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1. Introduction 
The design objectives of the Amoeba distributed operating system (described in [9]) 
motivated (see [5], [6]) the design and analysis of a mathematical model for the so called 
name-server mechanism in a distributed system with mobile processes (and objects, henceforth 
subsumed under processes). The name server, that is, a system that translates names of ser­
vices into locations in the network, forms a central part of the design of many distributed 
operating systems for computer networks and multiprocessor systems. The implementation 
has been approached in various ways, from centralized directories which are vulnerable to 
host processor crashes [8], to methods which maintain a tree of forwarding addresses in the 
network for each mobile process [7]. This latter method is not more robust, and in general 
much less efficient, than the class of methods we consider below. 

More generally, we address the problem of matching mobile processes in a multiprocessor 
environment without centralized control. We call this distributed match-making (see [6]). Vari­
ous issues in distributed control can be thought of in terms of the distributed match-making 
paradigm. One of them is the name-server, another one is mutual exclusion. 

1.1. The Name-Server 
A set of named processes with no permanent addresses residing at the nodes of a network 
wish to set up communication, when needed, among themselves. Let N be the set of nodes 
(i.e., processors) of such a network. The network is a communication graph with two-way 
noninterfering communication channels between directly connected nodes. It is assumed 
that the nodes communicate only by messages and do not share memory. An error-free 
underlying communications network supports the message transfers in which the delivery 
time may vary but messages between two nodes are delivered in the order sent. Each of 
these processes is considered both a potential server (i.e. it can offer a service) as well as a 
potential customer (i.e. it may request a service). Let a process p reside at a host node h (p ). 
Since processes may migrate, die or be created, h (p) can change, become empty or 
nonempty. Here we make the simplifying assumption that for the segment of time of the 
actual match-making instance, the process/ processor allocation does not change. Location 
of services by the processes is achieved by the following procedure. Each server s selects a 
set P(s) of nodes and posts at these nodes the availability of the service it offers and the 
address h ( s) where it resides. (Each node in P( s) stores this information in its individual 
cache.) When a client c wants to request a service it selects a set Q(c) of nodes and queries 
each node in Q( c) for the required service. When P( s) n Q( c) is not empty the node (or any 
node) in P( s) n Q( c) will be able to return a message to c stating the address h ( s) at which 
the service is available (recall that this information is already stored in the caches of all the 
nodes in P(s)). For example, a centralized name-server corresponds to 

P(s) = {x}, Q(c) = {x}, 

broadcasting corresponds to 

P(s) = {h(s)}, Q(c) = N, 

while what we may call sweeping corresponds to 

Q(c) = {h(c)}, P(s) = N, 
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for all servers sand clients c with h(s),h(c) EN and some x EN. Another example is the 

Manhattan network. The set N of nodes consists of pairs (i,j), with i = 1, ... ,m, j = 1, ... ,n. For 

all (i,j) EN, a servers residing at (i,j) posts at the set 

P(s) = {(i, 1), ... ,(i,n)}, 

and a client c residing at (i,j) queries the set 

Q(c) = {(1,j), ... ,(m,j)}. 

(For more examples see [ 5], which also discusses truly-distributed, hierarchically-distributed, etc., 

name-servers.) We restrict ourselves to methods where the sets P(s) and Q(c) depend on the 

respective hosts h(s) and h(c) only. It therefore makes more sense to talk about P(h(s)) 

and Q(h(c)) instead of P(s) and Q(c), Thus, we define the collection of posting and query­

ing tactics of the set of nodes N, to implement the name-server, as a single strategy 

P, Q:N~ 2N, 

(where 2N is the set of all subsets of N) for match-making in the given network. 

