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1. INTRODUCTION 
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This paper describes properties of stochastic population systems defined by birth and death rates 
depending on the population size. The state variables are the norinegative population numbers, so 
that the state space is formed by the positive orthant and its boundary. The deterministic dynamical 
system associated with the stochastic system is assumed to have a stable equilibrium point lying in the 
interior of the state space. For large population sizes the statistically quasi-stationary state of the sto
chastic system is described by a probability density function (p.d.f.) defined on the state space, with a 
maximum at the equilibrium point. Close to the equilibrium point this p.d.f. is approximately mul
tivariate Gaussian. At a larger distance, deviations from the Gaussian shape become more pro
nounced. Part of this paper deals with the construction of the contours of the associated confidence 
regions in state space. A method has been developed for the numerical solution of the ray equations, 
needed in the computation of the contours. The method does not have the disadvantages of the 
numerical methods that are normally used to solve the ray equations, such as the Runge-Kutta initial 
value approach or shooting methods. 

An important concept in stochastic population dynamics is the concept of stability. Once a stochas
tic system of populations is caught within the attraction domain of a stable equilibrium point of the 
corresponding deterministic system, it will remain there for a long time, attracted by the equilibrium 
point. Stochastic fluctuations give rise to deviations from the equilibrium point. With very small pro
bability large departures occur, which may lead to escape from the domain of attraction of the equili
brium. With probability one this will happen within a finite time. On hitting the boundary of the 
state space by stochastic fluctuations, the domain of attraction is left: one population becomes extinct. 
The birth and death rates for that population are zero, the boundary is absorbing. The ecological sta
bility of a system is expressed in terms of the mean extinction time, for which expressions are given. 
A related problem that will be touched upon is which of the populations of a stochastic system is 
expected to become extinct first. 

In the second part of this paper the foregoing theory is applied to a stochastic system consisting of 
two interacting populations. The associated deterministic system is a generalized Lotka-Volterra sys
tem with two components. A systematic treatment of this system is given. The stability condition for 
the interior equilibrium point is derived. Close to the equilibrium the quasi-stationary state of the 
stochastic system is approximately described by a two-dimensional Gaussian p.d.f. The parameters of 
this Gaussian p.d.f. are expressed in the parameters of the stochastic model. As a consequence, some 
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conclusions about the behaviour of the stochastic model can be drawn. For a number of particular 
cases, contours of confidence regions in the state space are depicted. There is a good agreement with 
the results of numerical simulations of the original stochastic birth and death processes. Finally, the 
concept of extinction is treated. Results obtained by the ray method and by the approximate method 
in which the p.d.f. is assumed to be Gaussian, are compared with the data, obtained by the numerical 
simulations. 

2. DERIVATION OF THE FOKKER-PLANCK EQUATION 

In this section the Fokker-Planck or forward Kolmogorov equation is derived. This is a transport 
equation for the joint probability density function for the number of individuals in each of the popu
lations of a population system at time t. First a system with a single population is considered. Then 
the straightforward generalization to n populations is made. 

1 population 
Let the number of individuals in a single population at some time.!. be given by the nonnegative 
integer N. Assume that the population has an infinitesimal birth rate B(N) and an infinitesimal death 
rate D(N). This me~s that the E!obability of a single birth or death in the small time interval 
(t,t +.:it) is given by B(N).:it and D(N)At. The probability of multiple births and deaths in the time 
interval is proportional to (.:it)2 and may be neglected for small .:it. The probability P(N,t) of having 
N individuals at time t, satisfies the equation: 

P(N,t +.:it) = P(N -1,t)B(N -l)At + P(N + l,t)D(N + l)At+ (2.1) 
- - -

+ P(N, t)[ 1 - { B(N) + D(N) }At]. 

Thus the number of individuals at some time is obtained by either one of three mutually exclusive 
events in the foregoing small time interval of length At, i.e. a birth, a death, neither birth nor death. 
In the limit At ~ 0 the master equation is obtained: 

aPc:;,t> = P(N -1,t)B(N -1)+ P(N + 1,t)D(N + I)-P(N,t){B(N)+ D(N)}. (2.2) 

In this way a discrete state space Markov process has been defined. An approximating process in a 
continuous state space is constructed in the following way. A new population variable x = NIK is 
introduced by scaling N with Kand the corresponding p.d.f. P(x,t) is defined by 

- 1 1 1 1 
P(N,t) = Pr{N-2:,;;;;;; N(t):,;;;;;; N+1_} = Pr{x-

2
K:,;;;;;; x(t):,;;;;;; x+ 

2
K} = (2.3) 

1 = P(x,t) K · 

The parameter K is typical for the population size. A natural choice is the size of the equilibrium of 
the deterministic system, which by assumption is large. Then x may approximately be treated as a 
continuous variable and functions of x as continuous functions. With 

B(N) = B(xK) = B(x), 

D(N) = D(xK) = D(x), 

we obtain from the master equation: 

(2.4) 

aP(x t) 1 1 I 1 a/ = P(x - K,t)B(x - K)+P(x + K,t)D(x + K)-P(x,t){B(x)+D(x)}. (2.5) 

The birth and death rates Band Dare assumed to be expressible in van Kampen's canonical form [l], 
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that is, in a power series in K- 1 of the following kind: 

B(x) = j(K)[0B(~)+ 1 B(~)K- 1 + 2B(~)K-2 + ... ], (2.6) 

D(x) = f(K)[°D(~)+ 1 D(~)K- 1 + 2D(~)K-2 + ... ]. 

