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For a dissipative differential equation with stationary solution u ·, the difference between any solution U(t) 

and u • is nonincreasing with t. In this note we present necessary and sufficient conditions in order for a 

similar monotonicity property to hold for numerical approximations computed from a Rosenbrock method. 

Our results also provide global convergence results for some modifications of Newton's method. 
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1. INTRODUCTION 

Consider an initial value problem in !Rm 

U'(t) = f(U(t)) (t;;;o.O), 

U(O) = uo 

(l.la) 

(l.lb) 

whose solution U(t) tends to a stationary solution u* E nm. For the numerical solution of (1.1) we 

consider the Rosenbrock method 

(1.2) 

where fJ is a positive parameter, h > 0 is the stepsize and the vectors Un E nm approximate U(tn), 

tn = nh (n = 0, 1,2, ... ). 
Assume the function f is dissipative with respect to an inner product <·,.> on nm 

( <f (u)-f (u),u-u > ..;;;;; 0 for a!J. u,u E Rm) and let llxll = <x,x > 112 (for x E Rm). This assump­

tion implies that the difference II U(t)-'- U(t)ll of any two solutions of the differential equation (l.la) is 

nonincreasing with t. The· corresponding property for the numerical approximations, 

llun+I -un+i 11 ..;;;;; llun-unll, only holds under additional, rather restrictive conditions on f (see e.g. 

[3]). In this note we look at the less exacting monotonicity property 

llun+1-u*ll..;;; llun-u*IJ, (1.3) 

and we shall present conditions on f which are necessary and sufficient for ( 1.3) to hold with arbitrary 

stepsize h. Under somewhat stronger conditions on f the convergence of Un to u • can be guaranteed. 

These results are relevant to stiff ordinary differential equations and to partial differential equations 

(via the method of lines) since neither the Lipschitz constant off nor the dimension mare involved. 

The monotonicity property (1.3) is of particular interest if scheme (1.2) is regarded as a time­

marching procedure for finding stationary solutions. The scheme has been used for this purpose in [4] 

with fJ = I (and with an approximation to the Jacobian matrix j'(un); cf.(2.l)). We note that in such 

a situation (1.2) can be considered as a modified Newton procedure for solving f (u) = 0. By intro­

ducing w = I/ fJ and A = I/ hfJ we can rewrite (1.2) as 

Un+I = un-w(f'(un)-M)- 1j(un), 

in which w > 0 can be viewed as a relaxation parameter and A > 0 ensures that f'(un)-M is 
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nonsingular whenever /is dissipative (see [5; sect.5.4,7.l]). 

2. MONOTONICITY FOR NUMERICAL APPROXIMATIONS 

Besides the Rosenbrock method (1.2) we also consider the more general linearly implicit scheme 

Un +I = Un +(I -h8J(un))-I hf (un) (2.1) 

where J(un) is an m Xm matrix. Further we shall use the following notation. By L(IRm) we denote the 

space of linear operators on Rm. If IHI is a norm on Rm, the corresponding operator norm on L(IRm) 

is also denoted by IHI, andµ[·] will stand for the logarithmaic norm (cf.[2]). 

Consider the following set of assumptions (2.2)-(2.6), with 8 > 0 and t: ;;;.. 0, which will be denoted 

by (A 1). 

m E 1\1 and IHI is a norm on!Rm generated by an inner product<·,->; 

f :Rm ~Rm ,u* E Dim is a zero off, and J: Dim ~ L(Rm); 

{ 
D = {u: u E IRm,llu-u*ll < 8},/iscontinuouslydifferentiableonD 

and J is continuous on D ; 

{ 
for any u E D we have µ[f'(u)] ~ 0 

and J(u) does not have positive real eigenvalues; 

{ 

for all u,v ED there is a E(u,v) E L(IRm)such that 

f'(v) = J(u)(I+E(u,v)),llE(u,v)ll ~ t:. 

