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1. INTRODUCTION 
When investigating the biological world we can concentrate on different levels of organization. For 

instance, we can look at individual organisms and try to understand their life cycle and the physiologi­

cal processes that are essential for their functioning. Or we can look at populations of such organisms 

and try to understand or even predict how numbers change in the course of time. 

In reality these levels are strongly coupled but theoretical as well as experimental studies in ecology 

and cell kinetics tend to neglect the interplay more or less, with the work of STREIFER (1974), BELL & 

ANDERSON (1967), AUSLANDER, OSTER & HUFFAKER (1974), FREDRICKSON, RAMKRISHNA & TSUCHIYA 

(1967) as early exceptions worth mentioning. A recent attempt to revive the spirit of these older 

papers and to bridge the gap between the individual and the population level by means of a special 

class of mathematical models goes under the heading "Dynamics of Structured Populations", where 

sometimes the adverb "physiologically" is used to emphasize the difference with models incorporating 

spatial structure ( METZ & DIEKMANN, to appear). In a collective effort we try to study interesting 

examples in detail, to unravel the general mathematical structure of the class of models and to fit the 

corresponding class of partial functional differential equations into the framework of dynamical sys­

tems theory. This paper is a kind of progress report on work done by Hans Metz, Henk Heijmans, 

Mats Gyllenberg, Horst Thieme and myself, strongly stimulated by and partly in collaboration with 

Tom Aldenberg, Frank van den Bosch, Bas Kooijman, Roger Nisbet, Andre de Roos, Mous Sabelis 

and John Tyson. In addition, I sketch some lines to the future. This paper, with its concise and, at 

times, not very precise formulation, is meant as an invitation to read METZ & DIEKMANN (to appear), 

HEIJMANS (1985, to appear) and CLEMENT et al. (in preparation). 
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2. MODELLING 

The following is a recipe for the formulation of a structured population model: 

(i) Distinguish· individuals from one another according to relevant variables. That is, choose finitely 

many i-state variables (i- for individual) which, by assumption, contain sufficient information 

about the past of an individual to fix its future, as far as it concerns population dynamically 

relevant events. ExAMPLEs of i-state variables: age, size, energy reserves, amount of foliage. 

(ii) Genuine modelling: specify and describe (mathematically) the processes which change the i-state 

and those which lead . to the creation or destruction of individuals. The smooth "change" 

processes describe the trajectories of individuals in the i-state space and we usually assume that 

these are deterministic (i.e. identical for all individuals in a given i-state) and described by an 

ordinary differential equation. ExAMPLES: aging, growth. The "creation-destruction" (including 

jump) processes are usually stochastic (some die some don't) but we will always assume that 

numbers are so large that we can describe these chance processes in terms of rates (like most of 

the time in chemistry and deterministic population dynamics). ExAMPLEs: fission, removal from 

a chemostat by overflow. (Of course steps (i) and (ii) are not independent and one may actually 

go repeatedly back and forth between them before ending up with a satisfactory description of 

the i-dynamics ). 
(iii) Introduce a density function n =n(t,x), t =time, x =i-state, to describe the p-state (p- for popu­

lation) and do the necessary bookkeeping to derive how the i-processes can be expressed at the p­

level. So £ n (t,x )dx = number of individuals at time t with i-state in w, where w is any (measur­

able) subset of the i-state space. The ideal is, of course, to be able to compute n (t,.) for t >to 

when n(t0 ,.) is given. In finite time intervals all the different processes are interweaved in an 

intricate manner and this complicates the bookkeeping to such an extent that it becomes impossi­

ble to define the mappings n(t0,.)~n(t,.) directly. The old solution to this problem is to take 

limits, i.e. compare n(t0 +~,.) and n(t0 ,.) and let ~io to derive a partial differential equation. In 

small time intervals there will be hardly any compound events and in the limit these can be 

neglected all together. We end up with a partial differential equation which compactly summar­

izes the influence of the processes at the individual level on the population as a whole and which 

is based on the requirement that our bookkeeping should be correct. 

EXAMPLE: Let cells be characterized by their size x. Assume that reproduction occurs through asym­

metric division into a part of fixed size x 0 (the daughter) and a part of size x - x 0 (the mother). The 

budding yeast Saccharomyces cerevisiae may serve as an example. Let g(x) denote the growth rate of 

individual cells and b (x) the probability per unit of time that a cell of size x divides. The balance 

law describing the time-evolution of the size- distribution is 

a a 
atn(t,x)+ ax (g(x)n(t,x)) = -b(x)n(t,x)+b(x+xo)n(t,x +xo) 

00 

g(x0)n(t,x0 ) = J bmn(t,g)di; 
0 

GENERAL STRUCTURE: 

~ + divergence (velocity n) = sources - sinks 
at 

v . velocity n lao+ = source 

0 = i-state space 
p = inward normal to ao 

aO+ = part of ao at Which P. Velocity >0, i.e. characteristics enter 0 
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ExPLANATION: If we denote the i-variable by x then the trajectories of individuals are governed by 

: = velocity. In mathematical terminology these trajectories are (the projections on U of) the 

characteristics. The source terms correspond to the "creation" processes and the sink terms to the 

"destruction" processes. 

