limited area, usu­

ally with a range of 0.1 Km. to 10 Km., such as for instance a university campus or an office building. 

For an introduction to LAN's cf. Tanenbaum [17]. A LAN configuration typically consists of a 

number, say N, of workstations (terminals, PC's) interconnected by a transmission medium (coaxial 

cable, optical fibre). For various reasons, such as routing problems and the high costs of wiring, this 
type of network often has a ring or bus topology: The workstations share a single communication 

channel. ( cf. Figure 1) 

workstations I ,~ 

Ring-topology Bus-topology 

FIGURE l 

If station i wants to send a message to station j it has to use the single communication channel. If 

another station wants to send at the same time there might arise a conflict if there is no controlling 

mechanism present on the channel to avoid collisions. Often "token-passing" is used as such a con­

trolling mechanism: In a token-passing system, a permission token to access a shared transmission 

medium is passed on (often in a cyclic manner) among the stations attached. 
For a performance analysis of such a system various performance measures (like the waiting times 

of the workstations until access) have to be considered. Hereto a mathematical queueing model of the 

system is introduced. The queueing model of the network described above might be a single-server 
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multi-queue system with a certain service discipline: A server (the communication channel of the net­

work) is shared by customers (the workstations) and the service discipline specifies how this sharing is 

accomplished, i.e., the service discipline represents the controlling mechanism. We shall describe the 

queueing model in some more detail below: 

_AJ,_B_1(·)---:ll~ I I 
Q~ 

_A2,_B_2(·)-~~_:-i ..---.I I I 0--~> -
: Q1 / s 

_AN_' B_N(·_) ---~ I I/ 
QN 

FIGURE 2 

The queueing model 

The model under consideration consists of N queues Q 1, ••• , QN (with infinite buffer capacities) and 

one server S. Each queue has its own Poissonian arrival stream of customers, with, for Q;, arrival 

intensity A;, i = l, ... ,N. The arrival processes are assumed to be independent of each other. Cus­

tomers who arrive at queue i (type i customers) require from the server a service time with distribu­

tion B1(·). It is assumed that the service times are independent and apart from their type also 

independent of the arrival processes. 
Sofar we have not discussed the manner in which the server serves the incoming customers. A class 

of service disciplines that is often encountered in multi-queue single-server systems is the class of the 

cyclic service disciplines: After the server has visited queue i (mod N) the next queue to be visited will 

be queue i + I (mod N). There are roughly three types of cyclic service to be distinguished: 

I. Exhaustive service (also called polling, or alternating priority): When the server visits a queue, he 

serves its customers until that queue is empty. 
2. Gated service: Only those customers who are found at the instant at which the server visits the 

queue, are served in the current round; those who arrive during this service period are reserved 

for service in the next round. 
3. Non-exhaustive service (also called chaining, or limited service): When the server visits a queue, he 

serves at most a fixed number of customers, K, if there are at least K customers present at the 

instant at which the server visits the queue; if not, the server serves the queue until it empties, 

where arrivals during the service period are served in the current round if the number K has not 

yet been reached. 
For (I) and (2) an exact mathematical analysis is possible, whereas for (3) such an analysis has only 

been found for the case N = 2, K = 1. 
In the present report we analyse a new service discipline (as proposed by Cohen [6]): When the 

server has served a customer the next customer to be served is with probability a; (i = 1, ... ,N) the 

first customer of Q;. When indeed Q; is chosen 'lnd Q; is empty the server chooses again until a 

non-empty queue is found. If the system is empty the server waits for the first arrival in the system. It 

is assumed that the switching times are negligible (switching time: the time it takes the server to 

switch from one queue to another). 
It will turn out that an exact mathematical analysis of the resulting model is, for N = 2, in some 

cases possible. Furthermore this service discipline has the nice feature of flexibility: By adapting the 

probabilities a; (i = l, ... ,N), with which the server chooses Q;, it is possible to (sometimes approxi­

mately) model other, related systems, which gives insight into the manner in which related disciplines 

behave. As an example of this we could, for N = 2, take a 1 = 1 and a2 = 0. Then the model is 
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(from a performance point of view) identical to an M/G/l non break-in priority model with two 
priority levels. 

Throughout this report we shall refer to the multi-queue single-server model with the service discip­
line described above as to an "M/G/l queue with random allocation". The report is devoted to a 
mathematical analysis of this M/G/l queue. Its organisation is as follows: 
In Chapter II we shall analyse the queue-length process of the M/G/l queue for N = 2. In Chapter 
III some expressions for various interesting performance measures such as mean queue lengths, mean 
waiting times and mean sojourn times are derived. Chapter IV will be devoted to a discussion whether 
we can use the model for N = 2 to approximate means of performance measures in a model with 
random allocation and N (N > 2) queues. These results may be used to obtain more insight into the 
influence of various service disciplines on the performance of (LAN) ring systems. 

Note on related literature: 
The analysis in Chapter II is mainly based on the study of Cohen [6]. Cohen shows that the problem 
of the determination of the joint queue-length distribution can be transformed into a Riemann boun­
dary value problem. The method to effectuate this has recently been developed by Cohen and Boxma 
(cf. Cohen and Boxma [7]) and is the result of a number of researches initiated in the studies of Fay­
olle and Iasnogorodski (cf. Fayolle and Iasnogorodski [9]). For more detailed references concerning 
related work in this area and a general introduction to two-dimensional birth-and-death processes, of 
which the considered queue-length process is a special case, see Cohen and Boxma [7]. 
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Chapter II 

Analysis of the queue-length process 

1. MODEL DESCRIPTION 

In this section we describe the queueing model under consideration in more detail. The system 

consists of two queues, Q1 and Q2, served by a single service facility. The two queues have infinite 

capacities. Each queue has its own arrival stream of customers; the arrival processes are independent 

Poisson processes, with arrival rates 7\1 and 7\2 respectively. The total arrival rate is;\ and we define 

)\. 
r; : = -:/::· i = 1,2, (1.1) 

as the fraction of type-i customers (i.e., customers which arrive at Q;). Type-i customers require from 

the server a service time with distribution B; (-) with first and second moments /3; and f3F> and 

Laplace-Stieltjes Transform (LST) /3;("); all service times are independent of each other, and apart 

from their type also independent of the arrival processes. 
The utilisation at Q;, a;, is defined as 

a; : = l\;/3;, i = 1,2. 

The total utilisation, a, of the service facility is defined as 

a:= a 1 + a2. 

(1.2) 

(1.3) 

The service discipline considered will be called Random Allocation (RA) from now on and is 

defined as follows: 
If the server has completed a service and both queues are not empty then the next customer to be 

served is the first customer of Q; with probability a;, 

a 1 + a 2 = l, 0 < a 1 < I, 0 < a2 < l, (1.4) 

if just one of the queues is empty, the server proceeds with a customer from the non-empty queue; if 

both queues are empty the server waits for the first arrival in the system. No switching times are 

incorporated. See fig. 3. 
Denote by z~>, n =O, 1,2, ... ; i = 1,2, the number of type-i customers left behind in the system after 

the completion of the n 1
h service. It will be shown that the stochastic vector process (z~1 > , z~2>) is a 

discrete-time Markov chain with a two-dimensional discrete state space. A large part of this study 

concerns the analysis of this Markov chain. It is effectuated b~ introducing the generating function of 

the joint distribution of the stochastic variables z~'> and z~ >. This generating function satisfies a 
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functional equation. It will be shown that the analysis of this functional equation can be reduced to 

the analysis of a Riemann-Hilbert type boundary value pr<;>blem by a method developed by Cohen 

and Boxma [7]. 

~11~0---
A2 =_r_2X,_B_20 ___ ~ I 1--------- S 

The model with N = 2 
Q2 

FIGURE 3 

2. FORMULATION OF THE MATHEMATICAL PROBLEM 

In this section the inherent mathematical problem for the queueing model described in section 

will be formulated. The queueing process is considered at departure epochs because this embedded 

process defines a Markov chain. Let for IP 1 I .;;:; 1, IP2 I .;;:; 1, 
00 {1) (2) 

<P(r;p1>P2) = ~ rnE{p~· p~· lzb1) = zb2) = O}. (2.1) 
n=O 

We shall derive recurrence relations for the series {z~> }n ;;.0 , i = 1,2, and then we shall prove that the 

generating function <P(r;pl>p 2) satisfies a functional equation and possesses regularity properties. 
We first give a definition: 

DEFINITION 2.1 
For i = 1,2; j = 1,2, let pU·j>, n = 1,2, ... , denote the number of type-i customers arriving during the 

(n + 1)1h service time if this service time is of type j, i.e., has distribution B/·). 

For the generating function of "'~J,j) and P~2·j>, j = 1,2, we have the following lemma: 

LEMMA 2.1 
For IP1 I :o;;:;l, IP2 I .;;:;I, n = 1,2, ... ; j = 1,2, 

(2.2) 

PROOF OF LEMMA 2.1: 
Note that the number of customers that arrive during a service time is independent of the past 

interarrival time measured at the moment that this service starts since the interarrival times are nega­

tive exponentially distributed. Given that a service time has duration r the number of arriving type-I 

customers and the number of type-2 customers are independent and have a Poisson distribution with 

parameters A.1 and A.2 respectively. This implies the following formula for the joint distribution of 
(P~l,j) ,-,,1.j-•j)), j = 1,2, ... : 

(I .) (2 .) ooj (A1 r)k' (A2r)k' "A,,. \ ,,. 
Pr{P ·l = k P ·l = k } = --- - ' -,., dB·( ) 

n hn 2 k' kl e e l'T' 
T=O I· 2· 

(2.3) 
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Now it follows that for IP 1 I.;;; 1, IP2 I .;;;; 1: 
00 "\ k, "\ k, 

(l.jl C~jl 00 00 k, k, f l\J 'T /\2'T - 'T 

E{p~· p;· } = k,;ok,;f' P2 T=O~ki!e "dB/'T). (2.4) 

Of course we may change the order of summation and integration here and obtain, for 

IP ii .;;;;; 1, IP2I.;;;;1 : 
00 

E {p~~'J'p;~2.j• } = J e1',1',T e1',1',T e -l>T dB/ 'T). (2.5) 
T=O 

Because Re (1 - r 1p 1 - r 2p 2) > 0, it is immediately seen that the right-hand side of (2.5) is equal 

to the LST of the distribution B/·) with argument >-(1 - r 1p 1 - r 2p 2). This concludes the proof of 

Lemma 2.1. 
From the model description in the preceding section it follows that, with zb'> = zb2> = 0 : 

REMARK 2.1 

if z~1 l > 0, z~2l > 0, n = 1,2, ... : 

z~1~ 1 = z~1 > - 1 + P~1~\ and z~2~ 1 = z~> + P~~\ with probability a1 , 
z~1~ 1 = z~'l + P~1i\ and z~2~ 1 = z~2l - 1 + P~2i\ with probability a2 ; 

if z~'> = 0, z~2> > 0, n = 1,2, ... , : 

z~'~ 1 = ,,~'i\ and z~2~ 1 = z~2l - 1 + ,,~2:f\ ; 
if z~'l > 0, z~2l = 0, n = 1,2, ... : 

z~1~ 1 = z~1 > - 1 + P~1~\ and z~2~ 1 = P~2~\ 

if z~'l = z~2l = 0, n = 1,2, ... : 

z~1t 1 = P~1~\ and z~2~ 1 = P~2~\ with probability r 1' 

z~1~ 1 = P~1i\ and zH 1 = P~2:f\ with probability r 2. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

It is immediately verified that the probability distribution of the vector (z~'> ,z~l) is uniquely (recur­

sively) determined by (2.6), ... ,(2.9) for every n, n = 1,2, ... (with zb'l = zb2l = 0 ). 

Because the vectors (P~1 ·1l,,,~2·1>), j=l,2, are independent of the vector (z~l,z~>), m<n, for every 

n, n = 1,2, ... , it follows from relations (2.6), ... ,(2.9) that the process { (z~1 >, z~2>), n =O, 1,2, ... } 

possesses the Markov property. From remark 2.1, (2.6), ... ,(2.9) and lemma 1.1 it is readily seen that 

this Markov chain has the state space { 0, 1,2, ... } X { 0, 1,2, ... }, that it is irreducible, aperiodic and that 

it has stationary transition probabilities. 
We now derive a functional equation for <P(r,pi.p 2 ) (cf. (2.1)). Put, 

x := A(l-r1p1-r2p2). (2.10) 

We shall consider the expression 
(I) (2) 

E {p~•+'p~·+i I zb1) = zb2l = O}, (2.11) 

for IPil.;;;;l, IP2l.;;;;l, n=0,1,2, .... 

Denote with (A) the indicator function of the event A. It follows from relations (2.6), ... ,(2.9) (for con­

venience suppressing the conditional event zb'> = zb2> = 0 in the expectations below) that for 

IPil.;;;;l, IP2l.;;;;l, n = 0,1,2, ... , 
(I} 12) fl) I (I.I) (2) (2.1) 

E{pz.+ 1 Zn+I } = E{pz. - + .... , z. +r.+1 ( (I) > 0 (2) > O)} 
I P2 a1 I P2 Zn ,Zn (2.12) 
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11)+ (1.2) {2) 1 {2.2) + a E{pz. "'•+lpz. - + .... , (z(l) > 0 z<i> > O)} 

i I i n ' n 
(!) I (I.I) (2.1) 

+ E{p~· - + .... ,p;•+I (z~1 > > 0, z~i) = O)} 
(1.2> m I 1z.21 

+ E {p~ .. ·p~· - + .... , (z~1 > = 0, z~i) > O)} 
(I.I} (2.1) 

+ r E{p"'·••p .. ·•• (z(ll = 0 z<i> = O)} 
I I i n ' n 

{1.2) (2.21 

+ r E{p"'··•p.,·•• (z(ll = 0 z<i> = O)} 
i I i n ' n 

· a1 ai zm z<" 
= {-/31(x)+-/3i(x)}E{p{pi" } 

PI Pi 

+ ai{ fli(x) - /3i(x) }E{pf (z~i> = O)} 
PI Pi 

+ a1 { /3i(x) - /3i(x) }E{pf (z~1 > = O)} 
Pi PI 

/3i(x) /31(x) 
+ {r1/31(x)+ri/3i(x)-a1---ai--}E{(z~1 > = z~i> = O)}. 

Pi PI 

Multiplying both sides of (2.12) withp 1pirn+I and summing over n, we obtain (cf.(2.1)): 

~ 1Pi -r{ a1pi/31(x)+aip1/3i(x)}J4>(r ;p1,pi) = P1Pi (2.13) 

+ r{pi/31(x)-p 1/3i(x)}{ ai4>(r ;p 1>0)-a14>(r ;O,pi)} 

Relation (2.13) represents the functional equation for the generating function 4>(r;p1>pi). 

From some well-known properties of generating functions the following lemma easily follows ( cf. 

appendix A, section 2): 

LEMMA 2.2 
(i) for fixed p 1,Pi with IP ii,,;;;; l, IPi I.;;; I, 4>(r ;p 1>Pi) is a regular function of r in the unit disk 

lrl <I, 
(ii) for fixed I r I< 1 the function 4>(r ;p i,p 2) is: 

( 1) for fixed p 2 with IP2 I ~ I regular in IP ii < l, continuous in IP d ~I, 
(2) for fixed p 1 with IP 1 I .;;; 1 regular in IP 2 I < 1, continuous in IP i I ,,;;;; 1. 