1.2. Mutual Exclusion 

Another application of the match-making paradigm is distributed mutual exclusion. Let the 

network be as before. In such a distributed system, each network node can issue a mutual 

exclusion request at an arbitrary time, see e.g. [ 4 ]. In order to arbitrate the requests, any 

pair of two requests must be known to one of the arbitrators. Since these arbitrators must 

reside in network nodes, any pair of two requests originating from different nodes must 

reach a common node. Assume that each node i must obtain a permission from each 

member of a subset S(i) of N before it can proceed to enter its critical section. Then for 

each pair (i,j)EN2 we must have S(i)nS(J}=;i=0 so that the node in the intersection can 

serve as arbitrator. In [ 4] the situation is analysed where each node in the network serves as 

arbitrator equally often, that is, N times. The actual algorithm presented in [ 4] ·uses at most 

5· I S(i) I messages, where for some K, I S(i) I =K for all i, i EN. (For each set S, IS I will 

denote the number of elements of S.) 'It is clear that at least 2K messages are required: K 

messages to query a set S(i), and K answers from every member of S(i) to i. The overhead 

of 3K messages arises from the necessary locking and unlocking protocols to guarantee that 

no more than one node can simultaneously be in the critical section, to resolve conflicts, 

and to prevent deadlock (i.e., circular waiting among the nodes requesting mutual exclusion) 

and starvation (a node which wants to enter its critical section can be prevented from doing 

so forever). Here, we may view a strategy for distributed mutual exclusion as a mapping 

and view it as a restricted case of match-making for which the symmetry condition 

P(i)=Q(i) (=S(i)) holds for all i EN. 

One way to achieve this symmetry is to let the functions P, Q be as in § 1.1, and set 

S(i)=P(i)UQ(i) for all i, i EN. As an example, in the Manhattan network we obtain: 

S(i,j) = {(i, 1), ... ,(i,n),(1,j), ... ,(m,j)}. 



4 

More frugal is the example of the projective plane. The projective plane PG (2, k) has 
n = k 2 + k + 1 points and equally many lines. Each line consists of k + 1 points and 
k + 1 lines pass through each point. Each pair of lines has exactly one point in common 
(and each pair of points has exactly one line in common). The set of k + 1 points incident 
on any of the k + 1 lines incident on a node i serves as choice for S (i) (see (3,5 ]). 

1.3. Formal Framework 

To simplify notation from now on let the set N of network nodes be equal to {l, ... ,n }. 
Without loss of generality, identify s and c with their respective host nodes h ( s) and h ( c ). 
What is meant, the process of its host, will be clear from the context. For each s,c EN let 
m (s,c) be the number of point-to-point messages (i.e. messages from a node to any of its direct 
neighbors) required for the match-making instance of nodes s,c. Then the average number 
of point-to-point transmissions required for match-making is given by the formula 

1 n n 
m(n) = - 2 ~ ~ m(s,c). 

n s=l c=l 
(la) 

Since a servers sends messages to all the nodes in P(s) and a client c queries each node in 
Q(c) the number m (s,c) of point-to-point messages in the match-making instance (s,c) must 
be at least I P(s) I + I Q(c) I· It is exactly the case m (s,c) = I P(s) I +I Q(c) I for which a 
lower bound is derived in [6]. Another more general situation arises (see (6]) when the 
average call for a service s by a: client c occurs a(s,c)-times more often than the average 
posting of a service available at s. Here one might want to minimize (la), with 
m(s,c) = IP(s)I +a(s,c)IQ(c)I. A similar case arises when in the match-making instance 
(s,c) the servers is allowed to postp(s,c)-many times to the nodes in P(s) and the customer 
c is allowed to query q(s,c)-many times the nodes in Q(c). (This might be necessary in 
order to increase reliability of the network.) In this case the number m(s,c) of point-to­
point messages is equal to p (s,c) I P(s) I + q (s,c) I Q( c) I · The results of the next section are 
meant to derive lower bounds for these more general situations. 

As far as the mathematical aspects of the name-server model are concerned, the operations 
posting and querying are entirely symmetric. Thus, one is led to consider posting as a form of 
querying. In general, assume that there are s different forms of querying, say Q1 , .•• ,Qr. Mes­
sage passing in such an s-dimensional instance (ji, ... ,J~) of the name server mechanism, 
where 1~= l, ... ,n, r = l, ... ,s, is as follows: at the r-th querying the node located at J~ queries 
a set Q,.(J~) of nodes. If 

then any node located at the above intersection will be able to return a message to any of 
the nodes of j 1 , ... ,js stating the address at which the desired service is available. 