It is assumed that B and D are smooth functions. By a Taylor series expansion (Kramers-Moyal 
expansion) of the functions on the right side of equation (2.5) up to second order in K- 1, the follow
ing Fokker-Planck "equation is obtained: 

_l _ oP(x,t) = 
f(K) ot 

(2.7) 

- ~ 
0
: [{(0 B(x)-0 D(x))+ ~(1 B(x)- 1 D(x))+ ; 2 (2B(x)- 2D(x))+ ... }P(x,t)] 

2 o2 1 1 -
+ - 2 - 2 [{(° B(x)+0 D(x))+ K(1 B(x)+ 1 D(x))+-2 (2B(x)+ 2D(x))+ ... }P(x,t)]. 

K OX K 

In the simple case that 

j(K) = K, 

iB(x) = iD(x) - 0, for i > 0 

so that B and D are given by 

B(x) = K0B(~), 
_ o N 

D(x) - K D( K), 

the Fokker-Planck equation takes the form 

(2.8) 

(2.9) 

oP~x,t) = - +-[{o B(x)-0 D(x)}P(x,t)]+-
2
1 02

2 
[{0 B(x)+0 D(x)}P(x,t)]. (2.10) 

t ux K ox 

The first term on the right side expresses the drift of the system, the second one the diffusion. For 
large values of K the diffusion is small compared to the drift. 

The approximating continuous process and the original discrete process have the same first and 
second jump moments. However, as a consequence of truncating the Taylor expansion after two 
terms, higher moments do not agree. The higher _moments of the continuous process are all zero, 
while for the discrete process the odd moments are equal to the first moment and the even moments 
are equal to the second moment. 

n populations 
For every po_Eulation i from a system of n populations,. the birth rate is B;(N 1,N2, ... ,Nn) and the 
death rate is D;(N l>N 2, ... ,Nn). Let the B;(x 1>X2, ... ,xn) and the D;(x 1>X2, ... ,xn) be defined by 

B;(N1>N2, ... ,Nn) = B;(x1K1>x2K2, ... ,xnKn) = B;(Xi,X2, ... ,xn), (2.11) 

D;(N1>N2, ... ,Nn) = D;(x1Ki,x2K2, ... ,xnKn) = D;(X1>X2, ... ,xn). 

New variables X; = N;I K; were introduced by scaling the old ones by the sizes of the equilibrium 
populations. On assuming the canonical forms 

(2.12) 
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the following Fokker-Planck equation is obtained: 

oP(x 1,X2, ... ,Xnot) 

at 

- n -a 0 0 - ~. {-
0
-. [{ Bi(X1>X2, ... ,xn)- Di(Xi.X2, ... ,xn)}P(x1>X2, ... ,xn,t)] 

i=l x, 

1 o2 
[{o ) o } + 

2
K --2 Bi(X1>X2, ... ,Xn + D;(X1>X2, ... ,Xn)}P(X1>X2, ... ,Xnot)] . 

i OXj 

The population sizes Ki are assumed to be large and of equal order: 

K; = O(..!.), (t: small) 
t: 

so that 

1 K = K;t:, Kj = 0(1). 
l 

Substitution in the Fokker-Planck equation gives: 

in which 

oP(x,t) = ± [- aa. {Mx)P(x,t)} + 2t: a22 {ai(x)P(x,t)}],. 
at i=l x, axi 

Mx) = 0 Bi(x)-0 Di(x), 

ai(x) = K;(° Bi(x)+0 D;(x)). 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17a) 

(2.17b) 

This form of the Fokker-Planck equation, valid for a system of n populations having large equilibrium 
values of equal order, is the starting point of our analysis. 

For very large populations the diffusion term may be neglected. The system is then described by 
the Liouville equation: 

oP(x,t) = ± [--a-{Mx)P(x,t)}]. 
at i=I ox; 

It can be shown [2] that this equation with initial condition 

P(x,to lxo,to) = 8(x -xo) 

(2.18) 

(2.19) 

describes a deterministic motion which can also be found by solving the system of differential equa
tions: 

dxi(t) 
~ = bi(x), i = 1,2, ... ,n (2.20) 

with initial conditions 

x(to) = xo. (2.21) 

This system of differential equations defines the deterministic system associated with the Fokker
Planck equation. The equilibrium points of the deterministic system are found by putting 

bi(x) = 0, i = 1,2, ... ,n (2.22) 

that is, by equating birth and death rates. 
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3. ASYMPTOTIC SOLUTION OF THE FOKKER-PLANCK EQUATION 

In this section, the asymptotic analysis of LUDWIG [3] for small noise strength £ is carried out, leading 
to the ray equations. A local analysis in the neighbourhood of the equilibrium point is given. More
over, the numerical solution of the ray equations is discussed. 