Further (A 2) will stand for these assumptions (2.2)-(2.6) together with 

J(u) = f'(u) (for all uED). 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

In (2.4) continuously differentiable means that that the matrix of partial derivatives 

f'(u) = (of;(u) / ou1) exists and depends continuously on u. The condition µ[f'(u)] ~ 0 on D is 

equivalent to requiring that f is dissipative on D (see e.g.[5, sect.5.4]). The condition in (2.6) states 

that the relative difference between f'(v) and J(u) is bounded by t: ; in case J(u) is regular it reads 

llJ(u)- 1(f'(v)-J(u))ll ~ t:. Thus, in a relative sense, the variation off' on D may not be too large 

and J (u) has to approximate f'(u) accurately enough. 

In order to formulate our main results we define the real functions 1flk(k = 1,2) on the interval 

[l /2,oo) by 

1/;1 (8) = min{28- l, 1 }, 

ih.(8) = min{28-1, V(28- t) I 8}. 

(2.8) 

(2.9) 

THEOREM 2.1. Leth and 8 be positive, and k equal to 1or2. We have llun+ 1 -u*ll~ llun-u*ll (when­

ever Un E D and (Ak) is valid) if! 8 ;;;.. 1 / 2 and t: ~ t/;k ( 8). 

This theorem is an extension of a result by M.N. SPIJKER and the present author, see [7; sect. 4]. 

The proof will be given in the next section. The restriction 8 ;;;.. 1 / 2 in this theorem is not surprising 

since the methods with 8 < 1 /2 are not A-stable. For 8 = 1 /2 we see that the monotonicity pro­

perty only holds for linear problems (t:=O). 
Under slightly stronger conditions on fit can be shown that llun+ 1 -u*ll < llun-u*ll (for 

Un E D,un=l=u·). This leads to the following result which will also be proved in section 3. 

THEOREM 2.2. Let h and 8 be positive, and k equal to 1 or 2. Assume u0 E D, 8 ;;;.. 1 / 2,t: ~ 1/lk(8) and 

,, 
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(Ak). Assume in addition that either£< 1/Jk(O) and J(u) is regu.lar (for all uED) or µ[f'(u)] < 0 (for all 

u ED). Then u * is the unique zero off in D and fun Un = u •. 
R->00 

3. PROOF OF THE MONOTONICITY RESULTS 

3.1. Preliminaries 
In order to prove the theorems of section 2 we first derive some technical results. Consider arbitrary 

A,B E L(llr) with m E N, and suppose 11·11 is a norm on Olm generated by an inner product <-, ·>. 
For any C E L(lllm) we denote by c· its &djoint with respect to this inner product 

( <Cx,y > = <x,C*y > for all x,y E Olm). 
The relation llBx II .;;;;; yllAx II (for all x Elllm), with y > 0 given, implies the existence of a 

C E L(lllm) such that B = CA, llCll .;;;;; y ; if A is regular we can take C = BA -I and for singular A 

the inverse A- 1 can be replaced by the generalized inverse of A (see e.g. (1; ch.8]). Since 

llC* II = llCll for any C E L(lllm) one easily arrives at the following result. 

LEMMA 3.1. Let y > 0. We have llB*xll.;;;;; rllA*xll (for all xElllm) if! B =AC for some C E L(lllm) 

with llCll .;;;;; y. 

Consider the following statements, with (} ;;;;;.: ; and t: ;;;;;.: 0, 

and 

B = A(I+E1) for some E 1 E L(lllm) with llE1ll.;;;;; £, 

A = B(I+E2) for some E2 E L(lllm) with llE2ll.;;;;; £, 

B = (}A (I+ F) for some F EL(lllm) with llFll .;;;;; 1. 

LEMMA 3.2. (3.la) implies (3.2) if!£.;;;;; i/;1(8). 

(3.la) 

(3.lb) 

(3.2) 

PRooF. Assuming (3.la) and£,;;;;;; i/;1(8) we set F = o- 1[E 1 +(l-8)/], in which case B = OA(I+F) 

and 

llFll .;;;;; o- 1(£+ 11-81).;;;;; o- 1(i/11(8)+ 11-81) = L 

To construct a counterexample in case £ > i/;1(8) we first consider the simple scalar (complex) 

example A = a, B = b with a,b E C. The condition in (3. la) corresponds to 

lb -a I .;;;;; £la I (3.3) 

and (3.2) corresponds to 

lb-Oa I .;;;;; Ola I. (3.4) 