We can interprete this as a generalization of the name-server: here a client at j 1 queries for 
a set of services j 2 , ••• ,Jn each of a particular nature. 
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Multimatch-Making 

For instance, in the UNIX* system a client may want the TROFF document preparation 

service, which involves setting up a 'pipe' of preprocessors for a pipelined computation. 

This may be a pipe like 

refer <file> lpiclgraphltblleqnltroff 

which needs a file, 'refer' preprocessing to assemble references, 'pie' to draw pictures, 

'graph' to draw graphs, 'tbl' to make tables, 'eqn' to layout mathematical formulas, and 

'trofP to take the final output and assemble an integrated document. Each preprocessor 

hands the result to the next preprocessor. The client therefore issues requests for many ser­

vices simultaneously, say for s -1 services. We call this s-match-making. 

Multimutual-Exclusion 

Similarly, this approach can be used to investigate s-mutual exclusion, i.e. n processes can 

compete for a resource which can be granted to at most s -1 of them for some fixed s, 

2:s;;;;s :s;;;;n. In this case we want all query sets to be the same set, because of the symmetrical 

role of the different processors in the algorithm. This is modelled by requiring 

Qi= ... =Qr. 

This generalization of the critical section problem to the case where at most s - 1 of 

processes can be in their critical sections simultaneously was considered in [ 1 ]. One way of 

viewing this problem is to regard it as a resource allocation problem. There are s - 1 

identical copies of of a non-sharable reusable resource, where each process can request at 

most one copy of that resource. Entry to the critical section corresponds to allocation of a 

resource copy. Here we can think of each process as having a designated section of code, 

called the critical section. This code manipulates a resource copy, such that entry of the 

critical section by a process corresponds to allocation of a resource copy. In [ 1] the problem 

is solved through the use of a shared memory which every process can read and write. 

Deadlock and starvation are avoided. The memory need have only ,,Z different values. 

Essentially, this is a centralized solution. The distributed solution in [4] for standard 2-

mutual exclusion seems to generalize readily to s-mutual exclusion. The optimal solution 

there would be something like the projective plane PG(s,k), where the network has 

e + ks - i + · · · + 1 = n nodes, each node is incident on k lines, and each line is incident 

on k nodes. Each s-element subset of lines intersects in precisely one node. Therefore, each 

query set S ( i) = Qi ( i) = · · · = Qr( i) of a node i consists of the set of k nodes incident on a 

line. It does not matter which line we pick, because of the projective plane property that 

any s lines intersect in one node. The cost in point-to-point messages associated with a par­

ticular mutual exclusion instance is therefore at least sk ~ sn i ; s, which will be shown to be 

optimal. 

However, that is not the topic of the present paper. The problem we address here is that of 

a lower bound on the number of message passes for each instance of s-mutual exclusion for 

algorithms of any degree of distributedness within the chosen formal framework. 

Formally, the average number of point-to-point messages necessary for match-making (in 
" 

*UNIX is a trademark of AT&T Bell Laboratories. 
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this more general context) is defined by 

1 n 
m(n) = - ~ 

ns . 
)1 =i 

n 

~ m(ji,. .. ,J~), 
j~= i 

(lb) 

where m(ji. ... ,J~) is the number of transmissions required for the match-making instance 
(ji. ... ,J~). (It is an effort to obtain a lower bound for (lb) that motivates the general results 
of the next section.) In contrast to the post-query case, which is best visualized in two dimen­
sions, this more general case is best visualized in s dimensions. (Each axis is marked with 
the nodes 1,. .. ,n and at the vertex (J°i, ... ,J~) a point of the intersection 
Qi Ch ) n · · · n 2 Us) is located.) 

