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When the method of lines is used for solving time-dependent partial differential equations, finite differences 

are commonly employed to obtain the semidiscrete equations. Usually, if the solution is expected to be 

smooth, symmetric difference formulas are chosen for approximating the spatial derivatives. These 

difference formulas are almost invariably based on Lagrange type differentation formulas. However, if it is 

known in advance that periodic components of given frequency are dominating in the solution, more accu­

rate difference formulas, ba$ed on exponentials with imaginary exponent, are available. This paper derives 

such formulas and presents numerical results which clearly indicate that the accuracy can be improved 

considerably by exploiting additional knowledge on the frequencies of the solution. 
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0. INTRODUCTION 
A widely-used approach to solving time-dependent partial differential equations is the method of lines. 

This method replaces the spatial derivatives by discrete approximations and enables us to apply well­

developed time integrators for solving the resulting systems of ordinary differential equations. When 

finite differences are used to obtain the semidiscrete equations, almost invariably Lagrange-type for'­

mulas, based on polynomial interpolation of the solution are employed to derive the difference 

approximations. However, in many problems arising in fluid dynamics it is known in advance that 

the solution is dominated by one or more periodic components of known frequency. In such cases it 

turns out to be better to use difference formulas based on trigonometric interpolation, that is we 

require that the difference formulas have a reduced truncation error for certain exponential functions 

with imaginary argument (see Section 1). We will call such formulas exponentially fitted difference 

formulas. 
In [4] exponentially fitted difference approximations to first-order spatial derivatives have been 

derived and were shown to be more accurate than conventional difference formulas in oscillatory 

problems. These results are summarized in Section 2.1. In Section 2.2, similar formulas are derived 

for second-order derivatives and a comparison is made with conventional difference formulas. In Sec­

tion 2.3, we discuss the automatic estimation of dominant frequencies in grid functions. By means of 

a few numerical examples we show the performance of such a frequency estimator. 

Section 3 provides formulas for approximating boundary conditions to be imposed on periodic 

solutions. 
Finally, in Section 4, we show by a number of numerical experiments, that using exponentially 

fitted difference formulas in the space discretization of partial differential equations leads to a consid­

erable improvement of the accuracy. 

The adaption of spatial discretizations to known frequencies of the exact solution has received little 

attention in the literature. This is in contrast to the development of time integrators for solving 

periodic initial-value problems where a lot of work already has been done. We mention the papers of 

GAUTSCH! [2], BRUSO & NIGRO [l], GLADWELL & THOMAS [3], and VAN DER HOUWEN & SOMMEUER 

[5], where further references to oscillatory time integrators can be found. 
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1. THE TRUNCATION ERROR IN THE METHOD OF LINES 

We discuss the discretization of partial differential equations of the general form 

o"w aw aw a2w a2w 
- = F(w): = G(t,x,w,-

0 
-,-

0 
-,-2 , - 2 ), x =(x1>x2l e!l, v= 1,2, (1.1) 

at" xi x2 ax1 ax2 

where Fis the differential operator defined by the function G, and where it is known in advance that 

the solution is composed of components that are periodic in the space variable x. Applying the 

method of lines we replace the differential operators by difference operators: 

a a2 
-
0

-,...., Dj, -
0 2 ,...., D2+j• j=l,2, (1.2) 

Xj Xj 

and instead of (1.1), we consider the equation 

o"W -- = F a(W): = G(t,x, W,D 1 W,D 2 W,D 3 W,D 4 W), (1.3) 
at" 

xe!la: = {xlx = (}Ax1>1Ax 2l;j,l = O,+l,+2} 

where W is a function of t and x. 
The truncation error of the semidiscrete equation (1.3) corresponding to a given test function 

w=w(t,x) is given by 

o"w 
L(w): = - - Fa(w) = F(w) - Fa(w), xe!la. (1.4) 

at" 

Suppose that the solution of ( 1.1) is given by 
R 

w0 : = ~ w~>(t) exp (if'>.x), (1.5) 
r=I 

where the frequency vectors 

f'>: = (/{>,fI>l, r= I, ... ,R 

are either known or are known to lie in a given real domain. Furthermore, let the exponential func­

tions in (1.5) be eigenfunctions of the difference operators in (1.2) with eigenvalues defined by 

