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For a dissipative differential equation with stationary solution v”, the difference between any solution U(t)
and u” is nonincreasing with . In this note we present necessary and sufficient conditions in order for a
similar monotonicity property to hold for numerical approximations computed from a Rosenbrock method.
Our results also provide global convergence results for some modifications of Newton’s method.
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1. INTRODUCTION
Consider an initial value problem in R™

U@ = fU@) =0), (1.1a)
U@©) = ug - (1.1b)

whose solution U(#) tends to a stationary solution 4~ € R™. For the numerical solution of (1.1) we
consider the Rosenbrock method

U1 = Uy T (I—hﬂfl(un))‘lhf(un) (1.2)
where 0 is a positive parameter, i > 0 is the stepsize and the vectors u, € R™ approximate U ),
t, = nh (n = 0,1,2,...).

Assume the function f is dissipative with respect to an inmer product <--> on R"
(<f@)—fu),u—u> < 0forall z,u € R™) and let [Ix]l = <x,x >1/2 (for x € R™). This assump-
tion implies that the difference ||U(t)— U(2)ll of any two solutions of the differential equation (1.1a) is
nonincreasing with . The corresponding property for the numerical approximations,

Nty +1—ttn+11l < Nty —u,ll, only holds under additional, rather restrictive conditions on f (see e.g.
[3]). In this note we look at the less exacting monotonicity property

”un—}-]——u*” < ”un_u‘“’ (1'3)

and we shall present conditions on f which are necessary and sufficient for (1.3) to hold with arbitrary
stepsize 4. Under somewhat stronger conditions on f the convergence of u, to u~ can be guaranteed.
These results are relevant to stiff ordinary differential equations and to partial differential equations
(via the method of lines) since neither the Lipschitz constant of f nor the dimension m are involved.

The monotonicity property (1.3) is of particular interest if scheme (1.2) is regarded as a time-
marching procedure for finding stationary solutions. The scheme has been used for this purpose in [4]
with § = 1 (and with an approximation to the Jacobian matrix f'(u,); cf(2.1)). We note that in such
a situation (1.2) can be considered as a modified Newton procedure for solving f () = 0. By intro-
ducing w = 1 /6 and A = 1 /h8 we can rewrite (1.2) as

Up41 = Uy —‘w(f’(un)_M)_ lf(un)o

in which @ > 0 can be viewed as a relaxation parameter and A > 0 ensures that f'(u,)—Al is
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nonsingular whenever f'is dissipative (see [5; sect.5.4,7.1]).

2. MONOTONICITY FOR NUMERICAL APPROXIMATIONS
Besides the Rosenbrock method (1.2) we also consider the more general linearly implicit scheme

Uy 41 = thg (L —hOJ ()™ f (un) @2.1)

where J (,) is an m X m matrix. Further we shall use the following notation. By L(R™) we denote the
space of linear operators on R™. If |l is a norm on R™, the corresponding operator norm on L(R™)
is also denoted by |I-|l, and pf] will stand for the logarithmaic norm (cf.[2D).

Consider the following set of assumptions (2.2)-(2.6), with 8 > 0 and € = 0, which will be denoted
by (4.1). '

m € N and |||l is a norm onR”™ generated by an inner product <-,->; 2.2)

fR™ - R™u" € R™ is azero of f, and J R™ — L(R™); 2.3)

D = {u:u € R™ |lu—u"|l < 8},f is continuously differentiable on D 24
{ and J is continuous on D;

for any u € D we have p[f'(u)] < 0 2.5)
{ and J (u) does not have positive real eigenvalues; '
for all u,v € D there is a E (u,v) € L(R™)such that 2.6)
{ @) =JwI +E@))IE@l < e
Further (4 ) will stand for these assumptions (2.2)-(2.6) together with
J(u) = f'(u) (for allueD). 2.7

In (24) continuously differentiable means that that the matrix of partial derivatives
f(w) = (3f(u) / du)) exists and depends continuously on u. The condition pf’w)] <0 on D is
equivalent to requiring that f is dissipative on D (see e.g[5, sect.5.4]). The condition in (2.6) states
that the relative difference between f’(v) and J(u) is bounded by ¢ ; in case J(u) is regular it reads
@)~ '(f'()—J @)l <e Thus, ina relative sense, the variation of f” on D may not be too large
and J () has to approximate f’(u) accurately enough.

In order to formulate our main results we define the real functions ¥;(k = 1,2) on the interval
[1/2,00) by

¥1(0) = min{20—1,1}, 2.8)
¥»(6) = min{20—1,V(26—1) / 6}. @9

TueoReM 2.1. Let h and § be positive, and k equal to 1 or 2. We have Nty 41 —u* 1< llu,—u™ll (when-
ever u, € D and (Ay) is valid) iff § = 1 /2 and € < Y (0).

This theorem is an extension of a result by M.N. SPUKER and the present author, see [7; sect. 4.
The proof will be given in the next section. The restriction § = 1/ 2 in this theorem is not surprising
since the methods with 8 < 1 /2 are not A-stable. For § = 1/2 we see that the monotonicity pro-
perty only holds for linear problems (¢=0).