The analysis will be restricted to a study of the quasi-stationary state. A nontrivial stationary state 
does not exist for a stochastic process with absorbing boundaries. For a discussion of this point in 
relation to population dynamics, see NISBET and GURNEY [4]. Apart from possibly a short initial 

period of time, the g_uasi-stationary state is supposed to give a close description of the stochastic pro
cess during a long period of time. The quasi-stationary state is obtained by putting the 1.h.s. of equa

tion (2.16) equal to zero: 

n a £ a2 
0 = ~[- -

0 
{b;(x)Ps(x)}+ -

2 
- 2 {a;(x)Ps(x)}]. (3.1) 

i=l X; OX; 

The function Ps(x) is the p.d.f. corresponding to the quasi-stationary state. On the assumption that 
the deterministic system (2.20) has a stable equilibrium point lying in the interior of 'the state space, 
we apply the asymptotic analysis of Ludwig for small £. A simple WKB-Ansatz to the solution of 

equation (3.1) is: 

Ps(X) = C exp( -~ ), (3.2) 
E' 

in which C is a normalization constant. Substitution of this expression in equation (3.1) and rearrang
ing terms in equal powers of £ yields to leading order in £: 

±[b;(x) aa~ + 21 a;(x)( aa~ )2] = 0. (3.3) 
i=l x, x, 

This equation is called the eikonal equation. It is a Hamilton-Jacobi equation and can be written as 

n(x,p) = 0, (3.4) 

in which n is the Hamiltonian 

n 1 
n(x,p) = ;~1(b;p;+2a;pf) (3.5) 

with 

lQ_ 
Pi= OX·. 

l 

(3.6) 

The corresponding system of ordinary differential equations is: 

dx; an 
ds = ·ap; = b; +a;p;, (3.7a) 

dp· an n ob· 1 aa--' = -- = - ~[..::.:L pj+- .::::.L pj], (3.7b) 
ds OX; j=I OX; 2 OX; 

in which s is a parameter along the characteristics. The rate of change of Q with s is given by 

d() n dx· n 1 
~ = -n(x,p)+ ~ -' p; = ~ -a;pf ;;;;.: 0. (3.7c) 
ds i=I ds i=I 2 

The dynamical system defined by the equations (3.7) is assumed to have an equilibrium point given 

by 

I _ 0 i = 1,2, ... ,n 
X· =I } 
p; -

(3.8) 
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Q = 0 

It is seen that the projection of this equilibrium point on the x-space coincides with the equilibrium 
point of the deterministic system. The equations (3.7) are called the ray equations. The projections of 
solutions of (3. 7) on the x-space are called rays. All rays emanate from the equilibrium point. Rays 
may be interpreted as paths of maximum likelihood joining (points in the neighbourhood of) the 
equilibrium point with points in x-space. See [3] and the references given there. 

Local analysis near the equilibrium 
In the neighbourhood of the equilibrium point of the ray equations, Q is approximated by a quadratic 
form: 

- 1 
Q (x) ~ Q(x) = ~ 2 Pij(x; - 1 )(xj - 1 ), 

l,j 

in which Pij is a symmetric matrix: 

pij = Pji. 

Differentiation of expression (3.9) gives an approximation for the p;: 

p; = ~ ~ ~ Pij(xj-1), i = 1,2, ... ,n. 
X; j 

The deterministic vector field b; near the equilibrium point is approximated by 

ab. 
b; ~ ~-a 

1 
(xj-1) i = 1,2, ... ,n. 

j Xj 

Substitution of the approximations (3.11) and (3.12) in the eikonal equation gives: 

[ 
ab; 1 2] -~ ~-a . (xj-l)~P;k(xk-l)+-2 a;{~Pu(xj-1)} - 0. 

i j XJ k j 

Making use of the symmetry of P;j, this can be rewritten in the matrix form: 

PAP +PB + B'P = 0, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

in which B = (ab; / axj), t denotes the transpose and A is a diagonal matrix containing the values of 
a; at the equilibrium point. Left and right multiplication with S = p- I gives: 

A + BS +SB' = 0. (3.15) 

If the matrices S and A are written columnwise as vectors, a linear system with n 2 equations is 
obtained, which can be solved for S. The matrix P is obtained by inversion of S. All eigenvalues of B 
are negative, because of the assumed stability of the equilibrium point of the deterministic system. 
Consequently, the last two operations can be carried out. The elements of the matrix P can be substi
tuted in expression (3.9), resulting in an approximation of Qin the neighbourhood of the equilibrium 
point. 

Confidence regions 
From the Ansatz (3.2) it is clear that contours of constant Q (hypersurfaces) in the state space, are 
contours of constant probability. Let Qz be the value of Q corresponding to the contour, for which 
the probability of being in the region R enclosed by this contour, is equal to z: 

J P8 (x')dx' = z, 0 ...:;;; z ...:;;; I. (3.16) 
R 
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In order to construct the contour enclosing the confidence region of probability z, the corresponding 
value Qz of Q has to be determined. The following heuristic method is used. According to the local 
analysis, in a first approximation Ps has an n-variate normal distribution around the equilibrium 
point, given by 

-
Ps(x) = Cexp(- ~). 