By simple geometrical arguments it follows that for£ > t[;1(8) there exist a,b E C satisfying (3.3) but 

violating (3.4). 
These considerations on C lead to a counterexample with A = A 1 and B = B 1 EL(lll2), 

A,= [:: ;~ma].a, = [: ~mbl· 
and with IHI the Euclidian norm on lll2 (and the corresponding spectral norm on L(lll2 )). 0 

LEMMA 3.3. (3.la) & (3.lb) implies (3.2) if!£ .;;;;; t/;2(8). 
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PROOF. Assume (3.la), (3.lb) and£..;;; o/2(8). To show that (3.2) holds it is, in view of lemma 3.1, 
sufficient to consider the remaining case 1 <;..;;; (28-1)/8. From lemma 3.1 it follows that for 
any x E Rm 

llB*xll 2 -2<A *x,B*x >+llA *xll 2 ..;;; ;llA *xll 2, 

llB*xll2 -2<A*x,B*x>+llA*xll2 ..;;; ;llB*xll2• 

Combining these inequalities we obtain 

<A*x,B*x>;;;... (1- ~;)llB*xli2. 

From our assumption on £ it follows that 

llB*xll2 ..;;; 28<A*x,B*x>, 

and hence 

ll(B*-8A*)xll..;; 811A*xJI. 

Statement (3.2) now follows by again applying lemma 3.1. 
Now assume £ > o/2(8) and 1 / 2 ..;;; 8 ..;;; 1. Then we obtain a (scalar real) counterexample by talc­

ing m = l,A = -1, B = -1-£. 
Finally assume£> o/2(8) and 8 > 1. Let g E ((20-1)/8,2) such that~<;, and talce a,b EC 

such that b/a equals (l-~/2)+i'V~(l-~/4). Then lb-al ..;;£1al and lb-al ..;;£1bl but 
lb-8a1>81al. As in the proof of lemma 3.2 such a,b EC lead to A2,B2 E L(R2 ) such that for 
A = A 2 ,B = B 2 the statements (3.la), (3.lb) hold whereas (3.2) is violated. D 

We note that in the above counterexamples which prove the necessity of£ ..;;; lflk(8) we can choose 
the a,b E C such that Re a ..;;; 0, Re b ..;;; 0. This leads to Ak>Bk EL(R2

) satisfying 
µ[Ak] .,.;;; 0,µ[Bk] ..;;; 0 (fork = 1,2). 

The following lemma is a slight generalization of results in [6] and [7; lemma 4.3]. 

LEMMA 3.5. Assume I-AlJA is regular for all i\ > 0. We have III +(J-i\lJA)- 1i\Bll ..;;; 1 (for all 

i\ > 0) {ff µ(B]..;;; 0 and (3.2) holds. 

PRooF. Let C = B -8A. Then I +(I-i\8A)- 1i\B = (/-i\lJA)- 1(/ +i\C), and it follows that 
III +(I -i\8A )- 1 i\B II ..;;; 1 iff 

II(/ +i\C*)xll ..;;; ll(J.-i\8A*)xll (for all xERm). 

The latter inequality can be written as 

2i\<B*x,x>+i\2 11C*xll2 :,;;;;; i\2 118A*ll2 (forallxeRm). 

Clearly this holds for all i\ > 0 iff 

<Bx,x > .,.;;; 0 and nc· x II .,.;;; 118A. x II (for all x ERm). 

Application of lemma 3. l completes the proof. D 

3.2. The proof of theorem 2.1 
For u ED we define 

I 

a(u) = J III +(I -h8J(u))- 1hf'(u* +-r(u -u*))lldT. 
0 

Since for any Un E D 

(3.5) 



llun+i-u*ll = llun-u* +(J-h8J(un))- 1h(j(un)-/(u*))ll 

it follows by the mean-value theorem that 

llun+i-u*ll.;;;; a(un)llun-u*ll. 
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(3.6) 

Application of the lemmas 3.2, 3.3 and 3.5 with A = hJ(un) and B = hf(u* +T(un-u*)) shows 
the sufficiency of f .;;;;; 1flk(8) for having llun +I -u* 11 .;;;;; llun -u* 11 in case (Ak) holds, k = 1,2. The 
necessity will be proved by some counterexamples. 