The expression between square brackets in the left-hand side of (2.13) is called the kernel of the 

functional equation: 

(2.14) 

The analysis of K(r ;p 1>P 2) is the starting point for the determination of the function 4>(r ;p 1>P2 ) satis­

fying (2.13) and the conditions stated in lemma 2.2, because if for a pair (q1>q 2) with 

I q ii,,;;;; 1, I q2 I .s;; I this kernel vanishes then the right-hand side of equation (2.13) must be zero 

because of the stated regularity properties of 4>(r;p1'p2) (cf. lemma 2.2). This provides us with a rela­

tion between the functions 4>(r;p1>0) and 4>(r;O,pi), from which these functions, and hence 

4>(r;p1'p2), will be determined. We shall examine the kernel, in particular with respect to its zeros, in 

the following sections. 
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3. ANALYSIS OF THE KERNEL 

In this section we analyse the kernel K(r;p 1,p2) of equation (2.13). Consider the kernel for 

P1 = gs, P2 = gs- 1, Is I= I, lgl ..;;I. (3.1) 

Consequently we have: 

K(r;gs,gs- 1) = g2-rg{a1s-1,81(x)+a2s,82(x)}, (3.2) 

with, cf.(2.10), 

x = X(l-r1p1 -r2p2) = X(l-g(r1s+r2s- 1)). (3.3) 

LEMMA 3.1 
For lrl<l: 
(i) The kernel K (r ;gs,gs - I) has in I g I .;;;;; I exactly two zeros, of which one is identically zero. 

Denote the other zero by: 

g = g(r,s). 

For lsl =1: 
(ii) g(r,s)= -g(r, -s). 

(3.4) 

PROOF OF LEMMA 3.1: Obviously, for fixed lsl=l,g=O is a zero of K(r;gs,gs- 1), lglo;;;;;l. For 
lgl =1 it is seen that, for lsl =l, 

Note that ,8j{X(l -g(r1s +r2s- 1))} is regular in g for lg I< 1, with s, Is I= 1 fixed and continuous 
for I g I .;;;;; 1. By applying Rouche's theorem ( cf. Titchmarsh [18]) to the contour I g I = 1 it is seen that 
g- 1 K (r ;gs,gs - 1) has for every fixed s with Is I = 1 a unique zero in I g I .;;;;; 1, its multiplicity is always 
one. 
The validity of the second statement may be seen by considering the equation 

g(r,s) = r [ a1s- 1,81 {X(l -g(r,s)(r1s +r2s- 1 })} +a2s/J2 {X(l -g(r,s)(r 1s + r2s- 1 ))} J. (3.6) 

Define, for lrl <1: 

S 1(r) := {p1:p1=g(r,s}s, lsl=l}, (3.7) 

S2(r) := {p2:p2=g(r,s)s-1,lsl =I}. 

For reasons that will become apparent in the sequel we have to prove that the contours S 1 (r) and 
S 2(r) are simply connected. To accomplish this we are forced to introduce a number of 
simplifications. Firstly it will be assumed in the following that both types of customers have the same 
service-time distribution, i.e., B 1(·) = B2(·), so for Re p;;;o.O: 

,8(p) := /J1(P) = /J2(p). (3.8) 

Now, cf.(3.2), for Is I =I, 

g- 1 K(r ;gs,gs- 1) = g-r(a1s- 1 +a2s),8{X(l -g(r1s +r2s- 1))}. (3.9) 

Denote by n the number of customers served in a busy period of an M/G/1 queueing model with 
arrival rate X and service-time distribution with LST ,8(p). It is proved in appendix A, section 2, that, 
for a = X,8<1: 

g(r,s) = E{r0 [r 1s+r2s- 1r- 1 
[a1s- 1 +a2sr), Is! =I, 

is the unique zero in I g I .;;;;; 1 of the function in (3.9). 

(3.10) 
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The problem now arises that it is not possible to prove (because it is not true), for general a; and r;, 

that the contours S 1(r) and S2(r) are simply connected. In fact, even if we restrict ourself to the case 

where 
1 

fi(p) = 1 + fip ' 

i.e., the service-time distribution is negative exponential, a; and r; can be found such that 

S 1(r) and S2(r) are not simple (cf. appendix B). 
Hence it follows from the preceding that we have to restrict ourself to the study of special cases 

where we are able to prove that the contours (3.7) are simply connected. In the following we will 

assume: 

ASSUMPTION (3.1) : 
a 1 = rl> a2 = r 2 with r 1 > r 2• 

In the sequel we shall point out why we have excluded the case a 1 = r 1 = 0.5, a2 = r 2 = 0.5 . 

Taking into account Assumption 3.1, we have for Is I= l, cf.(3.2): 

g- 1 K(r;gs,gs- 1) = g - r(r1s- 1 +r2s)fi{A(l-g(r1s +r2s- 1))}. (3.11) 

Note that, for Is I= 1: 

r1s- 1 + r1s = (r1s+r2s- 1). 

From (3.10) it follows that for this case 

g(r,s) = (r1s- 1 +r2s)E{r0 lr 1s +r2s-- 1120- 2}, 

is the unique zero of (3.11) in lgl ..;;I. 

REMARK 3.1 

(3.12) 

(3.13) 

The generality of the discussion is hardly influenced by taking r real and nonnegative, because ( cf. 

Lemma 2.2) if cl>(r ;p 1,p2) is known for 0 < r < 1, it can be found for I r I< 1 by analytic continua­

tion. 

We take in the following r real and nonnegative. 

LEMMA 3.2 
Under Assumption 3.1, the contours S 1 (r) and S 2(r) are both simple and smooth. 

PROOF OF LEMMA 3.2: 
We have (cf.(3.7), (3.15)): 

Let, 

S1(r) = {p1:p1=(r1+r2s2)E{r0 lr1s+r2s- 1l20- 2}, ls!=l}, 

S2(r) = {p2:p2=(r1s- 2 +r2)E{r0 lr1s+r2s- 1l20- 2}, lsl=l}. 

U 1 := {u1: u1=r1+r2s2
, lsl=l} 

= {u1: UJ =r1 +rze2i<f>, O:o;;;;cp:o;;;;2'1T}, 

U2 := {u2: u2=r1s-2+r2, lsl=l} 

= {u2: Uz =r1e-2i.P+r2, O:o;;;;cp:o;;;;2'1T}. 

(3.14) 

(3.15) 

It is immediately clear that U 1 and U 2 are smooth, simple contours. Further if s traverses the unit 
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circle once anticlockwise then U 1 is traversed twice anticlockwise and U 2 is traversed twice clockwise. 

i i 

s =i, -j 
s =l,-1 

j 
-1 1 -1 

U1-plane 

-j -j 

FIGURE 4 u I - contour FIGURE 5 U 2 - contour 

Note that we have, for Is I = 1: 

0 < lr1 -r2 I = I Iris l- lr2s- 1 I I :,;;;;; Iris +r2s- 1 I 

:,;;;;; Iris I+ lr2s- 1 I = r1 +r2 = 1. 

It follows easily that, because n ;;;;;.: 1 with probability 1, 

0 < (r1 -ri)1 :,;;;;; E{r 0 Iris +r2s- 1120- 2} :,;;;;; 1. 

Consequently, 

S1(r) C {p1: Rep1>0}. 

Because for s = i, - i, 

j 
1 

(3.16) 

(3.17) 

(3.18) 

(r1s-2+r2)E{r0 Iris +r2s- 1 l20- 2} = (r2-r1)E{r0(r1 -ri)2°-2
} < 0, (3.19) 

we have that 

P2 = 0 ft. S2(r). (3.20) 

It is now immediately verified that S 1 (r) and S 2 (r) are both simple, smooth contours, and if s 

traverses the unit circle once then S 1 (r) is traversed twice anticlockwise and S 2 (r) is traversed twice 

clockwise. 

Let St (r) denote the interior of S;(r) and S;-(r) the exterior of S;(r), i = 1,2. Note that 

PI = 0 E SI (r), P2 = 0 E st (r). (3.21) 
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4. PARAMETRISATION OF THE KERNEL 

Throughout this and the next sections the following assumptions will be made (unless explicitly 

stated otherwise): 

f.J(p) : = {3i(p) = f32(p); (4.1) 

The functional equation for the function 'P(r ;p 1>P 2) is in this case given by, cf. (2.13): for 

IPil..,;; 1, IP2 I..,;; l, O<r <l, 

K(r ;p1op2)'P(r ;p i.p2) = rf3(x)(p2-p1){r2'P(r ;p1>0)-r1 'P(r ;O,p2)} 

+ rf3(x){p1p2-r1p1 -r2p2}'P(r;O,O) + p1p2, 

where x is given by (2.10) and K(r;pi.p 2), cf. (2.14), by: 

(4.2) 

K(r;p1op2) = P1P2 - {r1p2+r2pi}rf3(x). (4.3) 

We first give a brief outline of the basic ideas in this section: 
In the previous section it has been shown, that, for fixed r with 0 < r < 1 and every s with Is I= 1, 

a function g(r,s) exists such that (p i.p2) with 

Pi := g(r,s)s, p2 := g(r,s)s- 1, {4.4) 

is a zero pair of the kernel (4.3). 
For these functions (4.4) the following boundary value problem will be considered. 

Determine in the z-plane a simply connected Jordan contour L (r) and a real function 

A(r,z), z E L(r) such that: 

PROBLEM 4.1 

(1) g(r,ei>.(r,z>)ei>.(r,z) is the boundary value of a function p 1 (r,z) which is regular for z E L + (r) and 

continuous for z E L(r) UL+ (r); 
(2) g(r,ei>.(r,z>)e-i>.(r,z) is the boundary value of a function p 2(r,z) which is regular for z E L -(r) 

and continuous for z E L (r) U L - (r ). 

If this problem possesses a solution then (p i.p 2) with 

P1 = P1(r,z), P2 = p2(r,z), z E L(r), (4.5) 

is a zero pair of the kernel (4.3). Consequently, because of Lemma 2.2 and (4.2) we have with (4.5): 

rf3(x)(p2 -pi){r2'P(r;pi.O)-r1'P(r;O,p2)} +p1p2 + (4.6) 

+ rf3(x){p1p2-r1p1 -r2p2}'P(r;O,O) = 0. 

It will appear in the sequel that 'P(r ;0,0) can be found by comparison with an ordinary MIG/ 1 

queueing model and hence (4.6) provides us with a relation between two unknown functions, 

'P(r ;p 1>0) and 'P(r ;O,p2), on the contour L(r). This relation will be exploited in Section 5. 

Some notation: for t0 E L(r), 

pi(r,to) := limp1(r,z), pi(r,to) := limp2(r,z). (4.7) 
z~t0 Z-+t 0 
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We consider the following problem. 

PROBLEM 4.2 

To construct in the z-plane a simply connected Jordan contour L(r) and a pair of mappings 

p 1(r,z), z E L(r)LJL +(r),p2(r,z), z E L(r)LJL-(r), such that: 

(I) p 1 (r,z) is regular and univalent for z E L + (r ), continuous for z E L (r) LJ L + (r ), 

p 2(r,z) is regular and univalent for z E L -(r), continuous for z E L(r) LJ L -(r); 

(2) p 1 (r,z) maps L + (r) conformally onto st (r); 
p 2(r,z) maps L -(r) conformally onto S! (r); 

(3) pt (r,z),pi (r,z), z E L(r), is a zero pair of the kernel (4.3); 

·> s I + (4) P1(r, 0) = CJ ' l)zp1(r,z) z=O > 0 for a C1 E S1 (r), 

p2(r, oo) = 0, 0 < d := lim lzp2(r,z)I < oo. 
lzl->oo 

*) Note that it is always possible to choose the origin of the z-plane so that it belongs to L + (r). 

Further it is possible to choose z = I E L(r). 

In Cohen and Boxma [7], p.162, the following theorem is proven: 

THEOREM 4.1 

For 0 < r < I there exist a pair of functions p 1(r,z), p 2(r,z) and a Jordan contour L(r) satisfying (4.9) 

1, ... ,4; L(r) is an analytic contour. 

The following section will be concerned with the determination of L(r) and the mappings p 1 (r, ·) and 

p2(r, ·). 

5. THE INTEGRAL EQUATIONS 

For z EL(r), <pt(r,z),pi(r,z)) is a zero pair of the kernel (4.3) for IPil.;;;;I, IP 2 1.;;;;l with 

pt (r,z) E S 1(r),p2 (r,z) E S 2{r). Hence we may write, cf. (3.7), for z E L(r): 

pt (r,z) = g(r,ei>.(r,z>)eilo.(r,z>, 

pi (r,z) = g(r,eilo.(r,z>)e -ilo.(r,z)' 

with for every fixed r E (0, 1 ), 

A.(r, ·) : L(r) ~ [0,?T], 

A.(r, 1) = 0. 

From (5.1) it is seen that for z E L(r): 

zpi (r,z) 
(1) log pt (r,z) + log d 

(5.1) 

(5.2) 

-
- log g2(r,eilo.(r,z>) 

d +log z, (5.3) 
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zpi (r,z) 
(2) logpt (r,z)-log d = 2i"A(r,z) - log z + log d 

From (3.15) and (4.1) it can be seen that for fixed r E (0, 1), 

ind g(r,s) = ind (r 1s- 1 +r2s) = -1, 
{s:lsl =I} {s:jsj=I} 

(for the concept of "the index of a function on a contour" cf. App. A). 
From (5.4) it follows that for fixed r E (0, 1), 

ind g(r,ei"A(r,z>) = ind g(r,ei<f>) = 
ZEL(r) o..;cp.,;;'IT 

2. 

And so, 
I 

ind g(r,ei"A(r,z>)z T = 0. 
ZEL(r) 

Hence the arguments of the r.h.s in (5.3) have a zero increase if z traverses L(r) once. 
It is clear from (5.1) and (5.4) that 

ind p1(r,z) = 0, ind zp2(r,z) = 0. 
ZEL(r) zEL(r) 

Write (cf. (5.3)), for z E L(r), 

pt (r,z) 
exp{2i"A(r,z)-logz} = -_-­

zp2 (r,z) 

It is now easily seen from the definition of "A(r, ·) that "A(r,z) is strictly monotonic on L(r). 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

For r E (0,1), S 1(r) and L(r) are both analytic contours, this implies thatp 1(r,z) is regular for 

z E L(r), so that the existence of !g(r,s), Is! =l, implies that "A(r,z) should have on L(r) a deriva­

tive with respect to the arc coordinate on L(r). Consequently, for fixed r E (0, 1): (cf. Muskhelishvili 

(15], p.13) 

g(r,eiA(r,z>) and "A(r,z) satisfy on L(r) a Holder condition. (5.9) 

Relation (5.3)(1) together with the conditions (4.8)(1) and the existence of the limit formulate a boun­

dary value problem with boundary L(r). This type of boundary value problem is discussed a.o. in 

Cohen and Boxma [7], Section 1.1.7. From the results in that section it is immediately clear that 

1 ~2(r eil..(r,n) dt 
(1) logpi(r,z) = 2- J [log 'd +log t] ~· z EL +(r), (5.10) 

'TTlrEL(r) ll z 

zp- (r z) 1 2( il..(r.n) dt 
(2) log 

2 
d' = -2- J [log gr,~ +log t] ,._ ' z EL -(r). 