D ( ;l(r) ) - ~(r) (;Ar) ) . -1 4 
j exp 11 - .x - u1 exp 11 - .x , ; - , .. ., . (1.6) 

Then from (1.4) and the definition of the operators F and Fa it follows that the magnitude of the 

truncation error corresponding to (1.5) can be reduced by minimizing the magnitude of the functions 

(l.7a) 

(l.7b) 

We observe that by symmetric difference operators, we obtain purely imaginary eigenvalues for 

j=l,2 and real eigenvalues for j=3,4. Thus, it is then feasible to minimize the magnitude of the 

functions (1.7) by minimizing the extreme values of the real-valued functions 

l: Ar) - ~(r) 'h))2 + ~(r) ;· - 1 2· r - 1 R 
Jj ul ' VJ u1+2• - ' ' - , ... , (1.8) 

by a judicious choice of the discretization weights in the difference operators. Since we do not want 

too many grid points involved in the discretization molecules, the minimization of ( 1.8) is only 

effective if R is small, that is the exact solution is dominated by only a few Fourier components. 
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2. EXPONENTIALLY FITIED DIFFERENCE FORMULAS 

In this section we present discretization molecules for numerical differentation of periodic frinctions of 

the form (1.5). 

2.1. First-order derivatives 
Without derivation we give a symmetric, fourth-order, four-point line discretization (cf. [4]): 

D1 = -1-[~1(E( 1 - E1 1 )+~2(Ey - E12)], 
.!U1 

Z+ z_ 

sin (z +) sin (z _) z + 
~2 : = 4[ cos(z +) - cos(z _)]' ~1 : = 2sin(z +) -U2 cos(z +), 

where E 1 defines the forward shift operator over one mesh width; here 

z + = fi1> .!Ui. z _ = fi2> .!U1o 

if we want to eliminate just two frequencies from the truncation error, and 

I ,-Ji. I _ r;::,-JJ. J.. 
Z± = LU1[2v1 + jy)+4 v2v1 - Jr)]2 

if we want to minimize the truncation error for all frequencies in the interval 

!1 ,,;;;;.fr> ,,;;;;.Ji. 
A similar definition holds for the difference operator D 2 • 

The formula (2.1) will be called an exponentially fitted difference formula. 

2.2 Second-order derivatives 
Consider the approximation 

02 1 k k 

-ax-r ,..., D3: = -(LU_1_>1_1~1~o~y>(E(i + E{i)(Ett + Eil), 

(2.1) 

(2.2a) 

(2.2b) 

(2.3) 

where E; denotes the shift operator along the X;-axis. It is elementary to show that this approxima­

tion is second order accurate if 

J,~o~y> = o [<ax1r+2 J.1.~;2~y> = ~ + O((LU:1f), 

J.~o 12~f> = o[<axir]. 
holds for p =2, and fourth-order accurate if (2.4a) holds for p =4 and if, in addition, 

.± j4~f> = o [caxd), .± 14~)1>o [<axd ].$J2 12~51> =o [<axd J. 
f,l=O J,l=O f,I 

(2.4a) 

(2.4b) 

We remark that usually the order terms in the order equations (2.4a) and (2.4b) are set to zero, so 

that polynomials of sufficiently low degree are exactly differentiated. The corresponding difference 

formulas will be called conventional formulas. The introduction of the order terms does not decrease 

the (algebraic) order of the difference formulas and enables us to differentiate certain exponential 

functions with reduced error as will be shown below. 
Let us apply the symmetric difference operator (2.3) to an exponential function. This leads to the 

eigenvalue (cf.(1.6)) 

4 k 
l><J> = - 2- ~ ~)1>cos<JµY>)cos(lµ'{>), 

f1. XJ j,l=O 

,,([) • = Ar) A ••• • 1· = 1 2 
t"J • Jj U)l.1' ' . 

(2.5) 
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Defining the function 
k 

a 1(µ.): = µy + 4 ~~JI) cos(jµ1)cos(/IJ'2) (2.6) 
j,l=O 

it follows from (1.8) and (2.9) that we should minimize 

l<fY»2 + 8S'°)I =-2-
1-la1Mr»1. r=l, ... ,R. (2.7) 

. /l XJ 

In particular, we consider the minimization of (2. 7) for five-point line discretizations, i.e. 