The main inequality of the next section is further extended in the last section to obtain 
lower bounds on the average number of colors occurring across different cross-sections (one 
for each axis) of a colored (with a finite number of colors) multidimensional body in terms 
of the total (multidimensional) volume of each color in the whole body. The main motiva­
tion for this result is the following. Consider the s-dimensional grid with sides equal to 
{1,. . .,n}, i.e. the cartesian product {1,. .. ,ny; for every s-tuple (jI> .. .,J~) put an element of 
the intersection Qi (j i ) n . . . n 2 (J~) at th~ vertex (j 1 ,. .. ,)~)' if the intersection is 
nonempty, and nothing otherwise. This grid can be considered as a sufficiently accurate approx­
imation of a partitioned multidimensional body. Now consider the inequality of theorem 1 
below and pass to the limit as the partitions become finer. 

For general background information on networks the reader should consult [8]. A general 
discussion of match-making and its relation to mutual exclusion, implementations to 
different network topologies, as well as a mathematical analysis of the two dimensional case 
(from which the present research is inspired) is provided in [6]. In addition, the results of 
the present paper hold for any network topology and for the entire range of networks, from 
centralized to distributed. 

2. The s-Dimensional Lower Bounds 

In this section the main lower bound results are derived. In order to be able to prove the 
most general results possible it will be necessary to formulate the required concepts with a 
higher level of abstraction than in the introduction. The motivation however is derived from 
the discussion in the introduction. 

Consider a family P = {P1(ji), ... ,Ps(JJ: J~ = 1, ... ,nn r = l,. . .,s} of subsets of the set 
N = {1,. . .,n} of nodes. Let Phi)= I PiCJ'i) I· Let Ki[P] be the set of s-tuples (j 1 , .. .,}s) such 
that iEP1(ji)n · · · nPs(J~) and let ki[P] = IKi[P]I. (It is clear that if each of these 
intersections is nonempty then 

n 
~ ki[P] ;;:;;;.: n1 • · · nn 
i=l 

with= if all Ki[P]'s are singleton sets. If all ki[P]E{0,1} then the left-hand side is.;:;;; the 
right-hand side.) For the given family P define the product (respectively sum) IT[P] 
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(respectively A[P]) corresponding to P by the following formulas: 

1 n, ~ 

A[P] = --- ~ ... ~ [PiU1)+ ... +PsUs)]. 
nl···nsj,=1 j,=1 

Further, for r = 1, ... ,s put 

and notice that 

II[P] = A 1[P] · · · As[P] and A[P] = A i[P]+ · · · + As[P]. (2) 

The main result of the section is the following 

Theorem 1. For any fami{y P the following inequalities lwld: 

II[P] ~ . ~. [±ki[P]l/s]s and A[P] ~ S [z.~=nlki[P]l/s]. 
nl ns i=l (n1 ... ns)l/s 

Proof: The following inequality, also known as inequality ef the arithmetic and geometric means, 

holds for all positive real numbers a 1 , ••• , an 

(3) 

In fact, equality holds exactly when all the a/s are equal (see [3]). For each r = 1, ... ,s 

and each i = 1, ... ,n, define the set Hr,i consisting of all jn 1 ~ J~ ~ nn such that for some 
. . . . 

) 1, ... ,Jr-1,Jr + 1, ... ,Js, 

Also put hr,i = I Hr,i I · It is now true that for all i = 1, ... ,n, 

hl,i · · ·hs,i = IH1,iX · · · XHs,d 

~ I {(jl> ... ,J~): iEP1U1)n ... nPsUs)} I 
. = ki[P]. 

Further, for all r = l, ... ,s, 

n n 

~ hr,i ~ ~ I Ur : i EPr(jr)} I 
i=l i=l 

n 

= ~I {(i,J~): iEPr(J~)} I 
i=l 

n, 

= ~ I {(i,j7 ) : i EPr(jr)} I 
j,=1 

n, 

= ~ Pr0~) 
j,=1 

(4) 



8 

= nr Ar[P]. (5) 

To find the lower bound of II[P] notice that by (5) 

IT[P] = A 1[PJ · · · As[PJ 

n 

~ h I,i1 ' ' • hs,i, 
i,=I 

1 n n . . 
---- ~ · · · ~ S(z1, ... ,zs), 
n1 · · · ns i

1 
=I i,=I 

where S(i 1, ... , is) = h I,i
1 

• • • hs,i,- By cyclically rotating the indices i I• ..• , is one 
obtains the following s-many summands: 

Using inequalities (3) and (4) it is easy to see that the sum of the above s-many summands 
must be at least 

s(kiJPJ · · · ki,[P])1fs. 