'TTlrEL(r) ll z 

From the fact that we have chosen z = 1 E L(r), (5.2) and (5.10)(1) it follows by applying the 

Plemelj-Sokhotski formulas: 

I a 2(r 1) 1 a 2(r eil..(r,D) d" 
log pt (r, 1) = 2log '"' ' + -. J [log '"' ' + log tl -,.-ll-. (5.11) 

d 2'1Tl~EL(r) d ll - 1 

Hence, because of (5.1) and (5.2) we obtain the following expression: 

log d = ~ J log{g(r,e;l..(r.~>)t +} --1.L · (5.12) 
'TTlrEL(r) r- 1 

Inserting (5.12) into (5.10) and applying Cauchy's theorem yields: 

logp 1(r,z) = 
2
2

. J [log {g(r,eilt(r,n)t+}]{ ,.~ - ,.~ 1 } dt, z EL +(r), (5.13) 
.,,,rEL(r) ll z ll 



logzp 2(r,z) = -
2
2 . J [log {g(r,eil\(r,n)f+}]{ ,.~ - ,.~ 1 } df, z EL -(r). 
'ITlrEL(r) ~ z ~ 

Or, equivalently, 

P1(r,z) =exp{~ J [log{g(r,eil.(r,n)f+}]{ f+z _i±..!.} df }, z EL +(r), 
2'1TlrEL(r) f-z f-1 r 

p 2(r,z) = z- 1exp{--1-. J [log{g(r,eil.(r,n)t+}]{t~z _ f~l} df }, z E L-(r). 
2'1TlrEL(r) . · r Z r 1 r 

It follows by applying the Plemelj-Sokhotski formulas that for z E L(r): 

+ "'< > + 1 
/ 

." ,... + t + z r + 1 di' 
p 1 (r,z) = g(r,e'" r,z )z exp{-. [log{g(r,e'"'r,.,)f }]{ - --} .!2. }, 

2'1TlfEL(r) r- Z r-1 r 
· _..!.. 1 · ..!.. f+z t+ 1 df 

pi(r,z) = g(r,e'l\(r,z>)z 2 exp{--. J [log{g(r,e11'<r.n)f 2 }]{---..L!....!..} -}. 
• 2'1TlrEL(r) f-z f-1 r 

Substitution of the relations (5.15) into (5.3)(3) yields the following singular integral equation: 

for z E L(r), with 0 < r < 1 fixed, 

..!.. 1 . ..!.. t+z r+ 1 df 
exp{iA(r,z)} = z 2 exp{-. J [log{g(r,e11'(r,r>)t 2 

}]{-----} -}. 

2'1TlrEL(r) t-z f-1 r 
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(5.14) 

(5.15) 

(5.16) 

We obtain similar expressions by starting from (5.3)(2) as a boundary condition: 

p1(r,z)=g(r,l)exp{~ J {2iA(r,t)-logf}{~~z-~~!} df},z EL+(r), (5.17) 
'ITlfEL(r) ~ z ~ ~ 

p 2(r,z) = g(r, l)z- 1 exp{~ J {2i;\(r,t)-log f}{ ~~z - ~~!} df }, z EL -(r). 
'ITlrEL(r) ~ z ~ ~ 

· _..!.. 1 {+z t+l df 
g(r,e 11'<r,z>) = g(r, l)z 2 exp{-. J {2i;\(r,t)-log f}{ _..L!....!..} -}, z E L(r). 

2 '1TlrEL(r) r- z f-1 r 
Because pt (r,z) maps the contour L(r) one-to-one onto the contour Si(r), and because p 1(r,z) as 

given by (5.14) is regular for z E L(r) UL+ (r), it follows from the principle of corresponding boun­

daries (cf. App. A) thatp 1(r,z) as given by (5.14) maps L +(r) conformally onto St(r). Similarly for 

p2(r,z). 
As in Cohen and Boxma [7], Section II.3.6, p.176, it is seen that (5.16) and (5.18) are equivalent 

and hence that also (5.14) and (5.17) are equivalent. Further as in Cohen and Boxma [7] it may be 

seen that relation (5.16) represents an integral equation for the determination of L(r) and ;\(r,z), 

z E L(r). 
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6. THE RIEMANN BOUNDARY VALUE PROBLEM 

In this section we formulate and solve a Riemann boundary value problem of the type as formu­

lated in Cohen and Boxma [7], Section 1.2.1. 
Let 0 < r < 1 be fixed. Because for z E L(r), (pt (r,z),p2 (r,z)) is a zero pair of the kernel (4.3) it 

should hold for z E L(r) (cf. (4.7)): 

r{pt (r,z)p2 (r,z)-r1pt (r,z)-r2p2 (r,z)},8{i\(l-r1pt (r,z)-r2pi (r,z))}4>(r;O,O) (6.1) 

+ r(p2 (r,z)-p( (r,z)),8{i\(l-r1pt (r,z)-r2p2 (r,z))}{r24>(r;pt (r,z),O)-r14>(r;O,p2 (r,z))} 

+pt (r,z)p2 (r,z) = 0. 

By noting that, 

pt (r,z)p2 (r,z) = r{r1p2 (r,z)+r2pt (r,z)},8{i\(l-r1pt (r,z)-r2p2 (r,z))}, (6.2) 

we write (6.1) as 

r1(pt (r,z)-p2 (r,z))4>(r;pt (r,z),O) + r1(p2 (r,z)-pt (r,z))4>(r;O,p2 (r,z)) = (6.3) 

{pt (r,z)p2 (r,z)-r1pt (r,z)-r2p2 (r,z)}4>(r;O,O) + r1p2 (r,z) + r1pt (r,z). 

Using (5.1) we obtain: 

r1 _ 1 
4>(r;pt (r,z),O) = -4>(r;O,p2 (r,z)) + -H(r,z), 

r1 r1 

where 

{g(r,eiX(r,z»-ri eiX(r,z) -r2e -iX(r,z) }4>(r ;0,0)+ ri e -iX(r,z) + r 2eiX(r,z) 
H(r,z) = .....:.:;:,. ________ ei-X(-r,z_) ___ e"'-_-iX-(r-,z-) --------

r1 
Note that - is never zero on L(r), that 

r1 

r1 
ind - = 0, 

zeL(r) r1 

(6.4) 

(6.5) 

(6.6) 

and that ~ satisfies (trivially) a Holder condition on L(r). Because the numerator and the denomi­
r2 

nator of (6.5) both satisfy a Holder condition on L(r) (cf. (5.9)) and the denominator is never zero on 

L(r) except for z = l, the function 

1 
-H(r,z), 
r1 

satisfies a Holder condition on L (r ). 
First note that the maximum modulus principle (cf. Nehari (16]) implies that: 

IP1(r,z)I < 1 for z EL +(r), 

IP2(r,z)I < l for z E L -(r), 

(6.7) 

because p 1 (r,z) is regular in L + (r), continuous in L(r) UL+ (r) and IP 1 (r,z) I < 1 for z E L(r), 

analogously for p 2(r,z). 

From (6.7) and the definition of 4>(r ;p 1,p2) it follows that: 

4>(r ;p 1 (r,z ), 0) should be regular for z E L + (r ), 

continuous for z E L(r) UL+ (r), 

(6.8) 



lim <P(r;p 1(r,n,o) = <P(r;p( (r,z),O), z E L(r); 
~--+Z 

!EL +(r} 

<P(r ;0,p:Z (r,z)) should be regular for z E L -(r), 

continuous for z E L(r) UL -(r), 

lim <P(r;O,p2(r,t)) = <P(r;O,p2 (r,z)), z E L(r). 
~--+Z 

)EL -(r} 

Note that, according to (4.8)(4), 

lim <P(r ;O,pi (r,z)) = <l>(r ;0,0). 
lz 1--+oo 
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(6.9) 

(6.10) 

The conditions (6.4), (6.8) and (6.9) formulate the Riemann boundary value problem on the contour 

L(r) announced in the beginning of this section. We may and do apply the results of Cohen and 

Boxma [7], Sections 1.2.1-I.2.4 and obtain: 1 

r2<I>(r;p 1(r,z),O) = 
2
1

. J H(r,n /r + r 1<I>(r;O,O), z EL +(r), (6.11) 
'ITl~eL(r) 11 - z 

r 1<1>(r;O,p 2(r,z)) = 
2
1

. J H(r,n /r + r 1<I>(r;O,O), z E L-(r), 
'ITl~eL(r) 11 - z 

where H(r, ·)is given by (6.5). 
<l>(r ;0,0) can be determined from the observation that 

00 00 

<l>(r;O,O) = ~rnE{(z~1l=O, z~2l=O)} = ~rnPr{z~1 > + z~2) = O}, (6.12) 
n=O n=O 

where {z~1 > + z~2>, n =0,1,2, ... } is the queue-length process, measured at departure epochs, of an 

M/G/1 queueing system with arrival rate A and service-time distribution with LST f3(p). It may be 

proved that 

1 
<l>(r ;0,0) = ' (6.13) 

1-E{r0
} 

with n the number of customers served in a busy period of the M/G/1 queueing system described 

above. 

In Cohen [5] it is proven that 

oo 00 (At)n - I 
E{r0

} = ~ J rne-"Al dBn*(t). 
n' n=lt=O • 

(6.14) 

l. By applying Liouville's theorem it is possible to derive the results (6.11) more straightforwardly, cf, Cohen [4]. 
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7. THE DETERMINATION OF fP(r;pi.p2) FORp1 ES( (r),p2 E Si (r) 
According to the discussion at the end of Section 5, p 1(r,z) maps L +(r) conformally onto S( (r). 

Denote by, 

z = P1o(r,p1), PI E st (r), (7.1) 

the inverse mapping, that is the conformal map of S( (r) onto L + (r). Analogously, denote by 

z = P2o(r,p2), p2 E Si (r), (7.2) 

the conformal map of Si (r) onto L -(r). 
Because S 1 (r) and S 2 (r) are smooth contours and L (r) is also smooth, the theorem of corresponding 
boundaries (cf. App. A) implies that p 10(r,·) maps S1(r) onto L(r), and p 20(r,·) maps S2(r) onto 
L(r). 

From the preceding section, the following is now immediately clear: 
for 0 < r < l,p1 ES( (r),p2 E Si (r), 

I j dK 
r 2fP(r;pi.O) = -

2 
. H(r,K) " ( ) + r 1fP(r;O,O), 

'll'l rEL(r) ~ -plO r,p1 

I j dK 
r 1<I>(r;O,p2) = -

2 
. H(r,K) " ( ) + r1fP(r;O,O), 

'll'l rEL(r) ~ -p20 r,p2 

with <I>(r;O,O) given by (6.13). 
By substitution of (7.3) and (6.13) into (2.13) it follows: 
for 0 < r < l,p1 ES( (r), P2 E Si (r), 

rPD\(l-r1p1 -r2p2)}(p2-p1) 
<P(r ;p 1oP 2) = X 

P1P2 -{r1p2 +r2p1 }rP{>-(l-r1p1 -r2p2)} 

_I_. j H(r,K){ 1 I } df + 
2m rEL(r) K-p10(r,p1) K-p2o(r,p2) 

(7.3) 

(7.4) 

We should now use the technique of analytic continuation to obtain an expression for fP(r ;p 1,p 2) 
that holds for lp 1 I .;;;;; 1, lp2 I .;;;;; 1. However, since the main interests in this report are the (first) 
moments of the queue-length distribution, such an analytic continuation will not be carried out here. 
It will appear in the sequel that the (first) moments can be computed from the results in Section 6. 
In the next sections the stationary distribution of the queue-length process is investigated. 

8. THE STATIONARY DISTRIBUTION - I 
As pointed out in Section 2 the imbedded Markov chain {(z~1 >,z~>), n =0,1,2, ... } is irreducible and 

aperiodic. It will be shown under which conditions this Markov chain consists of positive recurrent, 
null recurrent or transient states (cf. Chung [3]) respectively. 

For n = 0, 1,2, ... , for k1ok 2 = 0, 1,2, ... , denote by: 

P(n) ·= Pr{zO>=k z<2>=k iz0 >=o z<2>=0} k 1k2 • n 1' n 2 0 • 0 • (8.1) 

the conditional probability that at the epoch of the n1h service completion kj customers of type "j", 
j = 1,2, are left behind in the system, given that the system is empty at t = 0. 
The following theorem is easily verified (cf. Cohen [5]): 



THEOREM 8.1 
For k1'k2 = 0, 1,2, ... , the limits 

fun p~n~ ' 
I 2 

ll->00 
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(8.2) 

exist and are independent of the initial state. If the· Markov chain {(z~1 >, z~2>), n =O, 1,2, ... } is ergodic 

then 

uk,k, := fun p~~t > 0, 
n->OO 

for every k1>ki = 0, 1,2, ... , and 
00 00 

~ ~ uk,k, = 1, 
k,=O k 2=0 

otherwise uk,k, = 0 for every k1>k2 = 0, 1,2, .... 

Denote by (z1, z2) a stochastic vector with for every k1'k2 = 0, 1,2, ... , 

Pr{z1 =k1, z2 =k2} = uk,k,· 

We define for IP 1 I..;; l, IP2 Io;;;;1 the generating function of the joint distribution of (z1, z2) by: 

00 00 k k 
<P(p1>p2) := ~ ~p1'p2'uk,k,· 

k,=Ok,=O 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

From Theorem 8.1 and a well-known Abelian theorem for generating functions (cf. Titchmarsh [18]) it 

follows, 

LEMMA 8.1 
If the states of the Markov chain {(z~1 >, z~2>), n =O, 1,2, ... } are positive recurrent then for 

IPilos;;;l, IP2los;;;l, 

lim (l-r)<P(r;p1>p2) = <P(p1,pz), 
rt! 

and if they are not then for IP 1 I..;; 1, IP2Io;;;;1, p 1 =FI, p2=Fl, 

lim (1- r)<P(r ;p 1>P2) = 0, 
rt! 

both limits being independent of the initial state. 

(8.7) 

(8.8) 

Because all states of an irreducible Markov chain are of the same type it is sufficient to investigate the 

state (0,0), i.e., we have to consider 

lim (1-r)<P(r;O,O), 
rt! 

in order to obtain the conditions for which the Markov chain is ergodic. 

From (6.13) it follows that 

fun (1-r)<P(r;O,O) = lim l-r = 1-Xfl if Xfl<l, 
rt! rt! 1 - E {r0

} 

= O if Xfl~l, 

(8.9) 

(8.10) 

(cf. Cohen [5]). Hence the Markov chain {(z~1 >, z~2>), n =O, 1,2, ... } is ergodic if and only if Xfl < 1. 

REMARK 8.1 
Obviously, the distribution of the busy period of the present model is identical with that of the 
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process {z~1 > + z<;->, n =0,1,2, ... }. This process is the queue-length process of an M/G/1 queueing 

system with arrival rate >.. and service-time distribution with LST fJ(p ). It is well known that this pro­

cess has a busy period with finite first moment if and only if "AfJ < 1. Consequently, the process 

{ (z~1 >, z~2>), n = 0, 1, 2, ... } possesses a unique stationary distribution if and only if "AfJ < 1. 

From Lemma 8.1 and (7.4) we should now be able to obtain the generating function (8.6) by inves­

tigating (1-r)<I>(r ;p i.p2) for r j 1. The evaluation of this limit however, poses some serious 

difficulties, not in in the least because of the occurrence of r in the integration contour L(r). For a 

treatment of this limit in a similar case cf. Blanc [ 1 ]. In this report we shall take a different approach 

which will be pointed out in the next section. 

9. THE STATIONARY DISTRIBUTION - II 
Another way to find the (generating function of the) stationary distribution is to derive it directly, 

in an analogous manner as for the time-dependent case. In this section the major differences are indi­

cated and at the end the results are presented. 
Throughout this section the restrictions ( 4.1) are assumed to hold. 
By (z1, z2) the stochastic vector with distribution the stationary distribution of the process 

{(z~1 >, z~2l), n =O, 1,2, ... } is denoted. If this process is stationary then the function 
111 zt2l 

E{p~· Pi" I zb1>=o, zb2l=O}, (9.1) 

is independent of n and of the initial state. Hence, denoting by <I>(pi.p2), jp 1 I ~1. jp2 I ~1. the sta­
tionary distribution it follows from (2.12): 

{p 1P2 -(r1p2+r1p1 )fJ(x )}<I>(p 1.p2) = (p2-p1 )fJ(x ){r2<I>(p 1.0)-r1 <I>(O,p2)} (9.2) 

+ {p1p2 -(r1p1 +r2p2)}fJ(x)<I>(O,O), 

where x is given by (2.10). As it is seen from (8.10) we have 

<I>(O, 0) = 1 - >..fJ. (9.3) 

This is also immediately clear by comparing with the M/G/ 1 queueing model discussed in Section 6. 