D3 = ~I [2fu + ~1(Et 1 + Ei1) + ~1(Et2 + Ei2)], (2.8a) 

where we have omitted the super index in the discretization weights. The corresponding function 

(2.6) assumes the form 

a1(µ.) = li1{µ.1): = µy + 4(fu-~2) + ~1 cos(µ.1) + 8~2 cos2(µ.1). (2.9) 

In order to minimize the extreme values of (2.7) we require 

a1(zr) = 0, r = 1,2,3, (2.10) 

where the three zeros of a 1 are located at suitable points in the frequency interval. For instance, if 

R = 3 and the three frequencies in (2. 7) are known, then we set 

Zr = /{> !lxi. r = 1,2,3. 

Alternatively, when it is only known that 

f1 :s;;;;.j{> .;;;;_Ji. r= I, ... ,R, 

(2.1 la) 

(2.12) 

then we identify the zeros of a 1 (z) with the zeros of a Chebyshev polynomial shifted to the interval of 

frequencies (2.12) (cf.[4]). This results in 

z2 = V-hfi + £r)!lxi. Z1 = 

... I 2 2 -ji. A2 .,, 
z3 = V z2 - (z2 - ]1"" x1) cos(6). 

The conditions (2.10) imply th_at exponential functions of the form 

.ZrXJ 
exp(r !lxi ), r = 1,2,3 

are exactly differentiated by the difference operator (2.8a). 
For future reference, we give the solution of the equation (2.10): 

I zhc2-c3) + z~(c3 -c1) + zhc1 -c2) 
~2 = 

8 (c1 -c2)(c3 -c1)(c2 -c3) 

I zy-z~ 
~I = 4 - ~1(C1 + C2), 

CJ -c2 
I 

fu = ~2 - ~1C1 - ~2cT - 4z1; Cr = cos(z2), = 1,2,3. 

The discretization (2.8) will be called an exponentially fitted difference formula. 

(2.llb) 

(2.8b) 

We observe that the usual 5-point line discretization arises if a(z) has all its zeros at the origin. 

The corresponding weights are given by 



~o = 5 2 
8' ~I = J• ~2 = 

1 
24" 
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(2.13) 

1bis discretization satisfies (2.4) with p =4 so that it is fourth-order accurate. It can be shown that 
the discretizations (2.8)-(2.11 a) and (2.8)-(2.11 b) are also fourth-order accurate. 

In order to compare the truncation errors of the discretizations (2.8) and (2.13), we derive expres­

sions for the extreme values of lal on the frequency interval (2.12) if the mesh size tends to zero. 

For (2.13) we easily find 

- 1 - 6 
la1(f1.!lx1)I~ 

90 
if1l:!..x1) as l:!..x1~0. (2.14) 

Since, in the case (2.8b ), the zeros of a vanish as the mesh size decreases, we find a similar expression 
as (2.14) only differing by the order constant; numerically we found for the case where the left end 

point of the frequency interval is the origin: 

- 1 - 6 
la1if1.!U1)I~ 3000 

if1!:!..x1) as !:!..x1~0. (2.1s) 

2.3. Automatic estimation of dominant frequencies 
In actual computation, it is conv~ni~t to estimate automatically the main frequencies of the numeri­

cal solution. Suppose that at t =t(t fixed) the numerical solution is expected to be an approximation 

to the function 
R 

u(x): = ~ar exp(ifr>.x), OrEC,fr>EIR. (2.16) 
r=I 

A straightforward technique for determining the frequency vectors fr> is based on the minimization 

of the expression 
N 
~ lu(xj) - vjl2, (2.17)• 
j=I 

where Uj denotes the numerical approximation to u(xj ), and { xj} f = 1 represents a set of grid points. 
Most numerical libraries for large scale computing contain a suitable least-squares routine for solving 
this problem (see, e.g., NAG [routine E04FCF]). The efficiency of the least-squares algorithm for 
finding the frequencies fr> (and the coefficients ar) that minimize (2.17) decreases when the number of 
parameters increases. Therefore, it is advantageous to replace (2.17) by an expression in which less 
parameters are involved. In particular, it would be nice when only the frequency parameters f are 
left. We illustrate the derivation of such an expression by a few examples. 