A counterexample in case (Ai) holds, f > o/1(8) is given by hJ(u) = M.1>hf(u) = "AB 1u (for 
uER2) with A 1'B 1 as in the proof of lemma 3.2, A> 0 and 11·11 the Euclidean norm on R2

• With 
u* = 0, Un E R2, we obtain. 

llun+I -u*ll = ll(J +(I -MA 1)- 1"AB1)(un _:.u*)ll = 
= III +(I -A8Ai)-1"AB1 llllun-u*ll>llu,,-u*ll 

provided A > 0 is suitably chosen (see lemma 3.5). 

Next we give a scalar (real) example for f > i/;2(8), 1/2 .;;;;; 8 .;;;;; 1 in case (A 2) is valid. This coun­
terexample is similar to one given by SANDBERG and SHICHMAN [6]. 

Take, for convenience, h = 1,8 > 1 and u* = 0, u0 = 1. Let 11 E (28-1,E) and /(u) = "Ag(u) 
(for u Elli) with A > 0 and g :Iii ~ Iii a continuously differentiable function such that 

g(O) = 0, g'(u) E[-l-f,-1] (for all UEl!i), 

g(u) = -u +11 (for u.;;;;l), g(u) = -u -11 (for u~l). 

Such an f meets the conditions imposed in (A 2). Further we have 

U1 = (1 +M)- 1(1 +"A(8- l-11)) 

and thus lu1-u*I tendsto8- 1(11+l-8)>l = luo-u*I for A~ oo. 

Finally we assume f > i/;2(8), 8 > 1. For this we construct a complex, scalar counterexample, 
which can as before be converted to a real one by identifying C with R2 in the usual way. Suppose 
(28-1)/8 < E < min{2,£2

} and let a,b EC be such that Re a< 0, Re b < 0 and 
b /a = (l-E/2)+n.fE(l-E/ 4) (as in the proof of lemma 3.3). Then lb -a I <Ela I, lb -a I <£lb I 
but lb-8a1>81al, and thus for A> 0 suitably chosen I 1+(1-A8a)- 1Abl>l (see lemma 3.5). We 
put a = Aa and fJ = Ab. 

Let D be the unit disk in C,h = 1,u* = 0, and define 

f (u) = cl>(O)(a-fJ)+au +<P(u)(/J-a), 

<P(u) = _--2:!::_ (..l_..lu)I+I/k 
k +1 2 2 

for u EC, where k E 1\1 is to be specified later. Then/(O) = 0 and 

j'(u) = a+#,_u)(fJ-a), 
l l 

#._u) = <2-2u)I/k. 

The image of D under <f> tends to the interval (0,1) on the real axis if k ~ oo. By using this property 
it can be shown that, for k sufficiently large, the conditions on fin (A 2) are satisfied. Moreover, since 
f(l) = a and f (I) tends to fJ fork ~ oo·, 

11 +(I-8j'(l))-1/(l)I >I 

provided k is sufficiently large. It follows that, for such k and u0 close to 1, 
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3.3. The proof of theorem 2.2 
First we show that under the assumptions of theorem 2.2 the function o, defined by (3.5), satisfies 

o(u) < 1 (for all uED). Examination of the proof of lemma 3.5 shows that for A,B EL(Rm) satisfy­

ing (3.2) and µ.[B] :,;;;;;; 0 we have 

III +(I -A8A)- 1ABll < 1 (for all A.>0) 

provided we assume in addition either 

µ.[B] < 0 

or 

A is regular and B = OA (I + F), llFll < 1. 

Further it is easily seen, by regarding the proofs of lemma 3.2 and lemma 3.3, that if A is regular and 

we have (3.la) with t: < i/;1(0) or (3.la), (3.lb) with t: < i/;2(0) then there is an F EL(Rm) such that 

B = OA(I+F),llFll < 1. By setting A= hJ(u),B = hf'(u*+'T'(u-u*)) it follows that the assump­

tions of theorem 2.2 imply o(u) < l on D. 
The function o is continuous on D. Therefore we obtain for arbitrary u0 E D 

llun-u*ll:,;;;;;; sonlluo-u*ll 

with s0 = max{o(u): u ED, llu-u*ll.;;;;llu0 -u*ll} <I.From this it is clear that u* is the unique zero 

off in D and that the Un converge to u * for n ~ oo. 
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