As can be seen from (9.2) the kernel of the functional equation is in this case given by: 

K(pi.p2) : = P1P2 -(r1p2 +r2p1)fJ{"A(l -r1p 1 -r2p2)}. (9.4) 

Concerning the analysis of the kernel (9.4) we state the following analogon of Lemma 3.1 

LEMMA 9.1 
(1) If "AfJ < 1 the kernel K (gs,gs - t) has in I g I ~ 1 exactly two zeros, of which one is identically zero. 

Denote the other zero by 

g = g(s), 

it is given by: 
for lsl =1, 

g(s) = (r1s- 1 +r2s)E{ jris +r2s- 1120- 2 

(2) for js I= 1: 

g(s) = -g(-s), g(S) = g(s). 

(9.5) 

(9.6) 

(9.7) 

proof of lemma 9.1 
It is clear that, for fixed Is I = l, g = 0 is a zero of K (gs,gs - t ), I g I ~ 1. By a direct proof or noting 
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Figures 4 - 5 it is seen that for Is I= 1, s:;6:- l, + 1, lgl = l, 

l(r1s- 1 +r2s)/J{A(l-g(r1s +r2s- 1))} I .;;;;; lr1s- 1 +r2s I.< 1 = lgl. (9.8) 

Hence, as in Section 3, it can be seen by applying Rouche's theorem that g-1 K (gs,gs - I), 

Is I= l, s:;6:1, -1 has in lgl o;;;;l exactly one zero, with multiplicity one. 
By applying Takacs' lemma (cf. Cohen [5]) to the equation in g: 

g = /J{A(l -g)}, (9.9) 

it follows that if s = 1 then g = 1 is the only zero of g- 1 K (gs,gs - 1) in I g I .;;;; l and that A/J < 1 
implies that it is a simple zero. Analogously, if s = -1 then g = -1 is the only zero of 
g-1 K (gs,gs - J) in I g I .;;;; 1 and its multiplicity is one if A/J < 1. This proves the first statement of 
(9.9) (1). The second statement of (9.9) (1) has an analogous proof as in Lemma 3.1 whereas the vali­
dity of the statements (9.9) (2) is readily verified. 

Define 

S1 := {p1 :p1=g(s)s, lsl=l}, 

S2 := {p2 :p2=g(s)s- 1, lsl=l}, 

with g(s) defined by (9.6). 
In precisely the same manner as for Lemma 3.2 we can prove: 

LEMMA 9.2 
The contours S 1 and S 2 are simply connected and smooth. 

Furthermore we have, 

p 1 = o E s1, P2 = o E st. 

(9.10) 

(9.11) 

Note that it is readily verified from (9.6) that the contours S 1 and S 2 are analytic contours for 
lsl=l, s:;6:1,-l. 

REMARK 9.1 
In Appendix B several graphs have been plotted of the contours S 1 and S 2 for various values of the 
parameters. 

The boundary value problem reads in this case: 

construct in the z-plane a simply connected Jordan contour L and a pair of mappings 
p 1(z),z ELLJL+,p2(z),z ELLJL-,suchthat 

(i) p 1 (z) is regular and univalent for z E L +, 

continuous for z E L U L + , 

(ii) p 2(z) is regular and univalent for z E L - , 

continuous for z E L U L - ; 

(ii) 

(iii) 

(iv) 

p 1 (z) maps L + conformally onto St, 

p 2(z) maps L - conformally onto Si ; 

pt (z), pi (z), z E Lis a zero pair of the kernel (9.4); 

P1(0) > o*>, p2(00) = 0, 0 < d := lim lzp2(z)I < oo; 
lz 1--+oo 

(9.12) 



24 

*) Note that it is always possible to choose the origin of the z-plane so that it belongs to L +. Further 

it is possible to choose 1 E L. 

The remaining formulas are completely analogous to the formulas derived in the preceding sections. 

We shall just give the analogons of the most important expressions here. 

p 1(z) = exp{-1-. J [log{g(e0'<n)t112 }]{ t+z - t+ 1 } dt }, z EL+, (9.13) 
2'1Tlf;EL t-z t-1 t 

P2(z) = z-'exp{--1-. J [log{g(e;xm)t1;2}]{ t+z - t+ 1} dt }, z EL - . 
27Tlf;EL t-z t-1 r 

The relation for the determination of L and A.(z ), z E L: 

exp{iA.(z)} = z 112exp{-1-. j [log{g(e;xm)t11 2}]{ t+z - t+ l} dt }, z EL. (9.14) 
27Tlf;EL t-z t-1 r 

The following Riemann boundary value problem for the contour L is to be solved: 

To construct in the z-plane a simply connected Jordan contour L and a pair of mappings 
p 1 (z ), z E L U L + , p 2 (z ), z E L U L - , such that 

<I>(p 1 (z ), 0) should be regular for z E L +, 

continuous for z E L U L + , 

lim <I>(p 1(t),O) = <I>(pt (z),O), z EL; 
f;->Z 
tEL + 

<I>(O,p 2(z)) should be regular for z E L - , 

continuous for z E L U L - , 

lim <I>(O,p2(m = <I>(O,p2 (z)), z E L. 
f;->Z 
£El -

The boundary condition: 
for z EL, 

r, 1 
<I>(pt{z),O) = -<I>(O,pi (z)) + -H(z), 

r1 r1 

where 

z EL. 

The solution of the Riemann boundary value problem presented above is given by: 

r 2<I>(p 1(z),O) = ~0. f H(t) /K + r1II0, z E L +, 
'1Tlf;EL ~ -z 

Ilo dt 
r 1<I>(O,p2(z)) = ~ f H(t) ->-- + r1II0, z EL - , 

7Tlf;EL :, -z 

(9.15) 

(9.16) 

(9.17) 

(9.18) 



where H(·) is given by (9.17) and (cf. (8.10)) 

Ilo : = <ll(O,O) = 1-Xp. 
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(9.19) 

The expressions, analogous to the ones in Section 7 will not be given here, because we can compute 
the moments of the queue-length distribution without them. 



26 

Chapter Ill 

Averages 

In this chapter we investigate the first moments of the actual waiting-time distribution, the first 

moments of the sojourn-time distribution, and, for each queue, the mean number of customers meas­

ured at an arbitrary epoch or at a departure instant. Throughout this chapter we suppose that the sys­

tem is in equilibrium. Furthermore we assume general a;, r; and /3;, but of course a = a 1 +a2 < 1. 

1. INTRODUCTION 

According to Little's formula we have, 

E{x;} = ~\E{s;}, i = 1,2, 

where, for i = 1,2, 

X;: number of customers of type i in the system, 

measured at an arbitrary epoch, 

s;: sojourn time of a type -i customer, 

A;: arrival intensity of type - i customers. 

(1.1) 

(1.2) 

Because the input of queue i is Poissonian, it follows that the distribution of the number of type-i 

customers at an arbitrary epoch is equal to the distribution of the number of type-i customers 

immediately before an arrival epoch of a type-i customer: Because of the "memoryless" property of 

the negative-exponential distribution the duration of time separating an arbitrary instant and the 

preceding arrival epoch has the same (exponential) distribution as does the time separating successive 

arrival epochs. Since the state of any system at any epoch is entirely determined by the sequence of 

arrivals and service times prior to the epoch, it fellows, that, when the input process is Poisson, no 

inference about the state of the system at any epoch can be drawn from knowledge of whether or not 

the epoch in question is an arrival epoch. ( cf. Wolff [19]) 

In Appendix A, Section 2 it is proven by an "up-and-down-crossings" argument that the distribu­

tion of the number of type-i customers immediately before an arrival epoch of type-i customer equals 

the distribution of the number of type-i customers left behind in the system after the service comple­

tion of a type-i customer. 
From the two arguments above it is seen that the distribution of the number of type-i customers in 

the system at an arbitrary epoch is equal to the distribution of the number of type-i customers in the 



system at a departure epoch of a type-i customer. Hence we have, 

E{x;} = E{z~) I rn=i}, 

where, for i = I, 2, 

x; : number of type - i customers in the system, 

measured at an arbitrary epoch, 

z~> : number of iype - i customers, left behind in the system 

after the service completion of the n1h customer, 

rn = i : if the nth departing customer is of type i. 

In the preceding chapter we have determined, 
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(1.3) 

(1.4) 

z0 > z<2l 

il>(pi,p2) = E{p{ Pi" }, (1.5) 

we now have to establish a relation between E{zU> lrn=i} and E{zU>} for i = 1,2. This will be 

effectuated in Section 2. Expressions for the various first moments will be given in Section 3, while 

Section 4 and Section 5 are devoted to a numerical evaluation of these expressions. 

2. THE RELATION BETWEEN E{zU> lrn=i} AND E{zU>}, i = 1,2. 

As before, let z~>· i = 1, 2, denote the number of customers in queue i, left behind at the departure 

of the nth customer from the s~stem, and let rn = i if the nth customer is of type i, i = 1,2. We 

abbreviate the event {z~1>=ii,z~>=i2,rn=i} to {ii,i2,i)n. 

It easily follows, that, fork = 1,2: 
00 (A. fi• (A. d' 

1(0,0,k)n} = r1 j-~-1 -e -A,t_~-1 -e -A,t dB 1(t); 
o z 1. l2. 

(2.1) 

00 (A. tl'+l-j, (A. d' 
I (j 0 k) } = f I -A,t_2_e -A,t dB (t) 

i. ' n ( . + I - . )I e . I I ' 
O l 1 l I • l2 • 

for }1 l, ... ,i1 +l; 

for j 1 = l, ... ,i 1 +I, h = l, ... ,i2; 

(4) Pr{ (i 1.iz, 1)n+1 I (j 1>Jz,k)n} = 0 for j 1,Jz other than in (1),(2) or (3). 

and analogously, 

for h = l, ... ,i 2 +I; 
00 (A. tf-j, (A. t;,+i-h 

(7) p {(" . 2) I(}" . k) } - f I -A,t 2 -A,t dB (t) 
r l1,l2, n+I 1'12• n -a2 (" ")le (" +l .)e 2 ' 

0 11-11. l2 -12 
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for }I= l, ... ,iI,Ji = l, ... ,i2+1; 

(8) Pr{(ii.i2,2)n+I l(ii.Ji,k)n} = 0, for Ji.h other than in (5),(6) or (7). 

Note that, since we assume the system to be stationary, Pr{(iI.ii.i)n+I l(ii.Ji,k)n} does not depend 
on the value of n. 
Next define for IP 1 I..;; I, IP 2 I..;; I and i = 1,2: 

(I) (2) 

cI>(i)(p p ) . = E{p. z.+1pZ•+• (r =i)} 
1' 2 · I 2 n+I 

00 00 . . 

= ~ ~p'I'pi'Pr{(ii.i2.i)n+d· 
i 1=0i,=O 

Writing out (2.2) yields: 
oooo .. 2 

cI><O(pi.p2) = ~ ~p;·p~' ~Pr{(i1.ii,i)n+I l(O,O,J)n}Pr{(O,O,j)n} 
i 1 =0i,=O j=I 

0000 .. 002 

+ ~ ~p;'pi ~ ~Pr{(iI.ii,i)n+I l(ii.O,J)n}Pr{(ii.O,J)n} 
i,=Oi,=O j,=lj=I 

0000 .. 002 

+ ~ ~p111Pf ~ ~Pr{(iI,ii,i)n+I l(O,Ji,J)n}Pr{(O,Ji,J)n} 
i,=Oi,=O j,=Ij=I 

0000 .. 00002 

+ ~ ~P1I1Pf ~ ~ ~Pr{(iI,ii,i)n+I l(ii.Ji,J)n}Pr{(ii.Ji,J)n}· 
i 1 =0i,=O j1=Ij,=Ij=I 

By substituting (2.1) into (2.3) we obtain, with x given by Il.(2.10): 
for i = I, IP ii ..;; I, IP 2 I .;;;; I, 

<I>(ll(pi,p2) = rI,BI(x)Pr{z~I) =O, z~2> =O} 

,BI(x) oo . 
+ --~p{'Pr{z~I>=Ji, z~2>=0} 

PI j,=I 
aI oo oo . . 

+ -,BI(x) ~ ~p{'J!i' Pr{z~I) =}I, z~2> =Ji}; 
PI j,=Ij,=I 

for i =2, IPI I ..;;I, IP2 I .;;;;I, 

<I><2>(pi.p2) = r1,82(x)Pr{z~1 >=0, z~2>=Q} 

.B2(x) oo . 
+ --~J!i'Pr{z~I)=O, z~2>=Ji} 

P2 Jz=I 
a2 oo oo . . 

+ -,BI(x)~ ~p{'J!i'Pr{z~I>=ji, z~2>=Ji}. 
PI j,=Ij,=I 

Recall from Chapter II, Section 9, for IP I I..;; I, IP2I.;;;;1: 
(1) (2) 

<l>(pi,p2) = E{p~· p~· }. 

It follows from (2.4) and (2.5): 

aI a2 aI 
<I>(ll(pi.p2) = -,81(x)<I>(pi, p2) + -,BI(x)<I>(pi,O) - -,BI(x)<I>(O,p2) 

PI PI PI 

a2 
+ (rI --)f:JI(x)<I>(O,O); 

PI 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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ai a1 ai 
q,<i>(pi.pi) = -Pi(x)<P(pi, pi) + -Pi(x)<P(O,pi) - -/1i(x)<I>(p1,0) 

Pi Pi Pi 

a1 + (ri--)/1i(x)4>(0,0). 
Pi 

REMARK 2.1 
Taking p 1 = Pi = 1 in one of the relations (2.6) yields the following interesting relation: 

r1 = a1 + aiPr{z~>=O} - a1Pr{z~l)=O} + (r1 -ai)Pr{z~1>=o, z~i>=O}. (2.7) 

We now determine E { z~1 >(rn = l)}. First substitute Pi= 1 in the first relation of (2.6): 

a1 ai 
q,(l>(pi. 1) = -/11{r1A(l-pi)}<I>(pi.1) + -/11 {r1A(l-p1)}4>(pi.O) 

PI PI 
(2.8) 

a1 ai 
- -/11{r1A(l-p1)}4>(0,1) + (r1 --)/11 {r1A(l-pi)}<l>(O,O). 

PI PI 

By differentiating (2.8) once with respect top 1, substituting p 1 = 1 and using (2.7) we obtain: 

E{z~1 >(rn=l)} = ~ 1 q,(l>(pi.l) lp,=I (2.9) 

In a similar way we obtain: 

E{z~i>(rn=2)} = ai + a1E{z~i>(z~l)=O)} - r1riA/11. 

The quantity we are interested in, however, is 

E{z~> lrn=i}, i =1,2. 

Of course we have 

E{z~> lrn=i} = J_E{z~>(rn=i)}. 
r; 

Hence, from (2.9), (2.10) and (2.12): 

a1 I ai i 
E{z~1 l lrn=l} = -E{z~l} + -E{z~1>(z~>=O)} - riA/1i; 

r1 r1 

ai i a1 I 
E{z~i) lrn=2} = -E{z~>} + -E{z~i>(z~>=O)} - r1A/11. 

ri ri 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The expressions (2.13) supply us with a relation between E{z~>} and E{z~> lrn=i}, i=l,2. Now 

from ( 1.1),(1.3) and (2.13) we find for the mean sojourn time E { s;} of a type-i customer: 

a1 ai ri 
E{si} = ~E{z~1>} + ~E{z~1>(z~1 =0)} - -f1i; 

r 1/\ r1/\ r1 
(2.14) 

ai a1 r1 
E{Si} = -E{z~>} + -E{z~>(z~1l=O)} - -/11-

dA dA ri 
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3. EXPLICIT EXPRESSIONS FOR THE VARIOUS FIRST MOMENTS. 