Adding the above s-many summands with respect to ii, ... ,is and taking into account the 
last inequality one easily obtains that 

n n n n [ n ls .~ ... . ~h1,i1 ••• hs,1;;;;;;. .~ · ·' .~(kiJP] · · · ki,(PJ)11s = .~ki[PJ 1 1s . 
I 1 = I 1, = I I 1 = I 1, = I I = I 

This completes the proof of the lower bound of II[PJ. The lower bound on A[P] is an 
immediate consequence of equations (2), inequality (3) and the lower bound for II[P]. This 
completes the proof of the theorem • 

In particular, both propositions 1 and 2 of [6] are immediate consequences of theorem 1. 
The reader familiar with [6] will undoubtedly notice that the proof of theorem 1 is essen­
tially a generalization of proposition 1 of [ 6] to rectangles (possibly with holes) and dimen­
sions s ;;;;;. 2. 

Example 1. ( Multidimensinal Cube Network) Let the number of nodes be n = 2d and suppose 
that the number s of queries is a divisor of d. Addresses of nodes consist of d bits, like 
u1u2 • · • ud. Nodes are connected by an edge exactly when they differ by a single bit. For 
each r=l, ... ,s, let Q,(u 1 • • • ud) be the set 

{x1 ... X(r-I)d/sU(r-I)d/s+I .. "Urd/sXrd/s+I '" "Xd: XjE{0,1}}. 
Clearly, each of the above sets has size 2Cs-I)d/s and jki[PJI = 2Cs-I)d = ns-I. Thus, 
with m,UI>···,}s) = IP1U1)i + · · · + IPsUs)I, one easily obtains that m(n);;;;;. sn<s-I)/s, 
i.e. the average number of point-to-point message transmissions is at least sn<s-I)/s. 
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Example 2. It is easy to see that for any family P, II[P] ~ ns, A [P] ~ sn. If in addition, 

PrUr) = {1, ... ,n }, for all Jr = 1, ... ,nn r = 1, ... ,s, then the lower bounds of theo~em 1 are 

identical to the upper bounds given above. Consequently, the lower bounds of theorem 1 

are optimal (see also the remark below). 

Example 3. Let the assumptions be as in Theorem 1. Let n 1 = n 2 = · · · = ns. Then the 

average number of colors in an axis parallel cross-section of P equals 

II(P)t Is ( = ..4EJ.) 
s 

and Theorem 1 provides a lower bound on this number. 

Remark. In the statement of theorem 1, the quantity A [ P] equals the right-hand side of the 

inequality in which it occurs, exactly when A 1 [ P] = · · · = As[ P ]. (This is an immediate 

consequence of the inequality on arithmetic and geometric means.) In particular, the 

optimal name-servers are the ones for which the average number of point-to-point transmis­

sions are equally balanced in all directions. This remark also applies to theorem 5, below. 

3. Applications to Distributed Match-Making 

As an application of theorem 1 one can determine lower bounds for sums of the form 

S[P] = 
1 ~ ... ~ [p1U1.···,is)P1(J~)+ ... +PsVt.····J~)Ps(J~)], (6) 

n 1 · • · ns J1=1 J, = t 

wherepr(j1,. .. ,Js) is a positive integer for each r = 1, ... ,s and eachJr = 1, ... ,~. (These are 

the types of sums for which a lower bound was promised in the introduction.) To deter­

mine the lower bound on S[ P] put 

ni n,-1 n,+1 ~ ~ 

N.·=~··· ~ ~ 
T,), ~ £_, ~ ~Pr(ji, ... ,J~) and Nr = ~ Nr,1~, 

i=l i=l 

for each r = 1, ... ,s. It is now clear that 

1 [ n, . n, · ] 
S[P] = n ... n .~ N1,J,P1 (Ji)+ · · · + .~ Ns,J,Ps0s) . 