EXAMPLE 2.1 Let in (2.16) x be scalar and let R = 1, i.e., 

u(x) = a1exp(if1>x). 

By applying the operator P (E), where E is the forward shift operator 

j=-m 

we obtain the identity 

P(E)u(x) - P(e;fnllx)u(x) = 0. 

Suppose that P (z) satisfies the condition 

P(z) = P(1 /z), 

i.e.,pj=p-j, and define 

(2.18) 

(2.19) 

(2.20) 

(2.21) 



m 

P*(z): =p0 + 2~pjcos(jz). 
j=I 

Then (2.20) assumes the form 

P(E)u(x) - p*(j1>tu)u(x) = 0. 

This identity suggests the minimization of the one-parameter expression 
N . 
~ j[P(E) - p*(jI>tu)]l!;j2. 
j=I 

A simple example of a suitable function P (z) is given by P (z) = z + 1 I z. D 

ExAMPLE 2.2 Next we consider the case R =2: 

u(x) = a1exp(if1>x) + a 2exp(if2>x). 

Let us define the functions 

6 

(2.22) 

(2.20') 

(2.23) 

(2.24) 

P(x): = P(E)u(x), w(x): = P 2(E)u(x) (2.25) 

Then we easily derive the identity 

p*(j1>tu)P*(j2>tu)u(x) - [P*(j1>tu) + p*(j2>tu)]v(x) + w(x) = 0. (2.26) 

As in the preceding example, this identity straightforward leads to a two-parameter expression to be 
minimized over the two frequency parameters. 

In order to illustrate the performance of a frequency estimator based on (2.26) we have listed a few 
results in Table 2.1. The function P(z) used, is given by P(z)=z-2+ 1/z. The functions u(x) 
correspond to the functions w(O,x) used in our numerical experiments reported in Section 4. The 
results obtained show a rather satisfactory accuracy of the estimated frequencies. D 

TABLE 2.2. 
Estimation of dominant frequencies 

Problem :'fo /tu f'> f'-> 

1. u (x )= sin(sin(x )) 8 0 1.45 
16 1.00 2.99 

3. u(x)=tan(sin(x)) 16 1.01 3.32 

4. u (x) =sin( 4x) + sin(5x) 16 4.05 5.90 
+sin(6x) 

5. sin(x) + sin( l.2x) 8 1.00 1.20 
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3. ExPONENTIALL Y FITTED EXTRAPOLATION 

In order to apply the symmetric difference operator (2.1) and (2.8) near the boundary points we need 
to extrapolate, beyond the boundary, the numerical solution obtained at internal grid points. When 
conventional difference operators are used, then we may employ polynomial extrapolation; for exam­
ple, the sixth-order formula 

w = [6(E1 + Ej) - 15(Er +Et)+ 20Ey - E~Jw + O((tui)6). (3.1) 

However, when using exponentially fitted discretizations, then polynomial extrapolation is inaccurate, 
unless still higher order formulas are applied. A more attractive alternative is the use of exponentially 
fitted extrapolation formulas. 

Let us write 
k k 

w = A1w: = ~ ~rf>(E1 + E"l-j)(E~ + Ei1)w (3.2) 
/=Oj=I 

and require that this approximation has a small truncation error for functions of the form ( 1.5). 
Then, the extrapolation weights should be such that 

R 

Wo - A1Wo = ~[l - ar>Jw~>(t) exp(if'>.x) 
r=I 

k k 
ar>: = 4 ~ ~rf> cosvµY>) cos(1µ<,p) (3.3) 

l=Oj=I 

is small in magnitude. This is achieved by minimizing the magnitude of the function 
k k 

b1 (µ); = 1-4 ~ ~ rf> cos(jµ,) cos(lJL2) (3.4) 
/=Oj=I 

over the range of frequencies. This minimax problem is similar to that discussed in Section 2.2 for 
the function (2.6) and the (approximate) solution of this problem can be obtained along the same 
lines. 

In our numerical experiments we will apply the seven-point formula that arises for 

k = 3, K)I) = 0 for l=/=O. 