€ 
(3.17) 

Then by a standard result in probability theory [5], 2Q(x) / € has a £hi-square distribution with n 
degrees of freedom. The value 2Qz I€ which will not be exceeded by 2Q(x )/ € with probability z, can 
be found in a table of the chi-square distribution with n degrees of freedom. In the case n = 2, used 
in the examples in section 5, the chi-square distribution has a simple form from which it can be 
derived that 

Qz = -dn(l-z). (3.18) 

Numerical solution of the ray equations 
The local analysis near the equilibrium point may not be a sufficiently accurate approximation away 
from this point. Then the ray equations have to be solved numerically. 

i) The Runge-Kutta initial value approach. 

For the system (3.7) a starting point x(O) at s = 0 is chosen close to the equilibrium point. The 
formulas (3.9) and (3.11) give the initial values for Q andp; (i = 1,2, ... ,n). The ray equations are 
solved numerically by using a routine for solving a system of ordinary differential equations written in 
first-order form with conditions in the form of initial values. For this purpose the NAG-library con
tains Runge-Kutta Merson routines or variable order, variable step Adam routines. On applying such 
a routine, the solution Q(s), x;(s), p;(s) (i = 1,2, ... ,n) is obtained along the ray defined by the initial 
point x (0). Once the initial point has been chosen, there is no control over the way the ray develops 
through space. Generally there is a very strong dependence on the initial point. Especially when the 
eigenvalues of the deterministic system in the equilibrium point do not have ratios close to one, it is 
impracticable to choose the initial points in such a way that a bundle of rays is obtained, which uni
formly covers the state space around the equilibrium point. Thus, the method is not well suited for 
the construction of the contours of the confidence regions. 

Even shooting methods, in which the initial point is manipulated systematically as to obtain the 
desired rays, did not solve the difficulty [3]. · 

ii) The boundary value approach. 

Instead of specifying the 2n + 1 conditions at a starting point close to the equilibrium, n + 1 condi
tions are imposed at the starting point coinciding with the equilibrium and n conditions are imposed 
at an endpoint which can be chosen freely: 

S ~ - 00: Q = 0, X; = 1 i = 1,2, ... ,n 

s = 0: X; = e; i = 1,2, ... ,n 

(3.19a) 

(3.19b) 

where the e; are the coordinates of the endpoint. Trajectories of (3.7ab) exist, that for decreasing s 
leave a neighbourhood of the equilibrium point and in the limit s ~ - oo approach the subspace with 
negative eigenvalues. Condition (3.19a) forbids such solutions. 

In numerical computations the limits ~ - oo is replaced bys = -s*, in which S* is a sufficiently 
large number. The problem is solved by using a routine for a system of ordinary first order 
differential equations with conditions in the form of boundary conditions, for example the NAG-
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routine D02RAF. This routine uses a deferred correction technique and Newton iteration. On a grid 
of s-values, an initial estimate to the solution has to be given, from which the routine iteratively tries 
to find the solution. Experience has shown that the method works perfectly well provided that a good 
initial estimate is given and a sufficient number of grid points are used. 

Because the endpoints can be chosen at will, contours of confidence regions can be constructed by 
this method quite efficiently. The contours and rays of the stochastic two population models shown 
in section 5 of this paper, have been obtained by this method. Details of the numerical construction 
of rays and contours can be found in a separate technical report [6]. 

4. ExfINCTION 

In this section, exit from a region R with boundary S is treated. Questions of interest are the follow
ing. What is the expected first exit time and which population is expected to exit first? In the birth
death models treated in this paper, exit at the boundary X; = 0 means extinction of population i. 

The expected time of first exit T(x), starting in a point x in a region R with boundary S, satisfies 
the Dynkin equation, which can be derived from the backward Kolmogorov equation [2, 7] and is 
given by: 

± {b;{x) oT(x) + .!... a;(x) o2 T~x)} = -1. 
i=l OX; 2 OX; 

It has to be solved with the boundary condition 

T(x) = 0 for x E S. 

The problem is rewritten as 

L(T = -1 inR 

T=O onS. 

(4.1) 

(4.2) 

(4.3) 

The operator L( is the formal adjoint of the operator on the right side of equation (2.16) working on 
the p.d.f. 

The probability P(x,x') of exit at x' E S, starting from x E R is related to the solution u(x) of the 
boundary value problem: 

L(u = 0 in R 

u = f(x) on S 

by the relation 

u(x) = J f (x')P(x,x')dSx'· 
s 

(4.4) 

(4.5) 

After choosing the function f, we can solve the problem ( 4.4) and obtain the corresponding function 
u(x). If for example /(x') = 8(x'-a) , then u(x) = P(x,a) is obtained by solving (4.4) with the 
boundary condition u (x) = 8(x - a) on S. 

In the asymptotic analysis for small t:, see [3,8], it follows for the expected exit time that 
.Qiil 

T......, e ( , (4.6) 

in which x* E Sis the boundary point at which Q takes its minimal value at the boundary. The most 
likely point of exit is the boundary point x *. The asymptotic results have been derived for the case 
that at the boundary S the trajectories of the deterministic system enter the region R. 