In this section we derive an expression for E{zU>}, the mean number of type-i customers in the sys­

tem, measured at an arbitrary departure epoch. With the help of Li~tle's formula and the relations in 

the preceding section expressions for the mean actual waiting and sojourn times are derived. 
We start from the functional equation in the stationary case. This equation reads: (cf.II.(9.2)) 

for lpil<l, IP2l<l: 
z0 , z<2l 

fp1p2-a1p2f31(x)-a2p1f32(x)]E{p( p2· } = (3.1) 
. "' m 

fp2/31(x)-p1/32(x)][a2E{p~· (z~2> =O)} - a,E{p~· (z~1 > =O)}] + 

fp1p2{rtf31(x)+r2/32(x)} + a2p2/Jt(X) + a1p1/32(x)]II0, 

with x given by (II.(2.10)) and (cf. II.(9.19)): 

Ilo := «I>(O,O) = l-A1/31-A2/J2. (3.2) 

Put, 

x : = A1(l -p1). (3.3) 

By substitutingp2=1 into (3.1) we find: 
()) 

fp1 -a1f31(i)-a2p1/32(x)]E{p~· } = (3.4) 
(I) 

[f31(x)-ptf32(x)][a2E{p~· (z~2> =O)} - a1 Pr{z~1 > =O}] + 

fp1 (r1/31(x)+r2f32(x)} - a2/Jt(x) - a1p1/32(x)]II0. 

Or, equivalently, 
z'" - - z"' 2 t 

E{p( } = {[/31(x)-ptf32(x)][a2E{p( (z~>=O)}-atPr{z~>=O}-a2IIo] (3.5) 

+ p 1r1 lPt (x)-/32(.X)]}·{p t -a1f3t (x)-a2p tf32(x)}-t. 

By differentiating (3.5) once with respect top t' substituting p 1 =I, twice applying l'Hopital's rule and 
using relation (2.7) we obtain the following expression for the mean number of type-1 customers at an 

arbitrary epoch: 

[AT(/3\2> -{3~2>)-2At/32][r1 (1- Ilo)-ai] 
E{z~1 >} = --------------

2[at -At(a1/31 +a2f32)] 

[A1(f3t -f32)- l]a2E{z~1 >(z~2>)} 
+ -----------

<X t -At (a1 Pt + a2f32) 

2r1 At (/31 -/32) + r1 AT(/3\2> - {3~2>) 
+ ----------~ 

2[a1 -At(a1/31 +a2f32)] 

[A1 (/31 -/32)- l ][r1 (1- Ilo)-ai][ATca1/3\2> + a2/3~2>)+ 2a2A1/32] 
+ ----------------------

2 [a 1 -At (a1 /31 +a2/32)]2 

If we interchange the indices "l" and "2" in (3.6) we obtain the analogous expression for E { z~2>}. 

REMARK 3.1 

(3.6) 

The only factor in (3.6) (and in the first relation of (2.14)) that is not yet known, is E{z~1 >(z~2>=0)}. 

In the following section it will be seen how this factor can be determined. 

With the help of the formulas (2.13) we can now determine E { xt} = E {z~1 > I rn = 1} from (3.6). As 

indicated in Section 2 we then obtain, by applying Little's formula, an expression for the mean 

sojourn time E{st}. Finally, by using the obvious relation: 
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E{wi} = E{s;} - {J;, i = 1,2, (3.7) 

we can find an expression for the mean actual waiting time of a type-I customer. Similarly, the 

expressions for the first moments for type-2 customers are derived. · 

We shall consider the above mentioned expressions for some special cases. 

CASE I: r1 = a1 and r2 = a1: 

X1({J\2>-[J~2>)(1+21Io) r 2 E{z~
1>(z~2>=o)} 

E{z~l)} = 21Io - 2X1fJ2 - '1 Ilo 

A1(fJ1 -fJ2)[l +l2E{z~1>(z~2> =O)}] 
'1 X2fJ2[X1(fJ1 -fJ2)(l-IIo)+Ilo] 

+ ----------~~ + ---------~ 
IIo rra 

E{z~1>} = A1fJ + 
Xr/12> 

+ 
a1X1fJ E { z~1 >(z~2) =O)} 

2(a1 -XifJ) a1-X1/3 
- a1 

a1 -X1fJ 

E{z~2>} = X2fJ + 
X~f12> 

+ 
a1X2fJ E{z~2>(z~1 > =O)} 

2(a2 -X2fJ) a1 -X2fJ 
- a1 

From (2.14) we have for the mean sojourn times: 

a 1 -r2 a 1X{12> a 1a2{J 
E{s1} = fJ + + ----

'1 2(a1 -X1fJ) r1(a1 -XifJ) 

a1-r1 a1Xf12> a1a2fJ 
E{s2} = fJ + + ----

'2 2(a2 -X2fJ) r2(a2 -X2fJ) 

REMARK 3.2 
As pointed out before, we have for Case II that 

E{z~1)} + E{z~2)} = E{zn}, 

a1-X2fJ 

a2{JE { z~1>(z~2) = 0)} 

r1(a1 -X1{J) 

a1{JE {z~>(z~l) =O)} 

r2(a2 -X2{J) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

where E { zn} denotes the mean number of customers, measured at an arbitrary departure epoch in an 

ordinary M/G/ 1 queueing system with arrival intensity A, mean service time /3 and second moment 

{12>. From M/G/l theory we have, cf. Cohen [5], that 

- x2ff2> 
E{zn} - X/3 + 2(l-X{J) (3.12) 

From (3.9) and remark 3.2 a relation between E { z~1 l(z~2> = 0)} and E { z~2>(z~1 > = O)} follows: 

(a2 -A.2fJ) E { z~ll(z~2) =O)} + (a1 -X1/3) E { z~2)(z~l) =O)} = (3.13) 
a1 ~ 

X2{12>(a1 -A.1fJ)(a2-X2{J) Xrf12>(a2-A.2fJ) A.~{12>(a1 -X1fJ) 
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CASE III: a 1 = rl> a2 = r1 and B(-) - B10 = B20: 

With the notation II.(1.2) and II.(1.3) we have: 

'll.2/]-2> a 2 
E{z~1>} = r1[a + ] + ---

2(1-a) (1-a) 

r 2 E{z~
1 >(z~2>=0)} 

r1 (1-a) 

')1_2 tJ-2> a 1 
E{z<2>} = r1[a + ] + ---

n 2(1-a) (1-a) 
r 1 E{z~

2>(z~1>=0)} 

r1 (1-a) 

Relation (3.13) now becomes: 

For the mean number of customers, measured at an arbitrary epoch we have: 

'll.2 tJ-2> 
E{xi} = aE{z~1 )} + (l-a)r 1[a + 

2
(1-a) ], 

'll.2 tJ-2> 
E{x2} = aE{z~2>} + (l-a)r2[a+ 

2
(l::Oa)]· 

Applying Little's formula to (3.16) we obtain for the mean sojourn times: 

/3E{z~1 >} 
E{si} = + (1-a)E{s}, 

r1 

/3E {z~2>} 
E{Sz} = + (1-a)E{s}· 

r1 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Here E{s} denotes the mean sojourn time in an ordinary MIG/I queueing system with arrival inten­

sity 'A and service-time distribution B(·). 

REMARK 3.3 
By noting (3.7) we can, of course, immediately derive the mean actual waiting times from the mean 

sojourn times. A more direct approach is also possible, following a method of Cohen [5]. In Appen­

dix D this approach is effectuated, yielding the stationary distribution of the actual waiting times, and 

as a by-result thereof, the mean actual waiting times. 

REMARK 3.4 
For the cross moment E{z~1 >z~2>} we have: 

1 . d2 1 1 
E{z~1 >z~2>} = 2}~ dp 2 <P(p,p) - 2E{z~1 >[z~1>-1n - 2E{z~2>[z~2>-1n. (3.18) 
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4. THE NUMERICAL EVALUATION OF CASE III. 
In this section the restrictions II.( 4.1) are assumed to hold. As already announced in the preceding 

section an expression for E{z~>(z~2> =O)} will be derived, which will enable us to (numerically) com­

pute E{zU>}, i=l,2. Hence, by the results of the preceding section, also the various first moments 

can be computed. Firstly, some additional notation will be given: 

We parametrise the contour S 1 by the mapping cf>(·) : [0,2'71'] ~ C 
]_it J_it 

cf>(t) : = g(e 2 )e 2 
, t E [0,2'71']. (4.1) 

further we shall take: 
for t E [0,2'11'], 

11(t) : = pio(cf>(t)), 

where piQ(·) denotes the inverse mapping of pt(·), cf.11.(7.1). Finally, let, 

F2(·): S1 ~ S2, 

denote a mapping from the contour S 1 onto the contour S 2, such that: 

for every z E L, 

(pt{z), F2(pt (z))), 

is a zero pair of the kernel K(pi,p 2) (cf. 11.(9.4)), i.e., 

F2(pt (z)) =pi (z). 

The following is a list of the most relevant derivatives we shall need in the sequel. 

Implicit differentiation of the equation: 

g(s) = (r1s- 1 +r2s),8{A(l-g(s)(r1s +r2s- 1))}, 

with respect to s, and substituting s = I yields: 

g'(l) = r2 -rl> 

Note that, 

g(l) = 1. 

From (4.1),(4.7) and (4.8) it follows: 

cf>(O) = l, 

<t>'(O) = r2i, 

<t>"(O) = r2(r1 -r2 -2ri-
1
-
1
-). 

-a 

Because (pt (z), F 2(pt {z))), z E L, is a zero pair of the kernel we have, 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

pt (z)F2(pt (z)) = (r1F2(pt (z))+r2pt (z)),8{A(l-r1pt (z)-r2F2(pt (z)))}. (4.10) 

Hence implicit differentiation of the formula 

p1F2(p1) = (r1F2(p1)+r2p1),8{A(l-r1p1 -r2F2(p1))}, 

with respect top 1 and substituting p 1 = I yields: 

F2'(l) = -~, 
r2 

(4.11) 

(4.12) 
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F
2
"(1) = 2r1 _l_' 

r~ 1-a 

6r1 1 1 
F/"(l) = -

3 
(r1 -r2-2ri-

1
-)-

1
-. 

r2 -a -a 

From (4.9) and (4.12) we find: 

d </>(t)F2(</>(t))-r1</>(t)-r2F2(<P(t)) . a 

dt { </>(t)-F2(</>(t)) }!1=0 = r1r2i l-a; 

d2 </>(t)F2(</>(t))-r1</>(t)-r2F2(</>(t)) a 
dt2 { </>(t)-F2(cp(t)) }!1=0 = r1r2{r1-r2} l-a· 

(4.13) 

At this point we are ready to give a numerical evaluation of the expressions for E { z~> }, i = 1,2. We 

start from (3.14) and write it somewhat differently: 

E{ <'>} =_a_+ x2
uP>-213

2
1 

Zn 1-a ' 1 2(1-a) r 1 1-a 
(4.14) 

E{ c2>} =_a_+ x2
uf2>-2rf1 

Zn 1-a r2 2(1-a) 
r 1 E{z~

2>(z~1 l=O)} 

1-a 

REMARK 4.1 
It may be seen that if B(t) = l-e- 1 IP then (4.14) becomes: 

E{z~l)} =_a_ - '2 E{z~
1 >(z~2> =O)} 

(4.15) 
1-a r1 1-a 

E{z~2)} =_a_ -
r, E{z~2>(z~1)=0)} 

1-a r2 1-a 

From ( 4.14) it is seen, that, in order to determine E { z~1 >} numerically, we need to evaluate 

E{z~1 >(z~2> =O)}. 
Let, for t E L, 

J<n: = pt (t)F2(pt ~))-r1pt (~-r2F2(pt (t)). (4.16) 

p, m-F2(p1 <m 
From II.(9.18) we have: 
for z EL+, 

z'" 2 Ilo J 1fil_ 
r2E{rJ71(z)]" (z~>=O)} = r1II0 + 2- l' dt, (4.17) 

7TlrEL ~ -z 

whereas for z E L, using the Plemelj-Sokhotski formulas: 

z'" 2 1 Ilo J 1fil_ 
r2E{rJ1t (z)]" (z~ > =O)} = r1II0 + 2Tiof (z) + 2- >-- dt. (4.18) 

7Tl~EL ~ z 

It follows by differentiating (4.18) with respect to z and substituting z = 1 that, 

r2E{z~1 >(z~>=O)}(pt)'(l) = ~ Ilo:. f(z)lz=l + IIo:. {~ j f!!1 dt}. (4.19) 
z Z 7TlrEL ~ Z 

Note that, cf. (4.13), 

d 1 d 
dzf(z)lz=l = 1J'(O) dt {f(11(t))}l1=0 = (4.20) 



1 d cp(t)F2(cp(t))-r1cfl(t)-r2F2(cfl(t)) 

= 11'(0) dt { cp(t)-F2(cp(t)) }li=o 

and that, cf. ( 4.2) 

+1 _!l!].Q)__ i 
(p1 )(1) - 11'(0) - r2 11'(0). 

Hence we have: 

r 2 E{z~
1>(z~2>=0)} 

r 1 1-a 

In a completely similar manner we find: 

r 1 E{z~
1>(z~2>=0)} 

r 2 1-a 

Note that (4.23) can also be directly obtained from relation (3.15). 

We now direct our attention towards the last term in the relations (4.22) and (4.23): 

d 1 f dt 7{2- J<n-" -}lz=J· 
z 'ITltEL :. -z 

We first divide the integral into a continuous part and a singular part: 

...!L{-1 . J JW _!{Lllz=I = ...!L{-1 . J f(t}-[(1)-(K-l)f'(l) dnlz=I 

dz 2'1TltEL r- Z dz 2'1TltEL r- Z 

+ ...!L.{_1_. f f(l)+(K-l)f'(l) dnlz=I· 
dz 2'1Tl!EL t-z 
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(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

Because the integrand and its partial derivatives with respect to z of the first term in the right-hand 

side of (4.25) are continuous for z E Lit follows, cf. Titchmarsh [18], that 

...!L.{_1. f f(t)-f(l)=(K-l)f'(l) dnlz=1 = _1. f f(t)-f(l)-(~-l)f'(l) dt. (4.26) 

dz 2'1Tl!EL t Z 2'1TltEL (t-1) 

Further we have 

...!L{_l_. j f(l)+(t-l)f'(l) dnlz=I = ...!L{_l_. j j(l) _EL}lz=I 

dz 2'1TlrEL K-z dz 2'1TztEL K-z 
(4.27) 

d 1 I K-1 
+ -d {-2 . f f(l)-i' - dnlz=I· 

Z '1Tl!EL :. -z 

Of course we have, cf. Gakhov{l l], p.29, ... ,31 : 

d 1 f dt -
-d {-

2 
. f(l)-1' -}lz=I - 0, 

Z '1Tl!EL :. -z 
(4.28) 

and 

(4.29) 
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I = 2/'(l). 

From ( 4.25), ... ,( 4.29) it follows that 

_E_{-1-. f f5!) dnlz=l = - 1-. f f{K)-((1)-(~- l)f'(l) dt + ~j'(l). (4.30) 
dz 2'1TltEL t z 2mtEL (t-1) 

Changing the variable of integration t into 11(t) (cf. (4.2)) yields: 

d
d { 

2
1

. f ~ dn lz =1 = ~ f if <11(t))-f (l)-(11(t)- l)f'(l)] ( /';~)l)2 dt (4.31) 
Z 'ITltEL ~ Z '!Tl O 11 t 

+ ~f'(l). 

By applying l'Hopital's rule it is easily seen from (4.16) that 

f (1) = r2 -r1. (4.32) 

Hence, from (4.14), (4.19), (4.31) and (4.32): 

(l) A.2{{P>-2/j2} 11'(0) /2" cp(t)F2(cf>(t))-r1cp(t)-r2F2(#J)) 
E{z } = '1 + [-----------

n 2(1-a) 2r 1r2'TT 
0 

cp(t)-F2(cf>(t)) 
(4.33) 

a 1 !]'(t) 
(r2 -ri) + (11(t)- l)r1r2 1-a i11'(0/ (11(t)- l)2 dt. 