1 s )1=1 J, = 1 

Consider a new family Q = {Q,(tr): r=l, ... ,s, tr=l, ... ,Nr}, where Q,(tr) = Pr(jr) for the 

unique Jr such that 

[ 1 ~ tr ~ Nr, t and Jr = 1] 

or 

[Nr,t + · · · +NrJ,-1 < tr ~ Nr,t + · · · +Nr,J, and nr ;;a.: Jr > 1]. 

As before, let qr(tr) = I Q,(tr) I · It is now clear from inequality (3) and theorem 1 that 
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S (N1 • .. Afs)l/sIJ[Q]l/s 
n1 ... ns 

It remains to compare the quantities ki[P], ki[Q]. This can be done by comparing the sizes 
of the sets Ki[P], Ki[Q]. Indeed, by definition of the family Q to each (j 1 , ••• ,Js) E Ki[P] 
there correspond at least N 1J, · · · NsJ, -many s-tuples (t 1 ,. .. ,ts) of the set K;[Q]. Hence, the 
following theorem has been proved. 

Theorem 2. For any family P the following inequality holds: 

Now it is easy to obtain lower bounds for the average number of point-to-point messages for 
distributed match-making (this will answer open questions posed in [6]). For example, one 
can handle the case 

m(i,j) = p(i,j) jP(i) I +q(i,j) I Q(j) I 
mentioned in the introduction by using theorem 2. More generally, one can study the case 

Thus, for example, ifeachPr(Ji, ... ,J~) =A,. then the average amount m(n) of point-to-point 
messages, as defined by equation ( 1 b ), must satisfy the inequality of the following 

Corollary 3. 

s(A1 ... A )1 Is n 
m(n);;;:. s '}:kfls, 

n i=I 

4. Application to Colored Multidimensional Bodies 

It is natural to think of the result of theorem 1 as providing a lower bound on the average 
number of colors occurring across the different cross-sections of a colored multidimensional grid 
in terms of the total number of occurrences of each color in the whole grid. Now, it is desired 
to extend this result to .finitely colored, continuous, multidimensional bodies. One way to do this, is 
to partition the given multidimensional body into in.finitely small multidimensional cubes, 
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apply theorem 1 to the resulting grid and pass to the limit, as the size of the members of the 

partition becomes infinitely small. Although this argument works, it suffers from two draw­

backs. First, it causes notational complications and second, the class of bodies for which the 

above limits exist is much smaller than the class of Lebesgue measurable sets. Thus, in order to 

avoid both the complications and limitations which arise from the possible nonexistence of 

such limits it will be necessary to use the notion of Lebesgue measure (see [2]). 

For any Lebesgue measurable set S c;;;,Rs let m (S) denote its Lebesgue measure. (In the sequel, the 

same symbol will be used for r-dimensional Lebesgue measure on Rr, i.e. Lebesgue measure 

on sets of r-tuples of real numbers, for each r = l, ... ,s; however, this will cause no confu­

sion because it will be clear from the context which measure is meant in each case. In 

addition, all integrations considered below are with respect to Lebesgue measure.) 

Let B c;;;,Rs be a Lebesgue measurable set. For each r = l, ... ,s let Br be the projection of B 

onto the X7 -axis, i.e. B7 is the set of U7 such that for some u i, ... ,u7 -1,ur + i, ... ,un 

(u1, ... ,us)EB. For each rand each U7 let B7 (u7 ) be the u7 cross-section of B, i.e .. 

B7 (ur) = {(ui, ... ,U7 -1,Ur+1, ... ,us): (u1, ... ,us)EB}. 

(Thus, each Br c;;;, Rand each B7 (u7 ) c;;;, Rs-l .) 