In the study of extinction the boundaries x; = 0 (i = 1,2, ... ,n) are of interest. If x; = 0 is the 
boundary which contains x *, then i is the population which most likely will get extinct first. However, 
in the application to the birth and death models, some complications arise. At X; = 0 (i = 1,2, ... ,n) 
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the trajectories of the deterministic system remain in the boundary x; = 0. Therefore, the WKB
Ansatz used in the asymptotic analysis is not valid in the neighbourhood of the boundaries 
x; = 0 (i = 1,2, ... ,n). Moreover, a;(x) and b;(x) tend to zero at the boundary x; = 0, which requires 
a new type of local asymptotic analysis. As a consequence of the fact that the coefficients a;(x) and 
b;(x) vanish near the boundaries, the rays there deflect and large gradients in the ray variables are 
found. 

The problems are avoided by studying the mean time needed for a system of populations to reach 
one of the small positive levels x; = I; (i = 1,2, ... ,n), assuming the WKB-Ansatz to be valid for 
X; ~ I; (i = 1,2, ... ,n). The computation of x* and Q(x*) can be carried out efficiently by using a 
variant of the boundary value approach. With respect to the boundary x; = I; the boundary condi
tions are: 

s ~ -oo: Q = 0, x1 = I j = 1,2, ... ,n (4.7) 

s = 0: x; = /;, PJ = 0 j = 1,2, ... ,n and j =/=- i. 

This boundary value problem has to be solved for all the boundaries x; = /; (i = 1,2, ... ,n). The 
boundary at which the smallest value for Q is found is the expected exit boundary and the point on 
this boundary where this value is taken, is the expected exit point. For the details of the numerical 
solution of (4.7), see [6]. 

5. A STOCHASTIC TWO POPULATION MODEL 

In this section the theory is applied to a stochastic two population model. The model under con
sideration is described by birth and death rates of the form: 

B1(N1>N2) = N1(A10+A11N1 +;\12N2) 

B2(N1>N2) = Nz(A20 +A21N1 +A22N2) 

D1(N1>N2) = N1{µ10+µ11N1 +µ12N2) 

D2(N1>N2) = N2{µzo+p,z1N1 +µz2N2), 

(5.1) 

in which the ;\iJ and µ;1 are constants, such that the birth and death rates are positive for all admitted 
values of N 1 and N 2 • 

The deterministic system 
In the original variables N 1 and N 2 , the determi~stic system is given by the generalized Lotka
Volterra system: 

dN1 dt = N1(b10+b11N1 +b12N2) (5.2) 

dN2 dt = N2(b20+b21N1 +b22N2), 

in which biJ = AiJ - µ;1 for i = I, 2 and j = 0, I, 2. The equilibrium populations K 1 and K 2 are given 
by 

b22b10-b12b20 
K1 =-----

b21b12-b11b22 

Introduction of new variables 

N; 
x-=-

' K; 
i = 1,2 

b 11 b20-b21b10 

b21b12-b11b22 
(5.3) 

(5.4) 
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a 

FIGURE l. The type of interaction between the two populations depending on the parameters a and /3. 

B 

a 

FIGURE 2. Deterministic stability. The region of stability (shaded) of the deterministic system at the 
equilibrium point (1,1) in the a,/3-parameter plane. 
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gives: 

dx 1 dt = k1x1(l +a-x1 -ax2) (5.5) 

dx 2 dt = kix2(1 +{J-fJx1 -x2), 

in which: 

(5.6) 

Assuming that both populations have a self-limiting growth (i.e. that b 11 and b22 are negative) the 
factors k 1 and k2 are positive. They can be interpreted as the reciprocals of time scales for the respec
tive populations. The type of interaction between the populations is determined by the parameters a 
and fJ as shown in fig. I. 

For the subsequent analysis it is important to know the condition under which the equilibrium of 
the deterministic system at (1,1) is stable. Linearization of the system b1(xi.x2), b2(xi.x2) which is 
given by equations (5.5), in the neighbourhood of the equilibrium point gives: 

dx _ B
dt - x, 

in which x = (x 1 - I,x2- I)' and the matrix Bis given by 

B _ [-k1 -ak1] 
- -fJk2 -ki 

The eigenvalues of B are: 

-(k1 +k2)+ V(k1 -kif +4k1k2afJ 
~2= . , 2 

The condition for stability is that the real parts of the eigenvalues are negative, resulting in 

afJ < I. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Fig.2 shows the region of stability in the a,fJ-parameter plane. From figs. I and 2 it can immediately 
be concluded that the equilibrium (1,1) is stable for all predator-prey models, while for mutualism and 
competition models this equilibrium is stable for parameter values of a and fJ in only a small region 
of the a,fJ-parameter plane. 

The same kind of stability analysis as given above can be carried out for the other eqiulibrium 
points at (0,0), (I +a, 0) and (0, I + fJ), which are of interest only if both coordinates are nonnegative. 
It can be shown that also for these equilibrium points the type of stability depends on a and fJ only. 