The analogous expression for E { z~2>} reads: 

E{ (2)} = _a_ + A.2{(P>-2[J2} _ 
Zn 1-a ' 2 2(1-a) 

(4.34) 

?J'(O) 2J"rcp(t)F 2(cf>(t))-r1cp(t)-r2F 2(cp(t)) 
----------- - (r2-ri) -

2r1r2'TT 
0 

cp(t)-F2(cf>(t)) 

( ( ) l) a 1 ] 1((t) d 
11 t - ' 1' 2 1-a i11'(0) (11(t)- l)2 t. 

To calculate the integrand of the integral occurring in (4.33), (4.34) in t = 0, expand the numerator 

and the denominator of the integrand into their Taylor series. 
Denoting the integrand in t = 0 by I 0, it follows: 

r1r2 a """'0' 
I = [r -r +~] 

O 211'(0) (1-a) I 
2 i11'(0) . 

(4.35) 

5. NUMERICAL EVALUATION OF THE CASE '1 =/:=al, '2 =/:= a1 AND B1(·) - B2(·). 

In this section we take r 1 =/:=al> r 2 =/:= a2 and hence we have no longer a proof that the contours 

S 1 and S 2 are simply connected. In fact it will appear that easily cases can be found where S 1 or S 2 
is not simple. We therefore are forced to introduce the following assumption: 

ASSUMPTION 5.1 
For the considered values of the parameters the contours S 1 and S 2 are smooth and simple. 

In exactly the same manner as in Section 4 we shall derive expressions which enable us to compute 
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E { z~>}, i = I, 2, and hence, with the formulas derived in Section 3, the first moments of the sojourn 
and the actual waiting times. We follow the notation from Section 4. 
From (3.9) we have 

E{zh1>} = 
a1 + rT ;x_2 {/12) -2,82} a2E { Zh1>(zh2> =O)} 

(5.1) 
a1-a1 2(a1 -a1) a1-a1 

E{zh2>} = 
a2 + r~ ;x_2 {fi<2> _ 2,82} a1E {zh2>(zh1> =O)} 

a2-li2 2(a2 -a2) a2-a2 

As before, it is seen that, in order to determine E { Zh1>} numerically, we need to evaluate 
E {zhl)(zh2) =0)}. 
As in Section II.6 it follows that for z E L: 

(5.2) 

where H (z ), z E L, is given by: 

pi (z)F2(pi (z))-a2F2(pi (z))-a1pi (z) 
H~)= + + . 

P1 (z)- F2(p1 (z)) 
(5.3) 

As in Section II.6 we obtain: 

z'" Ilo df 
a2E{p1(z) • (zh2>=0)} = z. j H(t) -1'- + a1IT0, z EL+, 

'TTltEL !I - z 
(5.4) 

a 1E{p2(ziz;"(zhl)=O)} = ~· j H(t) /f + a1Ilo, z EL-. 
'TTltEL !I - z 

Using the Plemelj-Sokhotski formulas, we obtain: 
for z EL, 

z'" I Ilo df 
a2E{[pi (z)]" (zh2> =0)} = 2IT0H(z) + 2- j H(t) }'_ + a1Ilo, (5.5) 

'TTltEL !I z 

z'" I Ilo df 
a1E{F2(pi (z))" (zh1> =0)} = -2IT0H(z) + 2- j H(t) }'_ + a1Ilo. 

'lTltEL !I z 

Differentiating (5.5) once with respect to z and substituting z = I yields: 

a2E{zh1>(z!;>=O)} = ~(ol){~H'(l) +: {~ J H{t) /!! }iz=I }, (5.6) 
PI z '1TltEL !I z 

a1E{z<n2>(z<n1>=0)} = Ilo {-J..H'(l) + .!!._{-1-jH(h _EJ_}J } 
F2'(l)p1'(l) 2 dz 2'1Ti~EL !IJ f-z z =I · 

As in Section 4 it is shown that 
2w 

.!!._{-1-. f H(t) /f }iz=I = -
2
1

. j[H(71(t))-H(l)-(71(t)-l)H'(l)]X 
dz 2'1TltEL !I - Z '1Tl O 

X 1z'(t) dt + J..H'(l). 
(71(t)-I)2 2 

We now direct our attention towards the computation of H'(l). 
In the notation of Section 4, 

d 
H'(l) = dz H(z)Jz =I 

(5.7) 

(5.8) 
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d pt (z)F2(pt (z))-a2F2(pt (z))-a1pt (z) 

= dz[ pi(z)-F2(pi(z)) llz=l 

__ l_..f!_ </>(t)F2(</>(t))-a2F2(</>(t))-a1</>(t) I · 
- 11'(0) dt[ </>(t)-F2(</>(t)) li=o 

_ .P1.Q2_ F2"(1)+2F2'(l)[l- F2'(l)] 

- 11'(0) 2[1-F2'(l)]2 

For F 2(·) we have: 

p1F2(p1) = [a1F2(p1)+a2pd,8{A(l-r1p1 -r2F2(p1))}. (5.9) 

Differentiating (5.9) with respect top 1 and substituting p 1 = 1 yields: 

(5.10) 

REMARK 5.1 
From (5.10) it can be seen for which values of the parameters problems can be expected with the con­

tours S 1 and S 2 • For instance, if Fi'(l) > 0 then both contours start "in the same direction" as s 

traverses the unit circle. If F 2'(1) = 0 then one of the contours probably has a cusp, and if 

F 2'(1) < 0 then both contours start "in the opposite direction" as s traverses the unit circle. In 

Appendix B some graphs have been plotted of the contours S 1 and S 2 , where all the forementioned 

possibilities are shown. 

By differentiating (5.10) twice with respect to P 1 and substituting P 1 = 1 we obtain: 

F2"(l) = 
1 

{2(a1F2'(l)+a2)a(r1 +r2F2'(1))-2F2'0)+A2,8<2)(r1 +r2F2'(1))2}. (5.11) 
a1-a2 

The derivative of g (s) in s = 1 may be computed from 

g(s) = (a1s- 1 +a2s),8{A(l-g(s)(r1s +r2s- 1))}, Is I= 1. (5.12) 

It follows that 

a1-a2-(a1 -a1) 
g'(l) = l-a (5.13) 

Hence, cf. (4.1): 

</>'(O) = (5.14) 

We write (5.1) as 

E{z~l)} = a1 + ry A2{ff2l-2p2} + ITfii11'(0) X (5.15) 

a1 -ai 2(a1 -a1) a1 -ai)(a2 -a2) 

X [H'(l) + -
2
1

. f[H(11(t))-H(l)-(11(t)- l)H'(l)] y'(t) 
2 

dt], 
'1Tl 0 (11(t)- l) 

a2 2 A
2{ff-2l-2f12} ITfii11'(0) 

E { z~2>} = + r2 -- - - - 2 
X 

a1 -a2 2(a2 -a2) (a2 -a2) 

x-1-. f[H(11(t))-H(l)-(11(t)- l)H'(l)] y'(t) 2 dt. 
2'1Tl 0 

(11(t)- 1) 
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The formulas (5.15) can, with the help of the expressions derived above, immediately be computed by 
the iterations program that will be described in Appendix D. For those cases where this program 
does not work we have to use simulation. A description of the simulation program is also given in 
Appendix D. · 
For various values of the parameters, the results are given in Appendix E. 
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Chapter IV 

Approximation of a model with N queues 

and random allocation by the model 

with two queues 

In this chapter we shall consider the question whether or not we can use the model with random 
allocation and two queues to obtain mean value approximations (in the steady state) for the analyti­
cally untractable model with N > 2 queues and random allocation. 

Consider a multi-queue single-server system with N, N > 2, queues and random allocation as 
described in Chapter I. Suppose we want to approximate the mean actual waiting time of a type- I 
customer. The idea is now: 

APPROXIMATION IDEA 1.1: -
Aggregate queues 2, ... ,N into one queue, say Q 2 • 

>w_, BN_(·)----)1 11 

QN 
Illustration of the approximation idea 1.1 

---!. 

FIGURE 6 

-
The arrival process at Q2 is then the sum of N-1 independent Poisson processes with parameters 
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A.2, •.• ,AN, hence is itself a Poisson process with parameter 

- N 
A.2 := ~A.k. (l.l) 

k=2 

Since we are only interes_ted in approximating mean values, the distribution of the required service 

time of a customer from Q2 will be: 

(1.2) 
k=2 

There now remains OJ!.e problem: how to choose a1 and a2, the probabilities with which a customer is 

chosen from Q 1 and Q 2 respectively. 
At first glance, several possibilities for the choice of a1 and a2 seem reasonable. For example, 

a1 =a1, 

N 

a2 = ~ak. 
k=2 

(1.3) 

Or, when the service-time distributions are all equal we could choose a1 equal to the fraction of the 
total traffic a = A.{3, that is due to type- I customers, i.e., 

- a1 
a1 - - = r1, 

a 
_ 1 N N 

a2 =-~ai = ~rk. 
ak=2 k=2 

(1.4) 

These seemingly reasonable choices will in most cases not give accurate results, due to a phenomenon 
that will be described below, by means of an example: 

Consider a model with three queues and random allocation, where everything is symmetrical (figure 

7): 

A.= 1, 

3 

I 
3 

I 
3 

(1.5) 

Three queues, RA, symmetrical Approximation model 

FIGURE 7 
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As can be seen from (1.5) we have taken the service-time distribution negative exponentially and we 

have chosen A = l and P = 0.8, so that a = "AP = 0.8 < 1. 
Now suppose we are interested in the mean waiting time of a type-l customer. Then we replace the 

model above by the following model with two queues (as described in the preceding pages): 

We take (cf. also figure 8): 

B(t) := l-e- 1 1°-8, 

- I - 2 
a1 := a1 = r1 = 3• ai := ai+a3 = ri+r3 3· 

I 
3 

2 

3 

FIGURE 8 

(l.6) 

Denote by E { w;}, i = 1, 2, 3, the mean waiting time of a type-i customer in the model with three 

queues and by E{w} the mean waiting time in an M/G/1 queueing model with arrival rate A, mean 

service time p and second moment ffi>. Then, owing to the symmetry of the model we have: 

(l.7) 

On the other hand we have for the model with two queues, if we denote by E { w1 } the mean waiting 

time of a type-1 customer 

E{wi} = 3.74. (1.8) 

It may be clear that E { wi} - at least for this value of a1 - is not a very accurate approximation for 

E { w1 } • And things can get worse ! The phenomenon of overestimating the waiting time for type-1 

customers can be explained as follows: 
Suppose at a certain departure instant we have the following situation: Q1 and Q 3 are not empty, 

whereas Qi is empty (see also figure 1.4). Then with probability 112 a customer is chosen from Q 1 

and with probability 1/2 from Q 3• Cons!der now the approximation model at the same departure 

instant. There Q 1 is not empty and also Qi - the aggregation of Qi and Q 3 - is not empty, because 

Q 3 is not empty. Hence at this instant a customer is chosen from Q1 with probability 1/3 (see figure 

9). This leads to a certain underestimation of the probability with which customers from Q 1 are 

chosen and we can therefore expect to find an overestimation for the waiting time of a type- I custo­

mer. 



x 

l 
2 

l 
2 

x 

FIGURE 9 

x 

l 
3 

2 
3 
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As is indicated i!). the discussion above we expect the probability that from Q2, ... ,QN, k queues are 
empty, given that Q2 is not empty, to appear in an expression for al>a2 • These considerations lead to 
the following: 

APPROXIMATION IDEA 1.2 : 

al= N N 

LajPr{xj>O lx1>0,Lxj>O} 
j=l j=2 

a1 
N N 

a1 + LajPr{ xj >0 I X1 >0, Lxj >0} 
j=2 j=2 

For the definition of xj, j = l, ... ,N, cf. III.(1.2). 
Note that, fork =2, ... ,N, 

N 
Pr{xk=O lx1>0,Lxj>O} = 

j=2 
oo m-l N N 

L L Pr{xk=O,x1 =i, Lxj=m lx1>0, Lxj>O} = 
m=2 i=l j=l j=2 

oo m-l N N N N 

(1.9) 

(l.10) 

L L Pr{xk=O,x1 =i lx1>0, Lxj=m, Lxj>O}Pr{Lxj=m jx1>0, Lxj>O}. 
m=2 i=l j=l j=2 j=l j=2 

Because we cannot compute the above probabilities exactly, we have to make two more approxima­
tions. 

APPROXIMATION IDEA 1.3 : 
The customers in the system are being served in arbitrary (FCFS) order. 

By applying Approximation 1.3 to the first probability in the right-hand side of (l.10) it may be seen 
that this probability becomes equal to the probability that there are i type- I and 0 type-k arrivals dur­
ing the last m arrivals, given that the last m arrivals contain at least I type-2, ... ,N customer. This pro­
bability can be exactly determined. 
Now only the second probability in the right-hand side of (l.10) remains to be determined. We make 
the following approximation: 
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APPROXIMATION 1.4: 
N N N N 

Pr{~xj=m lx1>0, ~xj>O} ~ Pr{~xj=m I ~xj>l}. (l.11) 
j=I j=2 j=I j=2 

The major disadvantage in this approach is, that we have little or none a priori knowledge of the 
influence of the various approximations upon the total: There simply are too many (4) needed to 
make one approximation. Specifically, we cannot tell a priori in which cases the approximation will be 
good or bad. A further drawback is, that the approximation is for the completely symmetrical case 
not exact, while we do know all averages exactly on basis of other arguments. A subject for further 
research in this area however, could be to investigate the sensitivity of the numerical results with 
respect to the several approximations. 
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Appendix A 

Overview of definitions and theorems 

used in this report 

SECTION 1 

DEFINITION 1.1 (cf. Kuipers & Timman [12]) 
A function f: C ~ C is called (complex) differentiable in the point z0 E C if the limit 

lim f (z)-f (zo) 

Z->Zo z-zo 

exists. 

DEFINITION 1.2 (cf. Kuipers & Timman [12]) 
A function f : C ~ C is called regular at the point z 0 E C if there exists a neighbourhood of z 0 in 
every point of which f is complex differentiable; f is called regular in the domain D if f is regular at 
every point of D. 

DEFINITION 1.3 (cf. Muskhelishvili [15]) 
Let there be given on the arc La function of position c/>(.t) (which is in general complex). The function 
c/>(.t) will be said to satisfy a Holder condition on L if for any two points t 1,ti of L 

lcf>(.t2)-c/>(.t1)I .;;;;; A lt2-t1 I/.!, 

where A and µ are positive constants. A is called the Holder constant and µ the Holder index. 

DEFINITION 1.4 (cf. Gakhov [11]) 
Let there be given on the contour L a function G(·). The increment of the argument of G(t), when t 
traverses L once in the positive direction, divided by 2.,,, is called the index of G(·) on L. 

DEFINITION 1.5 (cf. Nehari [16]) 
A continuous function f is said to be univalent in the domain D if z 1 =/= z 2 implies f (z i) =/= f (z 2) for 
all z1'z 2 E D. A regular function that is univalent is called a conformal mapping. 

DEFINITION 1.6 (cf. Markushevich [14]) 
A complex function z = f (t) of a real variable which is defined and continuous on a closed interval 
a .;;;;; t .;;;;; bis said to define a (continuous) curve. 
If the same point z corresponds to more than one parameter value in the half-open interval 
a .;;;;; t < b, we say that z is a multiple point of the curve z = f (t), a .;;;;; t .;;;;; b. A curve with no 
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multiple points is called a Jordan curve. 
A closed curve is called a contour. 
A continuous curve L is said to be smooth if among its various parametric representations there is at 

least one representation 

z = f(t) = µ.(t)+iv(t), 

such that f (t) has a continuous nonvanishing derivative f'(t) at every point of the interval [a,b ]. 