Suppose that B is colored with n colors, say l, ... ,n. For r = l, ... ,s let P7 (u7 ) = {i : color i 

occurs in B7(ur)} and putPr(u7 ) = IP7 (ur)I. Further, it is assumed that each set 

Ki[B] = {(u1, ... ,us)EB: (u1, ... ,us) is colored with color i} 

is Lebesgue measurable, where i = 1, ... ,n. Put ki[B] = m(K;·[B]). (As in section 2 it is 
n 

clear that ~ki[B] = m(B).) Since, 
i=l 

it is evident that P1(u 1)n · · · nPs(us) = {i}, where i is the (unique) color of vertex 

(u1 , ... ,us). 

For each r = l, ... ,s define 

Further, as in section 2, put 

1 
Il[B] = -(B-) --(B-) fB ···fBP1(xi) · · · ps(xs)dx1 ... dxs, 

m l ... m s ' ' 

and notice that 

Il[B] = A1[B] ... As[B], A[B] = A1[B]+ ... +As[B]. 

In addition, let Br,i be the set of all U7 such that for some u1, ... ,U7 -1,ur+1'···,us. the s-tuple 
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( u i. ... , Ur -1' Un Ur+ 1 ,. .. , us) is colored with color i. (At this point the reader should be aware 
of the apparent similarities between the sets Hr,i, defined in the proof of theorem 1, and the 

sets Br,i defined here.) As before it can be shown that for all i = 1, ... ,n, r = 1, ... ,s, 

(7) 

n 
~m(Br,i) ~ m(Br)·Ar[B]. (8) 
i=I 

The proof of (7) is trivial; the proof of (8) is similar to the proof of (5) but it requires the 
following lemma, which is proved by induction on n. 

Lemma 4. For any Lebesgue measurable sets S 1 , ... ,Sn, 

n n 
~ m(S;) ~ ~ k·m ( { u : u belongs to exactly k-many S/ s } ) • 

i=l k=l 

(The reader may find it convenient to convince himself of the validity of lemma 4 by draw­

ing a picture for the cases = 2, n = 3.) Now inequality (8) is an immediate consequence 
of the lemma. Indeed, 

n n 

~m(Br,i) ~ ~m({urEBr: iEPr(ur)}) 
i=l i=l 

n 
~ ~k·m({urEBr: JPr(ur)I = k}) 

k=l· 

Finally, using inequalities (7), (8) and arguing as in the last part of the proof of theorem 1 
it is easy to obtain the following 

Theorem 5. The following inequalities hold for any Lebesgue measurable set B <;;;;, Rs, and any partition 

(or coloring) ef B into n Lebesgue measurable subsets: 

Il[B] ;;:;. 1 [ ± (k;[B])l/s]s, 
m(Bi) · · · m(Bs) i=l 

A [B] >-- . s [ ~ (k [B ])1 Is] e 
...-- (m(B1) ... m(Bs))l/s i~l i 

The following example might help illustrate the concepts involved. 

Example 4. Let B be the open disc with center at (0,0) and radius 3 units. Color B with 

the three colors 1,2,3. For each i=l,2,3 let Ki[B] be the set of all pairs (xJ') such that 

i-1 ~ Vx 2 +y 2 <i. Using the notation of theorem 5, it is easy to show that k1[B] ='IT, 
k2[B] = 3'11', k3[B] = 5'1T, m(B1) = m(B2) = 6. It follows from the second inequality of 
theorem 5 that A [ B] ;;:;. 2. 7 468. 
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Since it is immediately clear that Theorem 5 holds even when we rotate or translate the 
axis, we have: 

Example 5. Let m(B1)=m(B2)= · · · =m(Bs) and let the assumptions be as in Theorem 
5. Then the average number of colors in a cross-section of Bis equal to 

II(B)l/s (= ..4..@l) 
s 

Therefore, the average number of colors in a cross-section of the disc of example 4 is 
;;;:.1.3734. 

The reader familiar with classical measure theory and product measures (see [2]) should 

have no difficulty extending this last theorem to arbitrary, positive, countably-additive 

measures µ. One simply replaces m with µ in the proof of theorem 5. The resulting theorem 
generalizes both theorems 1 and 5 (theorem 1 corresponds to µ = counting measure and 
theorem 5 corresponds toµ = Lebesgue measure). Details are left to the reader. 
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