Local analysis of the stochastic system near the equilibrium 
On the assumption (5.10) the theory of the preceding sections may be applied. Here the local analysis 
is made, which is valid in the neighbourhood of the equilibrium point. Generally the system (3.15) has 
to be solved numerically. In this case however, it is possible to find explicit expressions. In scaled 
variables X; the functions a;(x) defined by equation (2. l 7b) are given by 

a1(xi.x2) = 1e1x 1(a10 +a11K1x 1 +a 12K2x 2) 

ai(xi,x2) = K2x2(a20 +a21K1x1 +a22K2x2), 

in which a;j = A.ij+/Lij for i = 1,2 andj = 0,1,2 and 

(5.11) 
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a a. 

b 

FIGURE 3. Stochastic stability. Curves of equal ~ ... derived from the l<>fal analysis, in the a,p-parameter 

plane. The arrows indicate increasing values of~- The difference in ~-value between su~ssive curves 

in each of the figures is constant. In the atypical case a 11k 1 = a21k2 the maximum of~ is adopted 

on P = -a 1a!a2 , which is a line through the origin with a negative slope. Fig. 3a shows a case 

a 11k 1 ~ a21k2 and fig. 3b shows a case a 1 /k 1 ~ a21k2. The actual values of ai.a2,ki.k2 are 1., 

1.3, 1.1, .8 for case a and 1., 8., 1.1, .7 for case b. 
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e= i = 1,2. 

The matrix A is diagonal with elements a 1 and a 2 equal to: 

a 1 = a1(1,l) = ic1(a10+a11K1 +a12K2) 

a2 = a2(l, 1) = ic2(a20 +a21K1 +a22K2). 

The matrix Bis defined by (5.8). Equation (3.15) leads to the following linear system: 

-2k1 -ak 1 -ak 1 0 SIJ -ai 

-f3k2 -k1-k2 0 -ak 1 S21 0 
-f3k2 0 -k1-k2 -ak 1 S12 0 

0 -f3k2 -f3k2 -2k2 S22 -ai 

The solution of this system is given by 

The matrix P in expression (3.9) is found by inversion of the matrix S: 

P = s-i = 2(k1 +k2) x 
(a1f3k2-a2aki)2 +a1a2(k1 +ki)1 

[

a 1132 k~ +a2k 1[k 1 + k 2(1-a./3)] a 1 /3k~ + a2akr l 
a1/3k~ +a2aky a1k2[k2 +k1(1-a.{3)]+a2a.2ky · 
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(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

By using (3.17) the bivariate normal p.d.f. is determined. The corresponding confidence contours in 
the state space are ellipses. In some special cases the expression for P can be simplified. For example, 
the competition model, treated by MAY (9,p.123-129), is a particular case of our more general model. 
The p.d.f. derived by May is easily found from the formulas given above. 

The expressions show the complex dependence of the ellipses on the parameters k J.k 2 ,a,{3 of the 
deterministic system and the noise components a 1 and a 2 at the equilibrium point. It may be noted 
that multiplication of k i,k 2,a 1,a2 with the same constant leaves the resulting p.d.f. invariant. The 
effect of an increase (decrease) of velocity by which the system returns to the deterministic equili
brium cancels the effect of an increase (decrease) of the stochastic fluctuations. 

The covariance matrix corresponding to a bivariate normal distribution is given by (10): 

(5.17) 
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(>..if) 

A 

{µ;j) 

a 
p 

B 
k1 
k1 
K1 
K1 

1 2 3 

Predator-prey Mutualism Competition 

1. .004 0. .6 .004 .0056 1. .004 0. 

1 -
£ 

10 
20 
40 
60 
80 

. 6 .0056 0. .8 .0016 .0016 .8 0 . 

.280 .012 .0064 .480 .012 0. .64 .008 

.480 0. .008 .480 0. .0096 .56 .0008 

.8 -.7 .8 

-.7 -.2 .2 

.4 .4 .2 

.4 .4 .2 

50 50 50 

50 50 50 

TABLE 1. 
The birth and death rates for three two population models (A). 

The coefficients appear in the same order as in (5.1). The values 

of the parameters of the corresponding deterministic system, 

which can be calculated from the birth and death rates, are 

shown below (B). 

number of exit at x 1 =.l exit at x 2 =.l 

experiments logT 

atx2= % of exp atx1= % of exp 

200 2.175 1.14 57 1.21 43 

200 3.067 1.11 59.5 1.30 40.5 

150 4.554 1.21 61.3 1.48 38.7 

50 5.530 1.14 82 1.61 18 

50 6.879 1.26 94 1.65 6 

TABLE·2. 

Results of numerical birth-death experiments. 

.0016 

.0032 

.0056 
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in which or and o~ are the variances and p is the correlation coefficient. On equating this matrix to 
the actual covariance matrix £S, the following expressions for the variances and the correlation 
coefficient are obtained: 

a1k2[k2 +k1(l-a/J)]+a2a2kr or = f.-----------
2k1k2(k1 +kz)(I-a/J) 

a2k1[k1 +k2(l-a/J)]+a1/J2k~ 
o~ = f.------------

2k1k2(k1 +k2)(1-a/J) 

-(a1/Jk~ +a2akr) 
p = -;:============================================== V {a1k2[k2 +k1(l -a/J)]+a2a2kr }{a2k1[k1 +kz(I-a/J)]+a 1 /J2k~} 

(5.18) 

(5.19) 

(5.20) 

Note the dependence of the first two expressions on f.; the reciprocal of the mean of the equilibrium 
populations. The parameters ki,k2,ai,a2,£ are all positive. The condition for a stable equilibrium is 
that 1 - a/J is positive. Then, it is easily seen that the sign of the correlation coefficient p equals the 
sign of the numerator on the right side of equation (5.20), from which it follows that for competition 
(a>O,/J>O) the correlation coefficient is negative and for mutualism (a<O,fJ<O) the correlation 
coefficient is positive. For predator-prey systems both positive and negative values are possible. 