THEOREM I. I ( cf. Nehari [ 16]) The corresponding boundaries theorem. 

Denote with L + the interior of a contour L. If Lt and Lt are two domains bounded by smooth con­

tours then the conformal mapping Lt ~Lt is continuous in Lt U L1 and establishes a one-to-one 

correspondence between the points of L1 and L2. 

THEOREM 1.2 (cf. Titchmarsh [18]) Principle of corresponding boundaries. 

Let Lt and Lt be two domains bounded by piecewise smooth contours L 1 and L 2• If f (z) is regular in 

Lt and continuous in Lt U L 1 and maps L 1 one-to-one onto L2, then f (z) is univalent in Lt UL 1: 

if f (z) preserves the positive directions on L1 and Li. then f (z) maps Lt conformally onto Lt, other­

wise onto Di. 
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AD P.11 

Let x denote a nonnegative, discrete stochastic variable with probability distribution 

{pk> k =0,1,2, ... }. 

The generating function of this probability distribution, 

00 

i'(z) = ~pkzk, z E C, 
k=O 

is regular for I z I < 1 and continuous for I z I .;;;;; 1. 

(ELEMENTARY) PROOF: 

For I z I .;;; 1: 
00 00 

~ iPkzk I .;;;;; ~Pk = 1. 
k =O k =O 

Hence the series (2.2) converges absolutely in the disk { z: I z I .;;;;; l}. 
Note that the series 

00 

c/>(_z) = ~kfkZk-1, 
k=I 

converges absolutely for every z with I z I < R, 0 < R < 1 fixed: 

k =I k =I 

Let I z I = R < l and let h be a complex number such that 

R + I h I < R 0 < 1. 

Denote the absolute value of h by€. We then have 

l

(z+ht-zn _ n-11 = ln(n-1) n-2h+ +hn-11 
h nz 1·2 z ... 

.;;;;; n(n -l)Rn-2 + +~-I 
l ·2 € ••• 

R n-I n . 

Hence, 

[ 

Ro 

Ro-R-€ 
Ro ] -I Ro 

Ro-R € - (R
0
-R)2 = 

47 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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€ 

= (R
0

-R)2(R
0
-R-£) ~ O (£ = lh I ~ O). 

It follows that 'l'(z) is regular for I z I < 1. 
Next note that the series (2.2) converges uniformly for z E { z : I z j ,.;;; 1 }. For every £ > 0 there exists 

an N 0 , independent of the choice of z in the considered area, such that 

jPn +1Zn +I +pn +~zn+2 +···I ,.;;; Pn +I +pn +2 +pn +3 + ···· < €, (2.9) 

for all n ;;;.. N 0 • 

Furthermore for every n =O, 1,2, ... , the functions PnZn are continuous. Recalling that the sum of a 

uniformly convergent series of continuous functions is a continuous function (cf. Titchmarsh [18]) we 

have proved the second statement. 

AD P.13 

A PROOF OF JI.(3.10): 

We have the following equation in g (cf. Il.(3.9)): 

g = r(a1s- 1 +a2s),8{X(l-g(r1s +r2s- 1))}. (2.10) 

Take, 

h(r,s) = g(r 1s +r2s- 1). (2.11) 

By substituting (2.11) into (2.10) we obtain: 

h = r(a1s- 1 +a2s)(r1s +r2s- 1),8{A(l-h)}. (2.12) 

Now applying Takacs' lemma (cf. Cohen [5]) to (2.12) we find if a = X,8 < 1: 

oo [r(a1s-1 +a2s)(r1s +r2s- 1)tAn-I 00
/ _, _ 1 • 

h(r,s) = ~ 
1 

e f\/tn dBn (t) 
n=I n · o 

(2.13) 

with n as defined before. 
From (2.11) and (2.13) it follows that: 

g(r,s) = E(r0 (a1s- 1 +a2s)0 (r 1s +r2s- 1)n-I }, js I= 1. (2.14) 
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Let, for i = 1,2, 

THEOREM 

c<i) : duration of a busy cycle of queue i, 

n<i) : number of type - i customers served during a busy period of queue i, 

d~ : moment of the m 1
h departure of a type - i customer, 

t~> : moment of the m th arrival of a type - i customer, 

x~i) : number of type - i customers in the system at time t. 

For h = 0, 1,2, ... : 

Jim Pr{z~ =h lrm =i} = Jim Pr{x~9 =h lrm =i}. 
m->oo m->OO 
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(2.15) 

(2.16) 

(i.e., the distribution of the number of type-i customers left behind in the system after the service comple­

tion of a type-i customer is equal to the distribution of the number of type-i customers immediately before 

an arrival epoch of a type-i customer.) 

PROOF (cf. Cohen [4]): 
If a change of x~i) occurs it has the value 1 or -1, hence for every realisation of the x~i>-process during 
a busy cycle with every "upcrossing" 

x<O = h x<iJ = h + 1 (2.17) 
tm ' tm ' 

corresponds a "downcrossing" 

xU2 = h + 1 xUl = h, 
m ' m 

(2.18) 

and consequently, 
n('1 n<0 

E{ }:(x~9=h)} = E{ }:(xU; =h)}, h = 0,1,2, .... (2.19) 
m=I m=I 

The processes 

{xU;, m =1,2, ... } and {x~9, m =1,2, ... }, (2.20) 

are regenerative with respect to the renewal sequence nI>n2,... • Furthermore, since the interarrival 
times are negative exponentially distributed the busy cycle c has a nonlattice distribution (cf. Cohen 
[5], p.249 ff.). Hence it follows from (2.19) and the Key Renewal Theorem (cf. Cohen [5]) that for 
h = 0,1,2, ... : 

lim Pr{xU; =h} 
m->oo 

{i) 

I n 
--£{ "'(x'il =h)} 
E{n(i)} m7;:1 dm 

"' 1 n 
--£{ "'(x<D =h)} 
E { n<il } m 7::1 tm 

Jim Pr{x~9 =h }. 
m->OO 

Because xU; is by definition equal to z~ the proof is completed. 

(2.21) 
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Appendix B 

Plots 

In this section several graphs have been drawn of the S 1-contour, the Si- contour and the £­

contour. In all cases shown, the service times were taken negative exponential. In the cases where one 

of the contours S 1 or S 2 has loops or cusps a correct L-contour can not be constructed. Hence the 

plotted £-contour is in such cases simply the result of a few iterations of the start contour L 0 • 

As remarked on p. 38 the expression 

(cf. III.(5.10)) gives some information about the start direction of the S 1- and Si-contours. Pages 52 

- 56 provide an example of the various possibilities. We kept the parameters 

r 1 = 0.75, r 2 = 0.25; (l.l) 

a 1 = 0.6, a2 = 0.2; 

fixed and we varied a 1 (and hence a2). Now 5 different possibilities were obtained: 

(1) < 0.6: 
a1-a1 

>0 a1 
a2-a2 

(2) = 0.6: 
a1-a1 

=O a1 
a2-a2 

(3) 0.6 < 0'.1 < 0.8: 
a1-a1 

<0 
a2-a2 

(4) = 0.8: 
a1-a1 

a1 = 00 
a2-a2 

(5) > 0.8: 
a1-a1 

>0 a1 
a2-a2 

Note that only in Case (3), (0.6 < a 1 < 0.8), we are able to compute the first moments using the 

iteration program. 
On p.57 - 65 the total traffic, a, is kept fixed, and r 1 = a 1 (r2 = a2). The influence of varying 

r 1 = a 1 (and hence r 2 = a 2) is shown. Note that in the case r 1 = a 1 < 0.5 the contours S 1 and S 2 

are the same, but with the indices interchanged, as are the contours S 1 and S 2 for 
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r 1' = a 1' = r 1 +0.5 = a 1 +0.5. 
Finally, on p.66 - 69., the total traffic, a, is again kept fixed and we let r 1 = a 1 j 1 (and hence 
r2 = a 2 ! 0). Note that on p-69 the S 1-contour has almost completely degenerated into a point and 
no correct £-contour has been computed. 
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Appendix C 

On a derivation of the stationary distribution 

of the actual waiting time of the nth 

departing customer given this customer is of 

type i 

In this section we consider the system as described in II. I. Let us assume the system is in equili­

brium. Denote by 

w<j>(t) := Pr{wn<t Jrn=i}, (1.1) 

the actual waiting-time distribution of the n1h departing customer, given that this customer is of type 

i. 
Because the service discipline at each queue is FCFS, the number of type-i customers that is left 

behind by the nth departing customer given this customer is of type i, is equal to the number of type-i 

customers that arrived during the waiting- and the service time of this customer. Hence, 

(') Joo ('h;t'/ ->.. t ml') 
Pr{z~ = j Jrn =i} = -.

1
-e ' d1{ w~ (t)*B;(t)}, 

0- J. 
(1.2) 

because the service time and the waiting time of the nth departing customer are independent and the 

arrival process is a Poisson process. 
It follows that, for IP I ..;; I: 

Or, equivalently, cf. 111.(2.2), 

Joo e ->..,(1-p)t dJ0,,l>(t) = <1>(l>(p, I) 
o- r1P1 {'A1(1-p)} 

Joo e -'A.,(1-p)t dJ0,,2>(t) = <1><2>(1,p) 
o- r2P2{'A2(I-p)} 

Denote the LST of w<j>(·) by wU>(p), Rep ;;;;. 0. We have from 111.(2.6) and (1.4): 

w~1 >('A 1 (1-p)) = ~{E{pz~"} - Pr{z~1>=0}} 
r1p 

+ ~{E{pz~11 (z~>=O)} - Pr{z~1>=0, z~2>=o}} + 
r1p 

(1.3) 

(1.4) 

(1.5) 



+ Pr{z<1> =O z<2> =O} 
n ' n ' 

From (1.5) the first moments are easily obtained: 

E(w\1') = A~; 1 {E(z\1lj - Pr(z\1'>0}} 

+ A~; 
1 

{ E ( z\1 l(zi,'l =O)} - Pr { z\1 '>O, z~l =O} }· 

E{w\"l = A:;, {E{z~'l - Pr(z\2'>0)} 

+ A:; 
2 

{ E ( z~l (z\O = O)} - Pr ( z\1l =O, z\2'>0)} 

71 

(1.6) 

The expressions (1.6) could of course also be obtained by applying Little's formula to the first 
moments of the queue-length distribution. 
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Appendix D 

Listing and description of the 

computer programs 

Two computer programs have been used to help us in the investigation of the present model and to 
obtain some numerical results. In Section l a listing and description of the first program is given. It 
is a simulation program, written by the author of this report, to simulate the M/G/ I model with N 
queues and Random Allocation. In Section 2 a listing of the second program, written by drs. S.J. de 
Klein, in cooperation with the author of this report is presented. The program itself contains sufficient 
comments to provide in the documentation. It is written for general two dimensional random-walk 
cases, which include the present model. 

1. THE SIMULATION PROGRAM 

The simulation program for the present model was written in Simula 67. For an introduction to this 
computer language cf. Zweerus-Vink [20]. 

On the next pages a listing of the simulation program is presented. The program is in principle 
identical to the program described in Zweerus-Vink [20] to simulate the waiting room of a doctor. 
There are some differences, due to the fact that, in the present model, there are N queues and a spe­
cial service discipline. Most of the procedure- and class definitions in the listing speak for itself, but 
the purpose of some procedures and classes will be briefly outlined below. 

The standard integer procedure discrete (a,u) has as input parameters a seed, u, and a cumulative row, 
a, of probabilities. The routine gives as output an integer in the range [lb.row, upb.row+ l]. To illus­
trate its use we give an example. 
Suppose we have a biased die. The following table lists the probability of numbers to be thrown: 

number probability 

1 0.1 
2 0.1 
3 0.2 
4 0.1 
5 0.2 
6 0.3 

TABLE 1. 



To simulate the throwing of this particular die, we take 

a : = (O. l,0.2,0.4,0.5,0.7), 

73 

(I.I) 

and then call the routine discrete (a,seed). The purpose of the procedure cumulat, line 49 - 57 may 
now be immediately clear. 

The real procedure stmean, line 59 - 60, produces a positive, real number that is distributed accord­
ing to the distribution function defined on line 60 (in this case negative exponential, but this may be 
adapted to arbitrary other distribution functions). The array B contains the means of the various 
service-time distributions, i.e., Bj(·) contains the mean service time of a type-j customer, j = l, ... ,N. 

The integer procedure chooseclient is called when the server has completed a service. Its purpose is to 
choose the next client to be served with the correct probabilities (as prescribed in Chapter I). This is 
realised as follows: When the routine is called, a row [1 : N-1] is made, with, for j = l, ... ,N-1, 

row(}) = 0 if queue j is empty, (1.2) 

row(}) = a1 if queue j is not empty. 

The probabilities a1, contained in the row A, times the indicator function of the event that queue j is 
not empty are summed for j = l , ... ,N, and the result is put in the variable sumr. Then row(j) is 
divided by sumr for j = l, ... ,N-1, cumulat (row) is called and then a call to discrete (row,seed) produces 
the number of the queue from which the next client should be chosen. 
We illustrate this with an example. 
Suppose the server has completed a service and we have the following situation: 

a1 = 0.1, a2 = 0.3, a 3 = 0.2, a4 = 0.4, (1.3) 

queue status 

I not empty 
2 empty 
3 not empty 
4 not empty 

TABLE 2. 

Firstly a row[l,3] is made as described above: 

row:= (0.1,0,0.2). 

Next sumr is calculated: 

sumr := 0.7, 

and row(j), j = l, ... ,N-1 is divided by sumr: 
I 2 

row:= (7,0,7). 

(1.4) 

(1.5) 

(1.6) 

Now a new client is chosen from queue j, j = l, ... ,N, with the following probabilities (cf. Table 3): 
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queue probability 

I 7 

2 0 
3 

2 

l 
4 7 

TABLE 3. 

It is easily checked that this is in accordance with the description of the model given in Chapter I. 

The process class experiment, line 125 - 140, has been created to be able to implement the "single-run 
method" (cf. Lavenberg [13)) in a natural and efficient manner. 

The class statistics computes for each experiment the mean, variance and standard deviation of the 
results. (line 142 - 162) 

In the program, the waiting time and the sojourn time of a customer, and the maximal waiting time 
for each queue are recorded. After the listing, a list is made of the control statements, needed to run a 
job at the cyber 750 at SARA, and it is shown how a data file for this program should be organised. 