If we apply the above scheme to e.g. unicellular organisms (living, say, in a chemostat) we encounter a 

serious problem which is somewhat hidden in the general formulation: if we would try to incorporate 

all available knowledge about the individual level we end up, with absolute certainty, with an intract­

able problem (that is, one for which we cannot distil any interesting information out of the differential 

equation). So we have to compromise and already in the modelling phase we have to keep in mind 

that the resulting equation should be amenable to analysis. An obvious idea presents itself: use just 

one variable to describe the state of individual cells and preferably one which can, at least in princi­

ple, be measured. This variable should be a reliable indicator of a much more complicated "true" 

state which takes account of the detailed physico-chemical composition of the cell. As a mathematical 

idealization we declare it to be the true state, that is, we pretend that all relevant information is con­

tained in this one and only variable. The example above concerning the cell size distribution is based 

on such considerations. 
There exists yet another way out of the problem that realistic models tend to be so complex that 

they become resistant to mathematical analysis (and, in addition, so parameter rich that an experi­

mentalist has to provide a prohibitive number of estimates). When the initial modelling stage is over 

we may simplify the model through limiting procedures based on i.a. time scale arguments. It is, in 

general, safer to first formulate a complicated model and only thereafter take limits then to construct 

the "limiting" models directly (see, for an example, DIEKMANN, NISBET, GURNEY & VAN DEN BOSCH, 

to appear). 
The aim of structured population models is to derive information about the dynamics of popula­

tions from information about the dynamics of individuals or vice versa. For instance, in human 

demography one wants to predict the population growth on the basis of age specific fertility and mor­

tality statistics obtained from civil registration data. In cell kinetics, on the other hand, the experimen­

tal inaccessibility of the individual level creates inverse problems (e.g. to infer properties of the cell 

growth rate g and the fission rate b from data about the population growth rate and the stable size 

distribution, see PAINTER & MARR (1968), BELL & ANDERSON (1967), TYSON & DIEKMANN (to 

appear), VOORN (1983)). 
To further illustrate the applicability of the "structured" approach, I briefly describe two classes of 

models by listing the i-state variables and the "change" and "creation/ destruction" processes, while 

referring to papers in METZ & DIEKMANN (to appear) for the detailed modelling of these processes. 

KoOIJMAN (to appear) describes a Daphnia population on the basis of an energy budget. The i-state 

variables are size, age and storage, the "change" processes ingestion, maintenance, growth and storage 

and the "creation/destruction" processes reproduction ( parthenogenetic) and death (due to aging, 

predation and possibly starvation). In other words, he derives a detailed model for the relation 

between food input and neonate output which may be used as a basis for population dynamics. The 

motivation stems from toxicity research. Toxicity tests are usually done under "abundant food" condi­

tions and it is a priori unclear how the results can be extrapolated to "natural" conditions, depending 

on the particular physiological process being affected by the toxic chemical. In the context of the 

model one can actually perform the extrapolation (see KOOIJMAN & METZ (1984) for such a study 

with a simpler model without storage; also see DIEKMANN, METZ, KooIJMAN and HEIJMANs, 1984; 

recently H.R. Thieme has made a profound mathematical study of the Kooijman- Metz model). 

SABELIS & LAANE (to appear) describe plant-herbivore-predator systems by characterizing indivi­

dual patches (one plant or a collection of nearby plants) in terms of the amount of foliage, the 

number of herbivores in the patch and the number of predatory insects in the patch. The "change" 
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processes are foliage growth, the eating of foliage and the subsequent conversion into new herbivores, 

the eating of herbivores by predatory insects and the subsequent conversion into new predators. The 

"creation/ destruction" processes are the formation of herbivore colonies and the invasion of a preda­

tor into a herbivore colony. The basic question is: what is the relationship between local dynamics (in 

one patch) and global dynamics (in a large collection of plants). The motivation stems from biological 

control. EDELSTEIN (to appear) discusses similar models for plant-herbivore interaction. 

3. WHAT IS THE APPROPRIATE P-STATE SPACE ? 

The introduction of Sobolev spaces has made the theory of (elliptic and) parabolic partial differential 

equations much more elegant and powerful. So the choice of a state space is not without importance. 