For the cases that the local analysis is also valid far from the equilibrium, an expression for the 
expected exit time can be derived. Let C; be the minimal value of Qin equation (3.9) for which the 
ellipse touches the axis x; = 0 and define T; by 

C, 

T; = e • i = 1,2. 

It can easily be shown that 
I (k, +k,)k,k,(1-a/J) 

T 
_ -;- a,a2k~+a,k,[k,+k,(l-a/J)) 

i-e 
I (k, +k,)k,k,(1-a/J) 

T 
_ -;- a,/h~+a,k,[k,+k,(I-afJ)) 

2 - e 

I 
27 = e I 

I 
-;:-;-= e 2a, 

(5.21) 

(5.22) 

(5.23) 

The last equalities in (5.22) and (5.23) follow from (5.18) and (5.19). For the expected extinction time 
T it follows that 

T,...., min(T1,T2). 

The ecological stability index g, defined in [4,p.10] by 

g=lnT 

then satisfies: 

g ,...., ~ = min(-1-, _1_)-2or 20~ 

(5.24) 

(5.25) 

(5.26) 

Recalling that scaled population variables are used, this result is seen to be a two dimensional gen
eralization of the one-dimensional result in [4,p.202]. 

Given the values of ai,a2,k1>kz it may be wondered w)lich combination of a and fJ leads to the 
largest ecological stability. Fig.3 shows the curves of equal gin the a,/J-parameter plane. Typically, the 
largest ecological stability is found in predator-prey systems. As an illustration of the different mean
ing of stability in deterministic and stochastic systems, fig.3 should be compared with fig.2. 

Apart from the time to extinction it may be convenient to have an expression for the expected time 
for a system of populations to reach one of the levels x; = l; (expressed in units of the equilibrium 
populations) with I; not necessarily equal to zero. It is found that with 

(/,-1)' --,-n = e Za, i = 1,2 (5.27) 
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4a 

4b 

C\I~ 
z
CJ ...... ..... 
a: 
.....I 
=>g g;.:. 
a.. 

~ 

-------------

1.00 1.so 2.50 
POPULATION 1 

Oi..,,....,=-~---'=-~~..,....,=-~~.,-L;:-::-~--:~::-~-::-' 
o.oo 1.00 1.so 2.00 2.50 

POPULATION 1 

FIGURE 4. Rays and confidence contours for a) the predator-prey model, b) the mutualism model, c) 
the competition model, defined in table 1, as obtained by solving the ray equations by the boundary 
value approach. From the inside outwards, the three (inner) contours correspond to the 50%, 95% 
and 99% confidence regions, respectively. 
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4c 

~ 
o...,._,,_,_~.....,,.~~--1.~~~.._~~-'-~~--' o.oo .so 1.00 1.50 2.00 2.so 

POPULATION 1 

~ 
N 

~ 
N 

('J~ , z..: 
0 

5 ..... ..... 
a: 
_J 
::Jg n.. • 
~-

~ ~· 

~ 
0 

o.oo .50 1.00 1.50 2.00 2.50 
POPULATION 1 

FIGURE 5. Rays obtained by the initial value approach. The initial points were chosen equidistantly 
on a circle around the equilibrium point. Instead of covering the state space uniformly in the neigh
bourhood of the equilibrium, there is a tendency for the rays to follow one of two main directions. 
For this illustration an extremely large radius ( = .05) of the circle was chosen. For a small radius (for 
example =.001) the effect is stronger and the rays leave the equilibrium almost indistinguishable from 
each other in one of two directions. 
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~ o,__ ____ _..,,,,,_~___....,.,_~~.,..s,,,,_~......,,....,.,_~~.,,.. 
o.oo .so 1.00 1.so 2.00 2.so 

POPULATION 1 

FIGURE 6. Result of a numerical simulation of the predator-prey birth-death process, defined in table 
I, together with the 95% and 99% confidence contours obtained by the boundary value approach. 

log T 

8 

+ 

6 ray 

loc 

4 

2 

0 

FIGURE 7. Relationship between logT and lie. The crosses are values obtained by the experiments. 
The lines correspond to the expressions (5.3la) and (5.3lb) with c1oc = Cray = I. 
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the expected time T satisfies: 

T"' min(:fi' ,Tf.). (5.28) 

The points of contact of the ellipses with the axes x 1 = 11 and x 2 = /2 are given by 

x1 = /I> x 2 = I+ Pu (1-/1) 
P22 

(5.29) 

and 

(5.30) 

respectively. 
In cases that the local analysis is valid only in a small neighbourhood of the equilibrium, the 

expressions given here cannot be used. Instead, the full system of ray equations (3.7) has to be solved 
numerically. · 

Construction of contours 
For the cases, defined by the birth and death rates in table 1, the ray equations (3.7) have been solved 
numerically by the method, presented in this paper as the boundary value approach. Fig.4 shows the 
confidence contours and rays for the various cases. The cases I and 3 are similar to the examples 1 
and 2 of LUDWIG [3]. The difficulties reported by Ludwig in the construction of rays in his second 
example, the competition model, were also experienced by the author, when the initial value approach 
was used, in which the initial values were chosen equidistantly on a small circle around the equili
brium point. As a consequence of the fact that the eigenvalues of the linearized deterministic system 
at the equilibrium point do not have a ratio close to one (ratio 5.7 in [3]), almost all rays follow very 
closely and nearly indistinguishable from each other one of two paths, as shown in fig.5. 