LISTING OF THE SIMULATION PROGRAM 

0 BEGIN 
1 INTEGER N; N:=ININT; 
2 SIMULATION BEGIN 
3 
4 PROCEDURE READPCE,K); ARRAY E; INTEGER K; 
5 BEGIN 
6 INTEGER J; 
7 FOR J:=1 STEP 1 UNTIL K DO E(J):=INREAL; 
8 INIMAGE 
9 END; 

10 
11 PROCEDURE P(X); REAL X; 
12 OUTFIXCX,4,15); 
13 
14 PROCEDURE WRITEARRAYCE,T,K); VALUE T; ARRAY E; TEXT T; 
15 INTEGER K; 
16 BEGIN 
17 INTEGER J; 
18 FOR J:=1 STEP 1 UNTIL K DO 
19 BEGIN 
20 OUTTEXTCT>;OUTINTCJ,2);0UTTEXTC":"); 
21 P(E(J));OUTIMAGE;OUTIMAGE 
22 END 
23 END; 
24 
25 PROCEDURE WRITEPARAMS; 
26 BEGIN 
27 OUTIMAGE; 
28 OUTTEXT(" LIST OF PARAMETERS USED DURING THIS SIMULATION"); 
29 OUTIMAGE;OUTIMAGE;OUTIMAGE; 
30 WRITEARRAYCA," ALFA",N); 
31 WRITEARRAYCR," R",N-1); 
32 OUTTEXTC" LAMBDA:");PCLAMBDA); 
33 OUTIMAGE;OUTIMAGE; 
34 WRITEARRAYCB," BETA",N); 
35 OUTIMAGE; 
36 OUTTEXT(" SEED: ");OUTINT(SEED,8); 
37 OUTIMAGE; 
38 OUTTEXT(" TRANSIENT PERIOD:");OUTINTCTRANSPER,8); 
39 OUTIMAGE; 
40 OUTTEXTC" RUN PERIOD: ");OUTINTCRUNPER,8); 
41 OUTIMAGE; 
42 OUTTEXT(" NUMBER OF RUNS: ");OUTINTCNRUNS,8); 
43 OUTIMAGE;OUTIMAGE; 
44 OUTTEXT(" TOTAL SIMULATION TIME:"); 
45 OUTINTCTRANSPER+NRUNS*RUNPER,8); 
46 OUTIMAGE 
47 END; 
48 
49 PROCEDURE CUMULAT(E); ARRAY E; 
50 BEGIN 
51 ,, INTEGER I,J; 
52 FOR I:=1 STEP 1 UNTIL N-1 DO 
53 BEGIN 
54 FOR J:=I+1 STEP 1 UNTIL N-1 DO 
55 E(J):=E(J)+E(l); 
56 END 
57 END; 

75 
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58 
59 REAL PROCEDURE STMEANCTYPE>; INTEGER TYPE; 
60 STMEAN:=NEGEXP(1/B(TYPE),SEED>; 
61 
62 BOOLEAN PROCEDURE NOTEMPTYQUEUES; 
63 BEGIN 
64 INTEGER J; 
65 NOTEMPTYQUEUES:=FALSE; 
66 FOR J:=1 STEP 1 UNTIL N DO 
67 IF NOT Q(J).EMPTY THEN NOTEMPTYQUEUES:=TRUE 
68 END; 
69 
70 INTEGER PROCEDURE CHOOSECLIENT; 
71 BEGIN 
72 REAL ARRAY ROWC1:N-1>; 
73 INTEGER J; 
74 REAL SUMR; SUMR:=O; 
75 FOR J:=1 STEP 1 UNTIL N-1 DO 
76 BEGIN 
77 IF Q(J).EMPTY THEN ROW(J):=O 
78 ELSE BEGIN 
79 ROW(J):=A(J); 
80 SUMR:=SUMR+A(J) 
81 END 
82 END; 
83 IF NOT Q(N).EMPTY THEN SUMR:=SUMR+ACN>; 
84 FOR J:=1 STEP 1 UNTIL N-1 DO 
85 ROW(J):=ROW(J)/SUMR; 
86 CUMULATCROW); 
87 CHOOSECLIENT:=DISCRETE(ROW,SEED) 
88 END; 
89 
90 PROCESS CLASS CLIENTCTYPE); INTEGER TYPE; 
91 BEGIN 
92 REAL TINSIDE,WTIME; 
93 INTO(Q(TYPE)); 
94 TINSIDE:=TIME; 
95 IF RUN.S.IDLE THEN ACTIVATE RUN.S 
96 ELSE PASSIVATE; 
97 WTIME:=TIME-TINSIDE 
98 END; 
99 

100 PROCESS CLASS SERVER; 
101 BEGIN 
102 REF (CLIENT) CL; 
103 INTEGER ARRAY NCL(1:N); 
104 REAL ARRAY SUMWTIME,MAXWTIME,SUMRESPTC1:N); 
105 WHILE TRUE DO 
106 BEGIN 
107 WHILE NOTEMPTYQUEUES DO 
108 BEGIN 
109 CL:-QCCHOOSECLIENT).FIRST; 
1\0 CL.OUT; 
111 REACTIVATE CL; 
112 INSPECT CL DO BEGIN 
113 NCLCTYPE):=NCLCTYPE)+1; 
114 SUMWTIMECTYPE):=SUMWTIMECTYPE)+WTIME; 
115 IF WTIME > MAXWTIMECTYPE) 
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116 THEN MAXWTIMECTYPE):=WTIME; 
117 HOLD(STMEANCTYPE)); 
118 SUMRESPTCTYPE):=SUMRESPTCTYPE)+TIME-TINSIDE 
119 END 
120 END; 
121 PASSIVATE 
122 END 
123 END; 
124 
125 PROCESS CLASS EXPERIMENTCLENGTH); REAL LENGTH; 
126 BEGIN 
127 REAL START; 
128 INTEGER TYPE; 
129 REF (SERVER) S; 
130 S:-NEW SERVER; 
131 START:=TIME; 
132 WHILE TIME < START+LENGTH DO 
133 BEGIN 
134 HOLDCNEGEXPCLAMBDA,SEED)); 
135 TYPE:=DISCRETE(R,SEED); 
136 ACTIVATE NEW CLIENTCTYPE) 
137 END; 
138 CANCEL(S); 
139 CANCEL(THIS EXPERIMENT) 
140 END; 
141 
142 CLASS STATISTICS; 
143 BEGIN 
144 INTEGER J; 
145 REAL ARRAY SUM,SQSUMC1:N>; 
146 INTEGER ARRAY KC1:N); 
147 PROCEDURE ADDCX,TYPE); REAL X; INTEGER TYPE; 
148 BEGIN 
149 SUMCTYPE):=SUMCTYPE)+X; 
150 SQSUMCTYPE):=SQSUM(TYPE)+X*X; 
151 KCTYPE):=KCTYPE)+1 
152 END; 
153 REAL PROCEDURE MEANCTYPE); INTEGER TYPE; 
154 IF KCTYPE)>O THEN MEAN:=SUM(TYPE)/KCTYPE) 
155 ELSE MEAN:=O; 
156 REAL PROCEDURE VARIANCECTYPE); INTEGER TYPE; 
157 IF KCTYPE)>1 THEN 
158 VARIANCE:=(SQSUMCTYPE)-SUMCTYPE)*SUMCTYPE)/KCTYPE))/(KCTYPE)- 1>; 
159 ELSE VARIANCE:=O; 
160 REAL PROCEDURE STDEVCTYPE); INTEGER TYPE; 
161 STDEV:=SQRTCVARIANCECTYPE)); 
162 END; 
163 
164 PROCEDURE REPORT(E); REF (EXPERIMENT) E; 
165 BEGIN 
166 INTEGER J; 
167 FOR J:=1 STEP 1 UNTIL N DO 
168 BEGIN 
169 OUTTEXTC" QUEUE");OUTINT(J,2);0UTTEXT(" "); 
170 INSPECT E.S DO BEGIN 
171 OUTINT CNCL (J), 10) ;TOTCL .ADD CNCL (J) ,J); 
172 PCSUMWTIME(J)/NCL(J)); 
173 TOTWTIME.ADDCSUMWTIME(J)/NCL(J),J); 
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174 P(SUMRESPT(J)/NCL(J)); 
175 TOTRESPT.ADDCSUMRESPT(J)/NCL(J),J); 
176 P(MAXWTIME(J)) 
177 END;OUTIMAGE 
178 END; 
179 OUTIMAGE;OUTIMAGE 
180 END; 
181 
182 INTEGER SEED,TRANSPER,RUNPER,NRUNS,J; 
183 REAL ARRAY A,BC1:N),R(1:N-1); 
184 REF (HEAD) ARRAY Q(1:N); 
185 REAL LAMBDA; 
186 REF (STATISTICS) TOTCL,TOTWTIME,TOTRESPT; 
187 REF (EXPERIMENT) RUN; 
188 
189 INIMAGE; 
190 READPCA,N); 
191 READPCR,N-1); 
192 READPCB,N); 
193 LAMBDA:=INREAL; 
194 INIMAGE; 
195 SEED:=ININT; 
196 INIMAGE; 
197 TRANSPER:=ININT; 
198 INIMAGE; 
199 RUNPER:=ININT; 
200 I NI MAGE; 
201 NRUNS:=ININT; 
202 FOR J:=1 STEP 1 UNTIL N DO 
203 Q(J):-NEW HEAD; 
204 TOTCL:-NEW STATISTICS; 
205 TOTWTIME:-NEW STATISTICS; 
206 TOTRESPT:-NEW STATISTICS; 
207 WRITEPARAMS; 
208 FOR J:=1 STEP 1 UNTIL 40 DO OUTIMAGE; 
209 CUMULAT(R); 
210 
211 RUN:-NEW EXPERIMENTCTRANSPER); 
212 ACTIVATE RUN; 
213 HOLDCTRANSPER); 
214 
215 FOR J:=1 STEP 1 UNTIL NRUNS DO 
216 BEGIN 
217 OUTTEXTC" RUN NR.");OUTINTCJ,2); 
218 OUTTEXTC" NUMBER WAITINGTIME"); 
219 OUTTEXTC" RESP.TIME MAXWTIME"); 
220 OUTIMAGE;OUTIMAGE; 
221 RUN:-NEW EXPERIMENTCRUNPER); 
222 ACTIVATE RUN; 
223 HOLDCRUNPER); 
224 REPORTCRUN) 
225' END; 



226 
227 
228 
229 
230 
231 

OUTIMAGE;OUTIMAGE; 
FOR J:=1 STEP 1 UNTIL N DO 

BEGIN 
OUTTEXT(" NUMBER 
OUTTEXT("WTIME RESP. TIME"); 

232 OUTIMAGE;OUTIMAGE; 

"); 

233 OUTTEXT(" THE RESULTS FOR QUEUE");OUTINTCJ,2); 
234 OUTTEXT (": ") ;OUTIMAGE;OUTIMAGE; 
235 OUTTEXT(" MEAN: ");PCTOTCL.MEANCJ)); 
236 PCTOTWTIME.MEANCJ));PCTOTRESPT.MEANCJ)); 
237 OUTIMAGE; 
238 OUTTEXT(" VARIANCE: "); 
239 P(TOTWTIME.VARIANCE(J));P(TOTRESPT.VARIANCE(J)); 
240 OUTIMAGE; 
241 OUTTEXTC" ST.DEV: "); 
242 PCTOTWTIME.STDEV(J));PCTOTRESPT.STDEV(J)); 
243 OUTIMAGE;OUTIMAGE;OUTIMAGE;OUTIMAGE 
244 END; 
245 OUTTEXT(" NOTE THAT THE VARIANCE AND THE STANDARD "); 
246 OUTTEXT("DEVIATION");OUTIMAGE;OUTTEXT(" ABOVE "); 
247 OUTTEXT("ONLY APPLY TO THE SAMPLE RESULTS."); 
248 OUTIMAGE 
249 END 
250 END 
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CONTROL STATEMENTS 

interactive: 

etl,<nnn> 
attach,simula 
simula,i= <prog>,ql 
lgo,i= <input> 

batch: 

<jobname>,LP= <nnn>. 
attach,simula. 
simula,i = input,qL 
Igo. 

ORGANISATION OF THE DATAFILE: 

<N> 
<A(l)> <A(2)> <A(3)> .... <A(N)> 
<R(l)> <R(2)> <R(3)> .... <R(N-1)> 
<B(l)> <B(2)> <B(3)> .... <B(N)> 
<lambda> 
<seed> 
<transper> 
<runper> 
<nruns> 
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SOME STATISTICAL ASPECTS OF THE SIMULATION. 

As the listing on the previous pages shows, we have chosen for the single-run method. This was in 

fact a rather arbitrary choice, because in the considered cases, we could have chosen equally well for 

example the regenerative method (cf. Lavenberg [13]). 
In all cases considered we have taken the transient period to be 500 seconds. We took ;\ = I and 

hence during the transient period approximately 500 customers arrived. Relatively little is known 

about relaxation times for queueing systems, especially for queueing networks ( cf. Blanc & van Doom 

[2]). 
As recommended in Lavenberg [13] we take the number of subsequences equal to 10. The choice of 

the length of the subsequences presented more difficulties. If the length of the subsequences is not 

chosen large enough, the subsequence estimates are correlated enough to have a substantially narrow­

ing effect on the confidence intervals. A length of 5000 seconds for each subsequence seemed in most 

cases large enough to overcome this difficulty. In cases with extremely high traffic however, 5000 

seconds was not large enough to obtain a satisfactorily small confidence interval. 

2. THE ITERATION PROGRAM 

Because of its length the listing of the iteration program is not contained in this report. A copy of 

this listing is available on request. 



82 

Appendix E 

Numerical results 

In this section we shall present some numerical results. In the following tables we shall indicate by 
(I) that the results have been obtained using the iteration program and by (S) that the results have 
been obtained using simulation. 

Firstly, we present some results for the case r 1 = al> r 2 = a2 and the service-time distributions 
identical and negative exponential. 

TABLE l. (I) 

r 1 = al> r2 = a1, {1(p)=_J_p ' Re p;;;;.O, {1=0.8, A= 1, 
l+ p 

# subdivisions : 40 

r1 E{x1} E{x2} E{z1(z2 =O)} 

0.1 0.691 3.309 0.072 
0.2 1.090 2.910 1.142 
0.3 1.417 2.583 0.217 
0.4 1.712 2.288 0.301 
0.5 2.001 2.000 0.400 
0.6 2.288 1.712 0.522 
0.7 2.587 1.413 0.684 
0.8 2.914 1.086 0.926 
0.9 3.305 0.695 1.385 

Note that if r 1 = a1 < 0.5 then E{xi} and E{x2} are the same, but with the indices interchanged, 
as E{x1} and E{x2} in the case r 1' = a1' = r 1 +0.5 = a1 +0.5. This is of course to be expected. 

Next we investigate the influence of the number of subdivisions upon the accuracy of the results for 
a particular case. 



TABLE 2 (I) 

1 
r1 = a1 = 0.9, r2 = a2 = 0.1, P(P) = 

1 
+pp' Re p;;i:O, P = 0.8, A.= 1. 

# subdivisions E{x1} E{x2} E {z1 (z2 =O)} CPU-time (sec.) 

16 3.5271 0.4729 0.8839 1 
40 3.3045 0.695 0.6461 
80 3.3048 0.6952 1.3843 19 
120 3.3061 0.6939 1.3811 40 
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We have simulated this case with a transient period of 500 seconds (customers) and 10 runs of 5000 

seconds (customers) each and we obtained the following 95% confidence interval for E{xi} and 

E{x2}: 

for E{x1 }: [2.98, 3.42]; 

for E{x2}: [0.619, 0.767]. 

(1.1) 

This simulation run took about 50 seconds CPU time. It is seen that simulation is in this case much 

more costly and produces less accurate results then the iteration program. However if one of the con­

tours S 1 and S2 is not simple, we have to use simulation. Also the case that the service-time distribu­

tions are not identical is not included in the iteration program, so that also in this case we have to use 

simulation. If we want to use the iteration program to obtain results in the case r 1 -=/=- ai. r 2 -=/=- a2, 

and the service-time distributions identical, we should then first check the contours S 1 and S 2, to see 

if they are simple. A priori it can be said that one can never hope to obtain reasonable results if (cf. 

III.(5.10)) 

a -a 
F2'(l) = 

1 1 
';;i!: 0. 

a2-a2 
(1.2) 

Finally, as an example of where simulation can be used, we have investigated the influence of varying 

the P;, i = 1,2, with P;(p) = 1 / (1 + P;P), Rep ;;i. 0, upon the sojourn times: 

TABLE 3 (S) 

1 + 0.9, P;(p) = l a , Re p;;i:O, "A = 1. 
+,..,;p 

transient period : 500 sec.; 10 runs, 5000 sec. each. 

P;, i=l,2 E{s1} E{Si} 

P1 =0.8=P2 4.14 1.56 
P1 =O.l; P2 =0.9 0.23 1.02 
P1 =0.9; P2 =0.1 4.92 0.93 
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