Under slightly stronger conditions on f it can be shown that llu, +1 —u"ll < llu,—u’ll (for
u, € D,u,7u"). This leads to the following result which will also be proved in section 3.

THEOREM 2.2. Let h and 8 be positive, and k equal to 1 or 2. Assume ug € D,0=1/2,e < Y(0) and
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(Ap). Assume in addition that either € < Y (0) and J (u) is regular (for all ueD) or p[f’'(u)] < O (for all
ueD). Then u* is the unique zero of fin D and lim u, = u’".
n—o

3. PROOF OF THE MONOTONICITY RESULTS

3.1. Preliminaries

In order to prove the theorems of section 2 we first derive some technical results. Consider arbitrary
A,B € L(R™) with m € N, and suppose || is a norm on R™ generated by an inner product <-,">.
For any C € L(R™) we denote by C* its adjoint with respect to this inner product
(<Cx,y> = <x,C'y> for all x,y € R™).

The relation ||Bx|| < yllAx|l (for all xeR™), with y > 0 given, implies the existence of a
C € L(R™) such that B = CA,||Cll < v ; if 4 is regular we can take C = B4 ~! and for singular 4 -
the inverse 4 ~' can be replaced by the generalized inverse of 4 (see e.g. [1; ch.g)). Since
IC*l = liC|l for any C € L(R™) one easily arrives at the following resuit.

LEMMA 3.1. Let y > 0. We have IIB* x|l < yll4*x|| (for all xeR™) iff B = AC for some C € L(R™)
with ICll <.

. . . 1
Consider the following statements, with § = 5 ande = 0,

B = A(I +E)) for some E; € L(R™) with |lE;ll <, (3.1a)

A = B{ +E,) for some E; € L(R™) with |E,|| <, (3.1b)
and | '

B = A (I +F) for some F eL(R™) with |IF|| <'1. 3.2)

LeMMA 3.2. (3.1a) implies (3.2) iff € < ¢;(6).

PrOOF. Assuming (3.1a) and € < () we set F = 07 '[E,+(1—8)I}, in which case B = §4(I +F)
and

IFI < 0~ Ye+11-6]) < 67'Gh(@)+11-6]) = 1.

To construct a counterexample in case € > y(f) we first consider the simple scalar (complex)
example A = a, B = b with a,b € C. The condition in (3.1a) corresponds to

|b—al <elal 3.3)
and (3.2) corresponds to
|b—6al < flal. (X))

By simple geometrical arguments it follows that for € > Y1(8) there exist a,b € C satisfying (3.3) but
violating (3.4).

These considerations on C lead to a counterexample with 4 = 4, and B = B, eL(R?),
Rea —Ima} Reb —Imb
Al = £ ] =

k

Ima Rea Imb Reb

and with |IIl the Euclidian norm on R? (and the corresponding spectral norm on L(R?)). O

LeMMA 33. (3.1a) & (3.1b) implies (3.2) iff € < y,(0).
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PrROOF. Assume (3.1a), (3.1b) and € < ¢,(f). To show that (3.2) holds it is, in view of lemma 3.1,
sufficient to consider the remaining case 1 < & < (20—1) /6. From lemma 3.1 it follows that for
any x € R™

IB*x|2—2<d4*x,B*x>+ll4"x|* < &ll4*xI?,
IB*xI? —2<4"x,B*x>+I4"xI* < &lB"x|*.
Combining these inequalities we obtain

<A'x,B'x> = (1-3&)B* x|

From our assumption on e it follows that
IB* x| < 20<A*x,B"x>,
and hence
I(B* —04%)x|l < 61l4"x]l.

Statement (3.2) now follows by again applying lemma 3.1.

Now assume € > y»(f) and 1 /2 < @ < 1. Then we obtain a (scalar real) counterexample by tak-
ingm =14=—-1,B= —1—e

Finally assume € > y,(f) and 6 > 1. Let £ € ((20—1) /6,2) such that § < €, and take a,b € C
such that b /a equals (1—¢/2)+iV&1—§/4). Then |b—al <elal and |b—al < e|b| but
|b—@8al>8lal. As in the proof of lemma 3.2 such a,b € C lead to 45,8, € L(R?) such that for
A = A,,B = B, the statements (3.1a), (3.1b) hold whereas (3.2) is violated. [

We note that in the above counterexamples which prove the necessity of € < y4(6) we can choose
the abeC such that Rea <0, Reb=<0. This leads to A,B; eL(R?) satisfying
HA,] < O,p[Bi] < 0 (for k = 1,2). ‘ ’

The following lemma is a slight generalization of results in [6] and [7; lemma 4.3].