The boundary value approach introduced in this paper overcomes these problems, see fig.4c. From 
the figures it is apparent that close to the equilibrium the contours have the elliptic shape, while 
further away deviations from the elliptic shape tend to come in. 

Fig.6 shows the result of a numerical simulation (see the appendix) of the competition system. Each 
of about 35,000 dots represents a visit. Because the population sizes can take on only integer values, 
the dots should lie on a two dimensional grid. However, the dots have been plotted slightly away 
from their grid positions in a random way, in order to get a good idea of the corresponding p.d.f. The 
agreement with the constructed contours is quite well. 

Exit boundary and exit time 
As an illustration of the theory dealing with the expected exit point and the expected exit time, a 
number of numerical simulations (see the appendix) have been carried out for the competition model 
given in table l, with different values of the noise parameter t:. The results are shown in table 2. The 
first column shows the value of t: -

1 • The second column shows the number of experiments carried out 
for the corresponding case. Column 3 shows the values found for log T, in which T is the mean time 
needed for one of the populations of the system to reach 10% of its equilibrium value. The columns 4 
and 5 show the mean point of exit at the boundary x 1 = 0.1, x 2 = 0.1 (in units of the equilibrium 
values) respectively, with the percentage of exits at that boundary. 

The approach based on the local analysis, as described in this paper, indicates that (0.1,1.31) is the 
most probable exit point, so that population 1 is expected to exit first. The expected exit time is 
T1oc "' e ·06062 I£. 

Solution of the ray equations, in the way described at the end of section 4, indicates that (0.1,1.25) 
is the most probable exit point, so that population 1 is expected to exit first. See fig.4c, which indeed 
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suggests that the boundary x 1 = 0.1 is tangent to a contour line in the neighbourhood of (0.1,1.25). 
The corresponding value of Q is lower than is the case for the contour, to which the boundary 
x 2 = 0.1 is tangent. The expected exit time is Tray ,...,, e·015081

• 

As is seen, the mean exit point obtained from the experiments agrees well with the value from the 
asymptotic theory for small t:. Notice the increasing percentage of exits in the neighbourhood of the 
predicted place for decreasing values of t: in the experiments. The approach based on the local 
analysis leads to results which agree reasonably well with the results of the experiments. 

We write the rel~tionships between T and t: - I as 

Tioc = C1oc e·o60621., 

T = C e -01sos1< ray ray • 

(5.3la) 

(5.31b) 

in which C1oc and Cray are constants. In a graph of lnT against t:- 1 these relationships are straight 
lines which, asymptotically for small t:, should be parallelled by a line fitted through the data points of 
the experiments, see fig.7. At this point the experimental data agree reasonably well with the theory. 
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APPENDIX: NUMERICAL SIMULATION OF STOCHASTIC BIRTH-DEATH PROCESSES 

Numerical simulations have been carried out in order to check the results obtained by the theory. The 
simulations are discussed here for a two population model, but the generalization to higher dimen
sions is straightforward. 

Let a system of two populations be in the state (Ni.N2) at time t. Then in the small time interval 
of length llt succeeding t, one of the following five mutually exclusive events occurs: 

1) a birth in population l with probability B 1(Ni.N2)1lt 

2) a death in population 1 with probability D 1(N 1,N 2 )/lt 

3) a birth in population 2 with probability B 2 (N 1 ,N 2 )/lt 

4) a death in population 2 with probability D 2(N 1,N 2 )/lt 

5) neither a birth nor a death in one of the populations with probability 

l -[B1(N i.N2)+ D1(N i.N2)+ B2(N i,N2)+ D1(N i.N2)]1lt. 

(Al) 

In a more convenient form for numerical simulation, the process is described as follows. When the 
process has arrived in a state (Ni.N2) there is a waiting time TN,,N, in that state, followed by a jump 
away from that state, which then is with probability one to one of the states (N 1 +l,N2), 
(N 1 -1,N2),(N 1,N 2+l),(N1,N 2 -1). The waiting time TN,,N, is distributed exponentially: 

(A2) 

see for example [11]. Using the inverse method [12,p.950,953] we obtain as random deviates from this 
exponential distribution: 

(A3) 

in which U is a random number on the interval (0,1). Note that t depends on N 1 and N 2. 
After the generation of the waiting time, a jump has to be made to one of the four neighbouring 

states indicated above, with total probability equal to one. These jump probabilities: 

B1 D1 B2 D1 ----
s' s' s' s 

(A4) 

are obtained from the old probabilities by scaling with S: 

S = B1 + D1 + B2 + D1. (A5) 

The jump that is actually carried out is determined by a random number generator. To this end the 
interval (0, 1) is divided into four disjunct subintervals, each of which corresponds to one of the 
jumps, the length of the interval being equal to the probability of the jump. A number is randomly 
chosen from the interval (0, 1) and the jump corresponding to the interval in which the random 
number lies is carried out. 
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