Defining 

b1{µ) = b1{µ1): = l-4[K1 cos{µ1) + K2 cos(2µ1) + K3 cos(3µ1)], 

we arrive at the fitting conditions (cf.(2.10)) 

b 1(z,) = 0, r = 1,2,3, 

(3.5) 

(3.6) 

(3.7) 

where the three zeros of b 1 coincide with (2.lla) or (2.llb). By solving (3.7), we obtain the extrapola­
tion weights and the resulting extrapolation formula is then given by 

w = [-_k(E1 + Ej) - i!_(Ey +Et)+ 2~3 Ey - E~Jw+O(ll6x 1 ). (3.8) 
r3 r3 11 

4. NUMERICAL EXPERIMENTS 

By means of numerical examples we will show that the exponentially fitted discretization formulas 
derived in the preceding sections lead to considerably larger accuracies than the conventional discreti­
zations, both for linear and nonlinear problems. The problems are specified in the table below. 



1. 

2. 

3. 

4. 

Problem 

Wu=Wxx 
w=sin(sin(x+1)) 

(1 +w2)wxx 
wu=------

1 + sin2(sin(x +I)) 

w=sin(sin(x +1)) 
o.;;;;;x.;;;;;2'11' 
o.;;;;;1.s;;;;T 

(1 +w )wxx 

Wu= 1 + tan2(sin(x +I)) 
w=tan(sin(x+1)) 
o.;;;;;x.;;;;;2'11', o.;;;;;1.s;;;;T 

Wu =wxx 
w =sin4(x +1)+sin5(x +1) 

+sin6(x+1) 
o.;;;;;x.;;;;;2'11', o.;;;;;1.s;;;;T 

_ 2 1 
Wu-W [wxx--+w 

w 
5. +.44sin(l.2x+1)] 

w = sin(x +I)+ sin(l.2x +I) 
O.s;;;;x.;;;;;2'11', O.s;;;;1~T 

TABLE 4.1 
Numerical results 

T 2"/!u 

1 8 16 

16 32 

1 8 16 

16 32 

10 16 32 

1 16 32 

1 16 32 

8 16 

{0,0,0} 
{1,2,3} 

{0,0,0} 
{1,3,5} 

{0,0,0} 
{l,2,3} 

{0,0,0} 
{l,3,5} 

{0,0,0} 
{l,3,5} 

{0,0,0} 
{1,2,3} 
{l,3,5} 

{0,0,0} 
[3,7] 
[4,6] 
[4.5,5.5] 

{0,0,0} 
[.9, 1.3] 
[1,1.2] 
[l.05,1.1] 

cd(P) 

1.80 
2.99 

2.92 
4.19 

1.83 
3.00 

2.92 
4.20 

1.88 
4.17 

1.95 
2.21 
2.70 

-.06 
.62 

1.58 
1.11 

cd(D) 

1.30 
2.89 

2.17 
4.19 

1.32 
2.90 

2.18 
4;20 

1.83 
4.06 

1.46 
1.74 
2.45 

-.65 
-.02 
1.06 
.60 

1.16 
3.26 
3.28 
3.34 

8 

The initial conditions are taken from the exact solution. In cases where the solution is periodic with 
respect to the given x-interval, we compare results obtained by imposing Dirichlet boundary condi­
tions and by imposing a periodicity condition. We confine our experiments to equations of the form. 

o2 w o2 w 
-

2 
=G(x,l,w,-

2 
). (4.1) 

a1 ax 
The spatial discretization was based on 5-point formulas; we present results obtained by conven­

tional and by exponentially fitted formulas ((2.8a) with (2.13) and with (2.8b)). In the case of Diri­
chlet boundary conditions, we used the polynomial extrapolation formula (3.1) for conventional 
discretizations and the exponentially fitted formula (3.8) otherwise. 

The time integration was performed by the second-order Runge-Kutta-Nystrom method generated 

by the Butcher array: 
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(4.2) 

1/2 0 
1/2 0 1/30 
1/2 0 0 1/12 

0 0 0 1/2 
0 0 0 1 

1bis method has zero dissipation and phase-lag order q =6. The periodicity interval is given by 

[0,(2.75)2]. 
The accuracy of the results is measured by the number of correct digits, i.e. by 

cd: = - log101 maximal absolute error at the end point t=TI. (4.3) 
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