The convential choice for the p-state space is L 1 (0). The standard motivation is that integrals yield 

numbers. The following two observations suggest that this space is too small: 

(i) In age-dependent models all individuals are born with age zero. In the L 1 -context we can 

account for the neonate source term by a boundary condition, but when dealing with the 

variation-of-constants formula (to verify the principle of linearized stability or to study Hopf 

bifurcation) this creates all kinds of technical problems (see WEBB (1985a), PR.u'ss (1983); Schap­

pacher (pers. comm.)). If, on the other hand, we consider the neonate source term as a measure 

concentrated at age zero (and identify L 1 with absolutely continuous measures) these technical 

problems disappear as snow in a hot sun ( CLEMENT, DIEKMANN, GYLLENBERG, HEIJMANS & 

THIEME, in preparation). 
(ii) Let the i-state be given by age and size and assume that individuals are born with a fixed size 

(e.g. the asymmetric cell fission model with age as another i-state variable). 

1she 

Then the distribution of individuals will concentrate on a line in the age-size plane. Whenever 

this line is fixed (i.e., whenever the food supply is constant) we can eliminate one variable (say 

size), but in general this is impossible. So we have to face the situation that with multi­

dimensional i-state spaces the i-state distribution may be concentrated on lower dimensional 

manifolds. 
Thus we are led to choose as our p-state space M(!l), the space of regular Borel measures, in accor­

dance with the probabilistic interpretation ( FELLER, 1966) and the standard motivation that integrals 

yield numbers. Being the dual space of the space of continuous functions on !l, M has two natural 

topologies (the norm or total variation topology and the weak * topology) which both seem to play a 

role. In the case of a one-dimensional i-state space !l, the absolutely continuous measures will usually 

constitute an invariant subspace, which brings us back to the L 1-setting. However, observation (i) 

above shows that even then it may be advantageous to consider explicitly the embedding into the 

larger space M, while observation (ii) shows that in general this subspace need not be invariant. 
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4. LINEAR ANALYSIS 1: INTEGRATION-ALONG-CHARACTERISTICS, DUAL SEMI GROUPS AND THE 

VARIATION-OF-CONSTANTS FORMULA. 
Structured population models lead to first order partial functional differential equations. The adjective 

"functional" is used to express that, as a rule, the source terms contain non-local arguments (e.g. 

x + x 0 in the cell fission equation). The occurrence of these terms complicates the construction of a 

solution , even in the linear case. A successful strategy to overcome this difficulty is the following. 

First we simply neglect the source terms (i.e., we put them equal to zero). The resulting easy problem 

can be solved explicitly by integration along characteristics. When working with measures this is done 

indirectly: one first solves the pre-dual or backward problem ( FELLER, 1966) (which is obtained by 

replacing the divergence (velocity n) term by -velocity . gradient n and changing the boundary condi­

tion appropriately) on the space of continuous functions and subsequently defines the forward solu­

tion operator by duality; see HEIJMANS (1984) for an example. Thus we obtain dual semigroups. 

Next we add the source terms back in as a perturbation of the generator, replace the full 

differential equation by a variation-of-constants equation and solve the latter by successive approxi­

mations ( CLEMENT et al, in preparation). Biologically this amounts to the generation expansion! 

This program is not yet carried out in detail for cases in which the i-state space has dimension greater 

than one. 
Linear semigroup theory is very useful since there is a known relationship between computable 

spectral properties of the generator and the large time behaviour of the semigroup (e.g. WEBB, 1985a, 

GREINER, 1984). 

5. LINEAR ANALYSIS 2: POSITIVITY AND STABLE DISTRIBUTIONS. 

Semigroups generated by population equations leave the cone of positive measures invariant. The 

structure of the spectrum of the generator of a positive semigroup is very special ( GREINER, 1981, 

1984) and consequently so is its large time behaviour. It appears that for linear problems the combi­

nation of positivity and irreducibility yields, as a rule, stable distributions. The following references 

contain some more information on this topic: GREINER (1981, 1984), HEUMANS (1985, to appear) and 

WEBB (1985 a,b ). Sometimes one can actually compute the stable distribution explicitly and use this 

computation to analyse the inverse problem ( TYSON & DIEKMANN, to appear). 

6. NONLINEAR AND NUMERICAL ANALYSIS: INTERACTION THROUGH THE ENVIRONMENT. 

Frequently the linear structured models contain parameters, such as the concentration of an essential 

nutrient S, which will only in carefully controlled laboratory experiments be constant. Under more 

general conditions one has to supplement the equation for n with a dynamical equation for S such as 

dS dt = F(S,L[n]) 

where L is the consumption functional. In other words: we close an input -output loop and obtain a 

nonlinear feedback system. Our aim is to develop a local stability and bifurcation theory for such sys­

tems, by using dual evolutionary systems to describe the open input -output circuit, in combination 

with fixed point arguments. 
In addition we want to develop efficient numerical methods for the study of such systems. 
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