LEMMA 3.5. Assume I—MN9A is regular for all A > 0. We have |II +(I —M0A)"'ABIl < 1 (for all
A>0)iff hB] < 0 and (3.2) holds. ;

PROOF. Let C = B—04. Then I+(I —AA)"'AB = (I —N04)"'(I +AC), and it follows that
I+ —A84)"'ABIl < 1iff :
I +AC)xll < I(L—A84")x|l (for all x €R™).
The latter inequality can be written as
A<B x,x >+N|C* x|> < A2[104" 11 (for all xeR™).
Clearly this holds for all A > 0 iff
<Bx,x> < 0 and ||IC*xl| < |84 x|l (for all xeR™).
Applicatibn of lemma 3.1 completes the proof. [

3.2. The proof of theorem 2.1
For u €D we define

1 .
o(u) = f L+ (I —h8J )™ "' hf (" +7(u —u"))lldr. @3.5)
0

Since for any u, € D




Nty 4y =2 ll = Mot — 0™ +(I —h6T (,))~ B (f ()= f @D

it follows by the mean-value theorem that

ety 1 —u" | < o(u)llu, —u”|l. (3.6)

Application of the lemmas 3.2, 3.3 and 3.5 with 4 = hJ(,) and B = hf (u”" +7(u, —u")) shows
the sufficiency of € < §;(f) for having llu, +, —u’ll < llu,—u’|l in case (4;) holds, k = 1,2. The
necessity will be proved by some counterexamples.

A counterexample in case (4,) holds, € > {;(f) is given by AJ(u) = A ,hf (u) = ABu (for
ueR?) with 4;,B, as in the proof of lemma 3.2, A > 0 and || the Euclidean norm on R%. With
u* = 0, u, € R?, we obtain

llg 41— 0"l = I+ —AA )™ 'AB ), —u)ll =
= W+ —204 )" 'AB Il — 1> Nl — 2
provided A > 0 is suitably chosen (see lemma 3.5).

Next we give a scalar (real) example for € > ,(0),1 /2 < 6 < 1 in case (4,) is valid. This coun-
terexample is similar to one given by SANDBERG and SHICHMAN [6].

Take, for convenience, # = 1,6 > 1 and 4" = 0, uy = 1. Let n € (20— 1,¢) and f(u) = Ag(u)
(for ueR) with A > 0 and g:R — R a continuously differentiable function such that

g(0) = 0, g’(u) €[—1—¢,—1] (for all ueR),
gw) = —u+n(foru<l), gu) = —u—n (for u=1).
Such an f meets the conditions imposed in (4,). Further we have
uy; = (1+A0)"1A+M0—1—9))
and thus |u; —u"| tends to 67 '(n+1—0)>1 = |ug—u"| for A - oo.

Finally we assume € > y,(d), § > 1. For this we construct a complex, scalar counterexample,
which can as before be converted to a real one by identifying C with R? in the usual way. Suppose

Q- /<< minjz,cz} and let abeC be such that Rea <0, Reb <0 and
b/a=(1—-£/2)+iV§1—£¢/4) (as in the proof of lemma 3.3). Then |b—al|<<elal,|b—al<elb|
but |b —0a)>0lal, and thus for A > 0 suitably chosen |1+(1—A8a)”'Ab|>1 (see lemma 3.5). We
put a = Aa and B = Ab. .

Let D be the unit disk in C,2 = Lu* = 0, and define

[ @) = ®0)a—B)+au+D(u)B—a),

__2k_

k+1

for u € C, where k € N is to be specified later. Then f(0) = 0 and
fw) = at$u)B—a),
#w) = (75w~
The image of D under ¢ tends to the interval (0,1) on the real axis if kK — oo. By using this property

it can be shown that, for k sufficiently large, the conditions on fin (4,) are satisfied. Moreover, since
f(1) = a and f(1) tends to B for k — oo,

H+A—-FM) 7 F()I>1

provided k is sufficiently large. It follows that, for such k and u, close to 1,

1 1
Ow) = (F—7w'

&




luy—u™l > lug—u™l.

3.3. The proof of theorem 2.2
First we show that under the assumptions of theorem 2.2 the function o, defined by (3.5), satisfies
o(u) < 1 (for all ueD). Examination of the proof of lemma 3.5 shows that for 4,B €L(R™) satisfy-
ing (3.2) and p[B] < 0 we have

I +(I —A4)"'ABJ| < 1 (for all A>0)
provided we assume in addition either

Bl <0
or v

A is regular and B = 84 (I +F),IIFll < 1.

Further it is easily seen, by regarding the proofs of lemma 3.2 and lemma 3.3, that if 4 is regular and
we have (3.1a) with € < ¢,(0) or (3.12), (3.1b) with € << y,() then there is an F €L (R™) such that
B = 0A(I +F),IFll < 1. By setting A = hJ(u),B = hf'(u” +7(u —u")) it follows that the assump-
tions of theorem 2.2 imply o(u) < 1 on D.

The function ¢ is continuous on D. Therefore we obtain for arbitrary uy € D

Nty —u™ | < so"llug —u” |l

with 5o = max{o(u): u €D, |lu —u"||<|lug—u"ll} < 1.From this it is clear that u” is the unique zero
of fin D and that the u, converge to u” for n — co.
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